首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carapa guianensis, a popular medicinal plant known as “Andiroba” in Brazil, has been used in traditional medicine as an insect repellent and anti-inflammatory product. Additionally, this seed oil has been reported in the literature as a repellent against Aedes aegypti. The aim of this work is to report on the emulsification of vegetable oils such as “Andiroba” oil by using a blend of nonionic surfactants (Span 80® and Tween 20®), using the critical hydrophilic–lipophilic balance (HLB) and pseudo-ternary diagram as tools to evaluate the system’s stability. The emulsions were prepared by the inverse phase method. Several formulations were made according to a HLB spreadsheet design (from 4.3 to 16.7), and the products were stored at 25°C and 4°C. The emulsion stabilities were tested both long- and short-term, and the more stable one was used for the pseudo-ternary diagram study. The emulsions were successfully obtained by a couple of surfactants, and the HLB analysis showed that the required HLB of the oil was 16.7. To conclude, the pseudo-ternary diagram identified several characteristic regions such as emulsion, micro-emulsion, and separation of phases.  相似文献   

2.
Lipid emulsions with saturated triacylglycerols (TAGs) with 4 to 10 carbons in each acyl chain were prepared to study how the oil component alters the stability of the lipid emulsions when phosphatidylcholines were used as emulsifiers. The average droplet size of the emulsions became smaller as the chain length of the TAG increased. For a given oil, emulsion with smaller droplets was formed with an emulsifier having higher HLB value. The influence of HLB values on the droplet size was biggest for the tributyrin (C4) emulsions. For the tricaprylin (C8) emulsions, droplet size was identical at given emulsifier concentrations regardless of HLB values. The HLB value and the concentration of the emulsifiers also affect the droplet size of the emulsions. The emulsions with smaller average droplet size were more stable than with bigger size for 20 days. The oil and water (o/w) interfacial tension is inversely proportional to the initial droplet size of the emulsion.  相似文献   

3.
The enzymatic cross-linking of adsorbed biopolymer nanoparticles formed between whey protein isolate (WPI) and sugar beet pectin using the complex coacervation method was investigated. A sequential electrostatic depositioning process was used to prepare emulsions containing oil droplets stabilized by WPI – nanoparticle – membranes. Firstly, a finely dispersed primary emulsion (10 % w/w miglyol oil, 1 % w/w WPI, 10 mM acetate buffer at pH 4) was produced using a high-pressure homogenizer. Secondly, a series of biopolymer particles were formed by mixing WPI (0.5 % w/w) and pectin (0.25 % w/w) solutions with subsequent heating above the thermal denaturation temperature (85 °C, 20 min) to prepare dispersions containing particles in the submicron range. Thirdly, nanoparticle-covered emulsions were formed by diluting the primary emulsion into coacervate solutions (0–0.675 % w/w) to coat the droplets. Oil droplets of stable emulsions with different interfacial membrane compositions were subjected to enzymatic cross-linking. We used cross-linked multilayered emulsions as a comparison. The pH stability of primary emulsions, biopolymer complexes and nanoparticle-coated base emulsions, as well as multilayered emulsions, was determined before and after enzyme addition. Freeze-thaw stability (?9 °C for 22 h, 25 °C for 2 h) of nanoparticle-coated emulsions was not affected by laccase. Results indicated that cross-linking occurred exclusively in the multilamellar layers and not between adsorbed biopolymer nanoparticles. Results suggest that the accessibility of distinct structures may play a key role for biopolymer-cross-linking enzymes.  相似文献   

4.
The influence of oil type on the ability of excipient emulsions to improve the solubility, stability, and bioaccessibility of curcumin was examined. Oil-in-water emulsions were prepared using coconut, sunflower, corn, flaxseed, or fish oils. These excipient emulsions were then mixed with powdered curcumin and incubated at 30 or 100 °C. For all oils, more curcumin was transferred from powder to excipient emulsion at 100 °C (190–200 μg/mL) than at 30 °C (30–36 μg/mL), which was attributed to increased curcumin solubility with temperature. Oil type influenced the stability and bioaccessibility of curcumin when excipient emulsions were exposed to simulated gastrointestinal tract conditions, which was attributed to differences in the molecular composition and physicochemical properties of the oils. Overall, the use of fish oil led to the highest effective curcumin bioavailability (38 %). This study provides valuable information for optimizing excipient emulsions to increase curcumin bioavailability in food, supplement, or pharmaceutical applications.  相似文献   

5.
Huanglongbing (HLB) is highly contagious and cannot be cured, resulting in a decrease in the commercial value of citrus. Timely detection and removal of diseased trees is an effective way to reduce losses. Complex symptoms of HLB, such as nutrient deficiencies often accompany HLB; as a result effective and accurate identification of HLB remains a challenge. In this study, 175 volatile organic compounds (VOCs) were detected in three categories (healthy, HLB, and Zn-deficiency) of samples using headspace solid-phase microextraction gas chromatography–mass spectrometry (HS-SPME-GC/MS), highlighting the variability of VOCs present in different categories of samples. In order to simplify the testing steps and reduce the cost in practical agricultural production, a method based on electronic nose technology to collect VOCs from citrus leaves for HLB detection was proposed. Among them, limiting value features and linear discriminant analysis were identified as the best combination of feature extraction and pattern recognition methods. Multiple sets of comparison experiments were set up and the collection conditions of VOCs were optimized. The results showed that the best classification performance was achieved for a 0.2 g sample at a collection time of 20 min when the collection temperature was 40°C and the headspace volume was 200 mL. Four types of samples (healthy, HLB-positive, Zn-deficiency, Zn-deficiency and HLB-positive) were used for model reliability validation, with an accuracy of 97.79% for HLB samples for multiple symptoms (including HLB-positive and Zn-deficiency and HLB-positive) identification. In addition, the accuracy of samples with a combined effect of Zn-deficiency and HLB was 96.43%. The results show that the E-nose-based HLB detection method is conducive to suppressing the spread of HLB, which can ensure the quality of citrus products and reduce the economic loss to horticulturists, and has good practical value.  相似文献   

6.
Astaxanthin (AST) is carotenoid that is considered to have many potential benefits for human health. However, its poor water-solubility and chemical instability hamper its use as a functional food ingredient. The present study evaluated the effects of storage temperature, pH, ionic strength, and light exposure on the physical and chemical stability of AST-enriched emulsions prepared using caseinate as emulsifier. The chemical degradation of AST increased with increasing temperature, but the emulsions remained physically stable (droplet diameter = 230 nm; ζ-potential = ?40 mV) at all incubation temperatures (5–70 °C). Solution pH, ionic strength and light exposure had little impact on the chemical stability of AST, except at pH 4 and 5. Conversely, the emulsions were highly unstable to droplet aggregation at pH values near the isoelectric point of the caseinate. This work highlights the benefits and drawbacks of using caseinate-stabilized emulsions as delivery systems for AST in functional foods and beverages.  相似文献   

7.
This study describes the influence of environmental stresses on the stability of emulsions prepared by a natural sugar beet extract (Beta vulgaris L.). The emulsion stabilizing performance was compared to that of Quillaja extract, which is widely used within the food and beverage industry as natural surfactant. We investigated the influence of pH, ionic strength, heating and freeze-thawing on the mean particle size, ζ-potential and microstructure of oil-in-water emulsions (10% w/w oil, 0.75% w/w emulsifier). The emulsions stabilized by the anionic sugar beet extract were stable at pH 5–8 and against thermal treatments up to 60 °C. However, the prepared emulsions were unstable at acidic (pH 2–4) and basic pH conditions (pH 9), at high temperature (>60 °C), and at salt additions (> 0.1 M NaCl / CaCl2). Moreover, they also phase separated upon freeze-thawing. Our results show that sugar beet extract is capable of stabilizing emulsions and may therefore be suitable as natural emulsifier for selected applications in the food and beverage industry.  相似文献   

8.
The main objective of this work was to investigate the electrostatic interaction between lysolecithin and chitosan in two-layer tuna oil-in-water emulsions using nuclear magnetic resonance (NMR) spectroscopy. The influence of chitosan concentration on the stability and properties of these emulsions was also evaluated. The 5 wt% tuna oil one-layer emulsion (lysolecithin-stabilized oil droplets without chitosan) and two-layer emulsions (lysolecithin-chitosan stabilized oil droplets) containing 5 wt% tuna oil, 1 wt% lysolecithin and various chitosan concentrations (0.025–0.40 wt%) were prepared. The one-dimensional (1D) 31P and 1H NMR spectra of emulsions were then recorded at 25 °C. The results showed that addition of chitosan affected the stability and properties of lysolecithin-stabilized one-layer emulsions. The 31P NMR peak of the choline head group on lysolecithin molecules disappeared when chitosan was added at concentrations above neutralization concentration (> 0.05 wt%). The 1H NMR peak intensity monitoring free amino groups (?NH 3 +) of chitosan showed a strong positive linear relationship to the chitosan concentration with a high correlation coefficient (R2 ≈ 0.99). This 1H NMR peak in emulsions could not be detected for chitosan in emulsions lower than saturation concentration (< 0.15 wt%). These phenomena indicate an electrostatic interaction between lysolecithin and chitosan at droplet surface in emulsion and were consistent with the results from zeta-potential measurements. The T 2* relaxation time of the choline head group (N-(CH 3)3) signal of lysolecithin also confirmed that lysolecithin-chitosan electrostatic interaction occurs at the surface of oil droplets in two-layer emulsions. The results suggest that NMR spectroscopy can be used as an alternative method for monitoring the electrostatic interaction between surfactant and oppositely charged electrolytes or biopolymers in two-layer emulsions.  相似文献   

9.
Pei  Yaqiong  Deng  Qianchun  McClements  David Julian  Li  Jing  Li  Bin 《Food biophysics》2020,15(4):433-441

The effects of phytic acid on the physical and oxidative stability of flaxseed oil-in-water emulsions containing whey protein-coated lipid droplets were investigated. The surface potential, particle size, microstructure, appearance, and oxidation of these emulsions were monitored when they were stored at pH 3.5 and 7.0 for 25 days in the dark (37 °C). The phytic acid and protein-coated lipid droplets had similar charges (both negative) at pH 7.0, but had opposite charges (negative and positive) at pH 3.5. At pH 7.0, the addition of phytic acid had no impact on the physical stability of the emulsions but significantly improved their oxidative stability, which was attributed to its ability to sequester pro-oxidant transition metals (iron ions). At pH 3.5, extensive droplet aggregation and creaming occurred in the emulsions containing phytic acid, which was ascribed to charge neutralization and ion bridging. The oxidative stability of the acidified emulsions, however, still increased after addition of phytic acid, which was again attributed to its ability to chelate iron ions. Interestingly, the antioxidant activity of phytic acid decreased as its level was increased. Our results suggest that phytic acid may be used as a natural antioxidant to improve the oxidative stability of food emulsions containing polyunsaturated fatty acids, but its level must be carefully controlled.

  相似文献   

10.
This work attempts to determine any relationship between certain endogenous parameters and the oxidative deterioration of protein-stabilized oil-in-water emulsions. The contribution of compositional factors (e.g., type and amount of emulsifier, fat phase, etc.) is further elucidated. Among 10% cottonseed o/w emulsions prepared by 1% emulsifier (Tween, sodium caseinate, or whey protein), lipid autoxidation (at 40°C) was much faster in the Tween emulsion than in the protein ones, with whey protein presenting a clear antioxidant effect. Increase in protein concentration (0.5–2% w/w) led to a decrease in droplet size but an increase in oxidative stability, in terms of conjugated diene hydroperoxides formation at 232 nm. The type of lipid phase significantly affected the rate of thermal oxidation at 60°C. In the most oxidatively vulnerable sunflower-oil-based emulsions, an increase in fat content (10–40%) resulted in a reduction of oxidative deterioration. By selecting a more concentrated emulsion (20% o/w, 2% emulsifier), in order to structurally approach real novel food products, any influence of the composition of the emulsifier (combination of Tween and sodium caseinate preparation) was subsequently tested. An increase in protein proportion in the emulsifier was found to inhibit proportionally the oxidative instability of the emulsions, as evaluated by the determination of both primary (conjugated diene and lipid hydroperoxides) and secondary [thiobarbituric acid-reactive substances (TBARS)] oxidation products.  相似文献   

11.
Stability of formulations over shelf-life is critical for having a quality product. Choice of excipients, manufacturing process, storage conditions, and packaging can either mitigate or enhance the degradation of the active pharmaceutical ingredient (API), affecting potency and/or stability. The purpose was to investigate the influence of processing and formulation factors on stability of levothyroxine (API). The API was stored at long-term (25°C/60%RH), accelerated (40°C/75%RH), and low-humidity (25°C/0%RH and 40°C/0%RH) conditions for 28 days. Effect of moisture loss was evaluated by drying it (room temperature, N2) and placed at 25°C/0%RH and 40°C/0%RH. The API was incubated with various excipients (based on package insert of marketed tablets) in either 1:1, 1:10, or 1:100 ratios with 5% moisture at 60°C. Commonly used ratios for excipients were used. The equilibrium sorption data was collected on the API and excipients. The API was stable in solid state for the study duration under all conditions for both forms (potency between 90% and 110%). Excipients effect on stability varied and crospovidone, povidone, and sodium laurel sulfate (SLS) caused significant API degradation where deiodination and deamination occurred. Moisture sorption values were different across excipients. Crospovidone and povidone were hygroscopic whereas SLS showed deliquescence at high RH. The transient formulation procedures where temperature might go up or humidity might go down would not have major impact on the API stability. Excipients influence stability and if possible, those three should either be avoided or used in minimum quantity which could provide more stable tablet formulations with minimum potency loss throughout its shelf-life.  相似文献   

12.
The substitutions of the amino acid at the predetermined critical point at the C-terminal of L2 lipase may increase its thermostability and enzymatic activity, or even otherwise speed up the unfolding of the protein structure. The C-terminal of most proteins is often flexible and disordered. However, some protein functions are directly related to flexibility and play significant role in enzyme reaction. The critical point for mutation of L2 lipase structure was predicted at the position 385 of the L2 sequence, and the best three mutants were determined based on I-Mutant2.0 software. The best three mutants were S385E, S385I and S385V. The effects of the substitution of the amino acids at the critical point were analysed with molecular dynamics simulation by using Yet Another Scientific Artificial Reality Application software. The predicted mutant L2 lipases were found to have lower root mean square deviation value as compared to L2 lipase. It was indicated that all the three mutants had higher compactness in the structure, consequently enhanced the stability. Root mean square fluctuation analysis showed that the flexibility of L2 lipase was reduced by mutations. Purified S385E lipase had an optimum temperature of 80 °C in Tris–HCl pH 8. The highest enzymatic activity of purified S385E lipase was obtained at 80 °C temperature in Tris–HCl pH 8, while for L2 lipase it was at 70 °C in Glycine–NaOH pH 9. The thermal stability of S385V lipase was enhanced as compared to other protein since that the melting point (T m) value was at 85.96 °C. S385I lipase was more thermostable compared to recombinant L2 lipase and other mutants at temperature 60 °C within 16 h preincubation.  相似文献   

13.
The formation, stability and in vitro digestion of milk fat globule membrane (MFGM) proteins stabilized emulsions with 0.2 wt% β-carotene were investigated. The average particle size of β-carotene emulsions stabilized with various MFGM proteins levels (1%, 2%, 3%, 4%, 5% wt%) decreased with the increase of MFGM proteins levels. When MFGM proteins concentration in emulsions is above 2%, the average particle size of β-carotene emulsions is below 1.0 μm. A quite stable emulsion was formed at pH 6.0 and 7.0, but particle size increased with decrease in acidity of the β-carotene emulsion. β-carotene emulsions stabilized with MFGM proteins were stable with a certain salt concentrations (0–500 mMNaCl). β-carotene emulsions were quite stable to aggregation of the particles at elevated temperature and time (85 °C for 90 min). At the same time, β-carotene emulsions were stable against degradation under heat treatment conditions. In vitro digestion of β-carotene emulsion showed the mean particle size of β-carotene emulsions stabilized with MFGM proteins in the simulated stomach conditions and intestinal conditions is larger than that of initial emulsions and simulated mouth conditions. Confocal laser scanning microscopy of β-carotene MFGM proteins emulsions also showed the corresponding results to different vitro digestion model. There was a rapid release of free fatty acid (FFA) during the first 10 min and after this period, an almost constant 70% digestion extent was reached. Approximately 80% of β-carotene was released within 2 h of incubation under the simulated intestinal fluid. These results showed that MFGM protein can be used as a good emulsifier in emulsion stabilization, β-carotene rapid release as well as lipophilic bioactive compounds delivery.  相似文献   

14.
The six biosurfactant-producing strains, isolated from oilfield wastewater in Daqing oilfield, were screened. The production of biosurfactant was verified by measuring the diameter of the oil spreading, measuring the surface tension value and emulsifying capacity against xylene, n-pentane, kerosene and crude oil. The experimental result showed three strains (S2, S3, S6) had the better surface activity. Among the three strains, the best results were achieved when using S2 strain. The diameter of the oil spreading of the biosurfactant produced by S2 strain was 14 cm, its critical micelle concentration (CMC) was 21.8 mg/l and the interfacial tension between crude oil and biosurfactant solution produced by S2 strain reduced to 25.7 mN/m. The biosurfactant produced by S2 strain was capable of forming stable emulsions with various hydrocarbons, such as xylene, n-pentane, kerosene and crude oil. After S2 strain treatment, the reduction rate of oil viscosity was 51 % and oil freezing point reduced by 4 °C.  相似文献   

15.
The effects of carnauba wax addition on the physical state of palm kernel oil-in-water emulsions were investigated. The oil-in-water emulsion (40 wt% oil + 60 wt% aqueous phase) kept the liquid state at 25°C irrespective of the presence or absence of carnauba wax in the oil phase. The emulsion containing the wax transformed from the liquid state to the solid state by shearing after storage for 20 h at 4°C, although the liquid-solid transition was not observed for the emulsion not containing the wax upon the same treatment. The viscoelasticity of the solid emulsions was demonstrated by small-deformation mechanical testing. Analysis of flow behavior of the emulsions showed that the change in physical properties of the emulsion containing the wax at 4°C was caused by the shearing at a low shear rate, around 50 s?1–100 s?1. According to the transition from the liquid state to the solid state of the emulsion containing the wax, the aggregation of oil droplets was found to occur to a large extent. The results of differential scanning calorimetry and surface pressure–surface area isotherms suggested that triglyceride molecules of palm kernel oil were more oriented at the oil–water interfaces in the emulsions after the wax addition. Based on these results, it is thought that carnauba wax is important in destabilization of palm kernel oil-in-water emulsions by modifying the physical state of the oil triglyceride molecules at the interfaces.  相似文献   

16.
The effect of storage temperature, pH, and homogenization pressure on the oxidative deterioration of Tween 20 and sodium caseinate sunflower oil-in-water emulsions was studied by monitoring conjugated dienes (CD), lipid hydroperoxides (LH), and thiobarbituric acid reactive substances (TBARs). CD increased linearly with storage time, and the rate constant was temperature dependent according to the Arrhenius equation with an activation energy equal to 37.5 kJ mol−1. The increase in LH and TBARs with temperature (5–60°C) was in good agreement with CD variation. Tween-stabilized emulsions oxidized faster as pH increased from 3 to 7, whereas a different behavior was observed in emulsions stabilized with sodium caseinate or a mixture of both emulsifiers. A change of homogenization pressure (30–900 bars), reflecting variation of emulsion average droplet size, had no effect on the oxidative stability of the emulsions.  相似文献   

17.
Vitrification tendency and stability of the amorphous state were analyzed by means of differential scanning calorimetry (DSC) for the vitrification solution DP6, with and without additional solutes to enhance ice suppression. This study is a part of an ongoing research effort to characterize the thermophysical and mechanical properties of DP6 and its derivatives, and their qualities as cryoprotective solutions. DP6 was determined to have a critical cooling rate necessary to ensure vitrification of 2.7 °C/min. The following additional solutions were tested: DP6 + 6% (2R, 3R) 2,3-butanediol, DP6 + 6% 1,3-cyclohexanediol, DP6 + 6% (0.175M) sucrose, DP6 + 12% PEG 400, and DP6 + 17.1% (0.5 M) sucrose. The additives decreased the critical cooling rate of the DP6 solution to rates below 1 °C/min that were not quantifiable by the DSC techniques used. The following critical warming rates necessary to avoid devitrification were identified for DP6 and the modified solutions, respectively: 189 °C/min, 5 °C/min, ≈ 1 °C/min, 15 °C/min, <1 °C/min, and <1 °C/min. Glass transition temperatures and melting temperatures were also measured. Sucrose was the least effective additive on a per mass basis, with 1,3-cyclohexanediol appearing to be the most effective additive for suppressing ice formation in DP6.  相似文献   

18.
Thermal and pH stabilities of a new crude keratinase ( Doratomyces microsporus ) were investigated in the ranges of 20-40°C and pH 4-10, respectively. The stability test was followed by activity measurement on two different substrates: human stratum corneum and haemoglobin. Activity measurement lasted more than 100 h. The effect of calcium ions on enzyme stability was also studied. Crude keratinase was stabilised by crosslinking with glutaraldehyde (GA). The same characteristics were determined for Proteinase K, the commercial enzyme, for comparative purposes. Crude keratinase was most stable at pH 8 in Tris/HCl and borate buffers. The type of buffer used proved to have higher effect on crude keratinase stability than on Proteinase K. Both enzymes were most stable at 20°C. Keratinase stability rapidly decreased at 40°C while Proteinase K showed higher thermal stability. A 1 mM solution of Ca 2+ ions did not significantly influence enzyme stability, but 2.5% GA solution stabilised crude keratinase at 40°C reducing the k d value by about 50%. Crude and crosslinked crude keratinase were used for crude calf skin degradation. A mathematical model, based on Michaelis-Menten kinetics, was developed to describe the crude calf skin degradation in a batch reactor. Validation of the model showed that it could describe the process over a defined range of its conditions.  相似文献   

19.
The objectives of the present work were to prepare castor oil-based nano-sized emulsion containing cationic droplets stabilized by poloxamer–chitosan emulgator film and to assess the kinetic stability of the prepared cationic emulsion after subjecting it to thermal processing and freeze–thaw cycling. Presence of cryoprotectants (5%, w/w, sucrose +5%, w/w, sorbitol) improved the stability of emulsions to droplet aggregation during freeze–thaw cycling. After storing the emulsion at 4°C, 25°C, and 37°C over a period of up to 6 months, no significant change was noted in mean diameter of the dispersed oil droplets. However, the emulsion stored at the highest temperature did show a progressive decrease in the pH and zeta potential values, whereas the emulsion kept at the lowest temperatures did not. This indicates that at 37°C, free fatty acids were formed from the castor oil, and consequently, the liberated free fatty acids were responsible for the reduction in the emulsion pH and zeta potential values. Thus, the injectable castor oil-based nano-sized emulsion could be useful for incorporating various active pharmaceutical ingredients that are in size from small molecular drugs to large macromolecules such as oligonucleotides.  相似文献   

20.
An enzymatically modified gelatin with covalently attached leucine dodecyl ester, referred to as EMG-12, was used as a surfactant to prepare emulsions with different properties by changing the surfactant concentration, oil volume fraction, and pH in the water phase. The emulsions generally resisted the freezing of their constituent bulk water at approximately ?10°C, but similar emulsions produced with soy protein isolate, casein, or Tween-80 as control agents were less resistant. The freezing (or unfreezing) of the bulk water in these emulsions depended on the kind of agent used, not on the emulsion properties such as average area of the oil/water interface, stability against coalescence, and stability against creaming. The emulsion produced with EMG-12, like that produced with polyglycerol stearate, tended to maintain its unfrozen state even in the presence of silver iodide crystals added as heterogeneous ice-nuclei. The significance of producing such an antifreeze emulsion is discussed from the standpoint of cryopreservation of cold-sensitive food and biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号