首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the endothelial expression of various adhesion molecules substantially differs between pulmonary microvessels, their importance for neutrophil and lymphocyte sequestration in ventilator-induced lung injury (VILI) has not been systematically analyzed. We investigated the kinetics of polymorphonuclear cells (PMN) and mononuclear cells (MN) in the acinar microcirculation of the isolated rat lung with VILI by real-time confocal laser fluorescence microscopy, with or without inhibition of ICAM-1, VCAM-1, or P-selectin by monoclonal antibodies (MAb). Adhesion molecules in each microvessel were estimated by intravital fluorescence microscopy or immunohistochemical staining. In high tidal volume-ventilated lungs, 1) ICAM-1, VCAM-1, and P-selectin were differently upregulated in venules, arterioles, and capillaries; 2) venular PMN rolling was improved by inhibition of ICAM-1, VCAM-1, or P-selectin, whereas arteriolar PMN rolling was improved by ICAM-1 or VCAM-1 inhibition; 3) capillary PMN entrapment was ameliorated only by anti-ICAM-1 MAb; and 4) MN rolling in venules and arterioles and MN entrapment in capillaries were improved by ICAM-1 and VCAM-1 inhibition. In conclusion, the contribution of endothelial adhesion molecules to abnormal leukocyte behavior in VILI-injured microcirculation is microvessel and leukocyte specific. ICAM-1- and VCAM-1-dependent, but P-selectin-independent, arteriolar PMN rolling, which is expected to reflect the initial stage of tissue injury, should be taken as a phenomenon unique to ventilator-associated lung injury.  相似文献   

2.
Prostaglandin F(2α) (PGF(2α)) induces luteolysis within a few days in cows, and immune cells increase in number in the regressing corpus luteum (CL), implying that luteolysis is an inflammatory-like immune response. We investigated the rapid change in polymorphonuclear neutrophil (PMN) numbers in response to PGF(2α) administration as the first cells recruited to inflammatory sites, together with mRNA of interleukin-8 (IL-8: neutrophil chemoattractant) and P-selectin (leukocyte adhesion molecule) in the bovine CL. CLs were collected by ovariectomy at various times after PGF(2α) injection. The number of PMNs was increased at 5 min after PGF(2α) administration, whereas IL-8 and P-selectin mRNA increased at 30 min and 2 h, respectively. PGF(2α) directly stimulated P-selectin protein expression at 5-30 min in luteal endothelial cells (LECs). Moreover, PGF(2α) enhanced PMN adhesion to LECs, and this enhancement by PGF(2α) was inhibited by anti-P-selectin antibody, suggesting that P-selectin expression by PGF(2α) is crucial in PMN migration. In conclusion, PGF(2α) rapidly induces the accumulation of PMNs into the bovine CL at 5 min and enhances PMN adhesion via P-selectin expression in LECs. It is suggested that luteolytic cascade by PGF(2α) may involve an acute inflammatory-like response due to rapidly infiltrated PMNs.  相似文献   

3.
Basophils have been shown to accumulate in allergic airways and other extravascular sites. Mechanisms responsible for the selective recruitment of basophils from the blood into tissue sites remain poorly characterized. In this study, we characterized human basophil rolling and adhesion on HUVECs under physiological shear flow conditions. Interestingly, treatment of endothelial cells with the basophil-specific cytokine IL-3 (0.01-10 ng/ml) promoted basophil and eosinophil, but not neutrophil, rolling and exclusively promoted basophil adhesion. Preincubation of HUVECs with an IL-3R-blocking Ab (CD123) before the addition of IL-3 inhibited basophil rolling and adhesion, implicating IL-3R activation on endothelial cells. Incubation of basophils with neuraminidase completely abolished both rolling and adhesion, indicating the involvement of sialylated structures in the process. Abs to the beta(1) integrins, CD49d and CD49e, as well as to P-selectin and P-selectin glycoprotein ligand 1, inhibited basophil rolling and adhesion. Furthermore, blocking chemokine receptors expressed by basophils, such as CCR2, CCR3, and CCR7, demonstrated that CCR7 was involved in the observed recruitment of basophils. These data provide novel insights into how IL-3, acting directly on endothelium, can cause basophils to preferentially interact with blood vessels under physiological flow conditions and be selectively recruited to sites of inflammation.  相似文献   

4.
Preincubation of pulmonary microvascular endothelial cells (PMVECs) with platelet-activating factor (PAF) for 3.5 h increased the adhesion rate of polymorphonuclear leukocytes (PMNs) to PMVECs from 57.3% to 72.8% (p < 0.01). Preincubation of PMNs with PAF also increased PMN-PMVEC adhesion rate. All-trans retinoic acid (RA) blocked the adherence of untreated PMNs to PAF-pretreated PMVECs but not the adherence of PAF-pretreated PMNs to untreated PMVECs. PAF increased the expression of intercellular adhesion molecule-1 (ICAM-1) and E-selection (ELAM-1) on PMVECs, PMN chemotaxis to zymosan-activated serum and histamine, and PMN aggregation and the release of acid phosphatase from PMNs. Co-incubation of RA inhibited PAF-induced PMN aggregation, the release of acid phosphatase from PMNs, and PMN chemotaxis to zymosan-activated serum and histamine while the expression of ICAM-1 and ELAM-1 did not change. Our results suggest that RA can be used to ameliorate PMN-mediated inflammation.  相似文献   

5.
Flowing leukocytes roll on P-selectin that is mobilized from secretory granules to the surfaces of endothelial cells after stimulation with histamine or thrombin. Before it is internalized, P-selectin clusters in clathrin-coated pits, which enhances its ability to support leukocyte rolling. We found that thrombin and histamine induced comparable exocytosis of P-selectin on endothelial cells. However, compared with histamine, thrombin decreased the recruitment of P-selectin into clathrin-coated pits, slowed the internalization of P-selectin, and reduced the number and stability of neutrophils rolling on P-selectin. Significantly more RhoA was activated in thrombin- than in histamine-stimulated endothelial cells. Inhibitors of RhoA or its effector, Rho kinase, reversed thrombin's ability to inhibit the internalization and adhesive function of P-selectin in endothelial cells. Experiments with transfected cells confirmed that the inhibitory actions of thrombin and Rho kinase on P-selectin required its cytoplasmic domain. Thus, a signaling event affects both the function and clearance of a protein that enters the constitutive clathrin-mediated endocytic pathway.  相似文献   

6.
Although pressure elevation in lung postcapillary venules increases endothelial P-selectin expression, the extent to which P-selectin causes lung leukocyte margination remains controversial. To address this issue, we optically viewed postcapillary venules of the isolated blood-perfused rat lung by real-time fluorescence imaging. To determine leukocyte margination in single postcapillary venules, we quantified the fluorescence of leukocytes labeled in situ with rhodamine 6G (R6G). Although baseline fluorescence was sparse, a 10-min pressure elevation by 10 cmH(2)O markedly increased R6G fluorescence. Both stopping blood flow during pressure elevation and eliminating leukocytes from the perfusion blocked the fluorescence increase, affirming that these fluorescence responses were attributable to pressure-induced leukocyte margination. A P-selectin-blocking MAb and the L- and P-selectin blocker fucoidin each inhibited the fluorescence increase, indicating that P-selectin was critical for inducing margination. Time-dependent imaging of blood-borne fluorescent beads revealed reduction of plasma velocity during pressure elevation. After pressure returned to baseline, a similar reduction of plasma velocity, established by manually decreasing the perfusion rate, prolonged margination. Our findings show that in lung postcapillary venules, the decrease in plasma velocity critically determines pressure-induced leukocyte margination.  相似文献   

7.
Platelets roll and adhere in venules exposed to ischemia-reperfusion (I/R). This platelet-endothelial adhesion may influence leukocyte trafficking because platelet depletion decreases I/R-induced leukocyte emigration. The objectives of this study were 1) to assess the time course of platelet adhesion in the small bowel after I/R and 2) to determine the roles of endothelial and/or platelet P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) in this adhesion. The adhesion of fluorescently labeled platelets was monitored by intravital microscopy in postcapillary venules exposed to 45 min of ischemia and up to 8 h of reperfusion. Peak platelet adhesion was observed at 4 h of reperfusion. To assess the contributions of platelet and endothelial cell P-selectin, platelets from P-selectin-deficient and wild-type mice were infused into wild-type and P-selectin-deficient mice, respectively. Platelets deficient in P-selectin exhibited low levels of adhesion comparable to that in sham-treated animals. In the absence of endothelial P-selectin, platelet adhesion was reduced by 65%. Treatment with a blocking antibody against PSGL-1 reduced adhesion by 57%. These results indicate that I/R induces a time-dependent platelet-endothelial adhesion response in postcapillary venules via a mechanism that involves PSGL-1 and both platelet and endothelial P-selectin, with platelet P-selectin playing a greater role.  相似文献   

8.
Platelets are increasingly recognized as important for inflammation in addition to thrombosis. Platelets promote the adhesion of neutrophils [polymorphonuclear neutrophils (PMNs)] to the endothelium; P-selectin and P-selectin glycoprotein ligand (PSGL)-1 have been suggested to participate in these interactions. Whether platelets also promote PMN transmigration across the endothelium is less clear. We tested the hypothesis that platelets enhance PMN transmigration across the inflamed endothelium and that PSGL-1 is involved. We studied the effects of platelets on PMN transmigration in vivo and in vitro using a well-characterized corneal injury model in C57BL/6 mice and IL-1β-stimulated human umbilical vein endothelial cells (HUVECs) under static and dynamic conditions. In vivo, platelet depletion altered PMN emigration from limbal microvessels after injury, with decreased emigration 6 and 12 h after injury. Both PSGL-1-/- and P-selectin-/- mice, but not Mac-1-/- mice, also had reduced PMN emigration at 12 h after injury relative to wild-type control mice. In the in vitro HUVEC model, platelets enhanced PMN transendothelial migration under static and dynamic conditions independent of firm adhesion. Anti-PSGL-1 antibodies markedly inhibited platelet-PMN aggregates, as assessed by flow cytometry, and attenuated the effect of platelets on PMN transmigration under static conditions without affecting firm adhesion. These data support the notion that platelets enhance neutrophil transmigration across the inflamed endothelium both in vivo and in vitro, via a PSGL-1-dependent mechanism.  相似文献   

9.
Isoprostanes are metabolites of arachidonic acid found in blood under various conditions of oxidative stress. Because arachidonic acid derivatives are major mediators of inflammation, we investigated the potential inflammatory effects of iPF2alpha-III (previously 8-isoPGF2alpha) and iPE2-III (8-isoPGE2) on human polymorphonuclear granulocytes (PMN), as well as on human umbilical vein endothelial cells (HUVECs). The early activation marker CD11b on PMN and the adhesion molecules ICAM-1, E-selectin, and P-selectin on HUVECs were quantified by flow cytometry. Levels of the cytokines interleukin (IL)-6 and IL-8 were measured in the culture supernatant by enzyme-linked immunosorbent assay. Furthermore, adhesion of PMN to HUVECs was assessed. Neither isoprostane showed any direct stimulatory effects on PMN or HUVECs at concentrations of 0.1 or 1 microM: there was no acute elevation in expression of CD11b or P-selectin and no change of ICAM-1 or E-selectin after 4 or 24 h of incubation, respectively. The levels of interleukin IL-6 and IL-8 were also unaltered. However, PMN adhesion was significantly enhanced both after 4 and 24 h of incubation of HUVECs with iPF2alpha-III, and CD11b expression on PMN was elevated by contact of these cells with the supernatant of pre-exposed HUVECs. Neither of these actions were inhibited by an endothelin receptor antagonist (bosentan) or a combined thromboxane A2/isoprostane-receptor antagonist (SQ29548). Thus, although not having a direct pro-inflammatory potential, isoprostanes might indirectly accentuate PMN stimulation. This seems to occur via a receptor-independent mechanism, perhaps the production of an active metabolite of isoprostanes by endothelial cells.  相似文献   

10.
Expression of endothelial and leukocyte cell adhesion molecules is a principal determinant of polymorphonuclear neutrophil (PMN) recruitment during inflammation. It has been demonstrated that pharmacological inhibition of these molecules can attenuate PMN influx and subsequent tissue injury. We determined the temporal expression of alpha-granule membrane protein-40 (P-selectin), endothelial leukocyte adhesion molecule 1 (E-selectin), and intercellular cell adhesion molecule 1 (ICAM-1) after coronary artery occlusion and up to 3 days of reperfusion. The expression of all of these cell adhesion molecules peaked around 24 h of reperfusion. We determined the extent to which these molecules contribute to PMN infiltration by utilizing mice deficient (-/-) in P-selectin, E-selectin, ICAM-1, and CD18. Each group underwent 30 min of in vivo, regional, left anterior descending (LAD) coronary artery ischemia and 24 h of reperfusion. PMN accumulation in the ischemic-reperfused (I/R) zone was assessed using histological techniques. Deficiencies of P-selectin, E-selectin, ICAM-1, or CD18 resulted in significant (P < 0.05) attenuation of PMN infiltration into the I/R myocardium (MI/R). In addition, P-selectin, E-selectin, ICAM-1, and CD18 -/- mice exhibited significantly (P < 0.05) smaller areas of necrosis after MI/R compared with wild-type mice. These data demonstrate that MI/R induces coronary vascular expression of P-selectin, E-selectin, and ICAM-1 in mice. Furthermore, genetic deficiency of P-selectin, E-selectin, ICAM-1, or CD18 attenuates PMN sequestration and myocardial injury after in vivo MI/R. We conclude that P-selectin, E-selectin, ICAM-1, and CD18 are involved in the pathogenesis of MI/R injury in mice.  相似文献   

11.
This study evaluated whether glutamine (GLN) concentration was related to endothelial surface molecule expression and the migration of polymorphonuclear neutrophils (PMNs) through endothelial cells (ECs) stimulated by arsenic. Human umbilical vein endothelial cells (HUVECs) and PMNs were treated with different GLN concentrations (0, 300, 600 and 1000 microM) for 24 h. After that, we stimulated HUVECs for 3 h with 0.5 microM arsenic, and PMNs were allowed to transmigrate to ECs for 2 h. HUVEC surface expressions of cell adhesion molecules and integrin (CD11b) and interleukin (IL)-8 receptor expressions on PMNs were measured. The transendothelial migration of PMNs was also analyzed. The results showed that cell adhesion molecule (CAM) and integrin expressions in arsenic groups were higher than in those without arsenic. Among the arsenic groups, the expression of CAMs on ECs and CD11b, and IL-8 receptor on PMNs was lowest with 0 microM compared with the other GLN concentrations. Vascular CAM-1 on ECs and CD11b on PMN expression were higher with 300 microM than with 600 and 1000 microM GLN. IL-8 secretions from ECs and PMNs were higher with 300 muM than with 600 and 1000 microM GLN, and this was consistent with the expression of the IL-8 receptor on PMNs. Polymorphonuclear neutrophil transmigration was significantly higher with 300 muM GLN than with other GLN concentrations. These results suggest that ECs and PMNs were activated after arsenic stimulation. Cell adhesion molecule expressions on ECs and PMNs were suppressed in the absence of GLN. A low GLN concentration comparable to catabolic conditions resulted in higher adhesion molecule expression and greater transendothelial migration of neutrophils. Glutamine administration at levels similar to or higher than physiological concentrations reduced IL-8 and adhesion molecule expression; PMN transmigration was also decreased after stimulation with arsenic.  相似文献   

12.
Thrombin-induced expression of endothelial adhesivity toward neutrophils (PMN) was studied using human umbilical vein endothelial cells (HUVEC). HUVEC were challenged with human alpha-thrombin for varying durations up to 120 min, after which the cells were fixed with 1% paraformaldehyde and 51Cr-labeled human PMN were added to determine PMN adhesion. Endothelial adhesivity increased within 15 min after alpha-thrombin exposure, and the response persisted up to 120 min. Expression of endothelial adhesion proteins, P-selectin (GMP-140, PADGEM, CD62), and intercellular adhesion molecule-1 (ICAM-1; CD54) on the endothelial surface was quantitated by increase in the specific binding of anti-P-selectin mAb G1 and anti-ICAM-1 mAb RR1/1 labeled with 125I. P-selectin expression was maximal at 5-15 min alpha-thrombin exposure and decayed to basal levels within 90 min. In contrast, ICAM-1 activity increased at 30 min and remained elevated for 120 min after alpha-thrombin challenge. The initial endothelial adhesivity was dependent on P-selectin expression since PMN adhesion occurring within the first 30 min after alpha-thrombin challenge was inhibited by mAb G1. The later prolonged PMN adhesion was ICAM-1 dependent since this response was inhibited by mAb RR1/1 and to the same degree by the anti-CD18 mAb IB4. Anti-ELAM-1 mAb BB11 had no effect on adhesion of PMN to the alpha-thrombin-challenged cells. The initial P-selectin expression and PMN adhesion responses were reproduced by the 14-amino peptide (SFLLRNPNDKYEPF) (thrombin-receptor activity peptide; TRP-14) which comprised the NH2 terminus created by thrombin's proteolytic action on its receptors. However, TRP-14-induced PMN adhesion was transient, and TRP-14 did not cause ICAM-1 expression. The ICAM-1-dependent PMN adhesion mediated by alpha-thrombin was protein synthesis independent since ICAM-1 expression and PMN adhesion were not inhibited by cycloheximide pretreatment of HUVEC. Moreover, Northern blot analysis indicated absence of ICAM-1 mRNA signal up to 180 min after alpha-thrombin challenge. In conclusion, thrombin-induced endothelial adhesivity involves early- and late-phase responses. The initial reversible PMN adhesion is mediated by rapid P-selectin expression via TRP-14 generation. Thrombin-induced PMN adhesion is stabilized by a protein synthesis-independent upregulation of the constitutive ICAM-1 activity which enables the interaction of ICAM-1 with the CD18 beta 2 integrin on PMN.  相似文献   

13.
The objective of this study was to quantitatively assess changes in cell adhesion molecule (CAM) expression on the pulmonary endothelial surface during hyperoxia and to assess the functional significance of those changes on cellular trafficking and development of oxygen-induced lung injury. Mice were placed in >95% O(2) for 0-72 h, and pulmonary injury and neutrophil (PMN) sequestration were assessed. Specific pulmonary CAM expression was quantified with a dual-radiolabeled MAb technique. To test the role of CAMs in PMN trafficking during hyperoxia, blocking MAbs to murine P-selectin, ICAM-1, or platelet-endothelial cell adhesion molecule-1 (PECAM-1) were injected in wild-type mice. Mice genetically deficient in these CAMs and PMN-depleted mice were also evaluated. PMN sequestration occurred within 8 h of hyperoxia, although alveolar emigration occurred later (between 48 and 72 h), coincident with rapid escalation of the lung injury. Hyperoxia significantly increased pulmonary uptake of radiolabeled antibodies to P-selectin, ICAM-1, and PECAM-1, reflecting an increase in their level on pulmonary endothelium and possibly sequestered blood cells. Although both anti-PECAM-1 and anti-ICAM-1 antibodies suppressed PMN alveolar influx in wild-type mice, only mice genetically deficient in PECAM-1 showed PMN influx suppression. Neither CAM blockade, nor genetic deficiency, nor PMN depletion attenuated lung injury. We conclude that early pulmonary PMN retention during hyperoxia is not temporally associated with an increase in endothelial CAMs; however, subsequent PMN emigration into the alveolar space may be supported by PECAM-1 and ICAM-1. Blocking PMN recruitment did not prevent lung injury, supporting dissociation between PMN infiltration and lung injury during hyperoxia in mice.  相似文献   

14.
The purpose of this study was to examine whether the adhesion of polymorphonuclear leukocytes (PMNs) to endothelial cells and/or reactive oxygen species (ROS) released from PMNs are responsible for inducing angiogenesis. Angiogenesis was assessed by tube formation using endothelial cells obtained from bovine thoracic aorta (BAECs) grown on a layer of collagen type I. Addition of PMNs to BAECs weakly induced angiogenesis. The angiogenesis induced by PMNs alone was further enhanced by treatment of the PMNs with N-formyl-methionyl-leucyl-phenylalanine (FMLP), a selective activator of PMN. The involvement of PMN adhesion to BAECs via adhesion molecules in angiogenesis was investigated by using monoclonal antibodies against E-selectin and intercellular adhesion molecule-1 (ICAM-1). These antibodies blocked both the PMN adhesion to BAECs and the enhancement of angiogenesis induced by FMLP-treated PMNs. Furthermore, the enhancement of angiogenesis by FMLP-treated PMNs was blocked by catalase, a scavenging enzyme of H2O2, but not by superoxide dismutase (SOD). These results suggest that PMNs induce angiogenesis in vitro, and that the mechanism of stimulation of angiogenesis by PMNs may involve the adherence of PMNs to endothelial cells via E-selectin and ICAM-1, and H2O2, but not superoxide. Thus, activated PMNs in pathological states may not only induce tissue injury, but may also function as regulators of angiogenesis.  相似文献   

15.
Adhesion of platelets to the endothelium is believed to be a major factor contributing to thrombosis and vascular occlusion after radiotherapy or endovascular irradiation. In the present study, platelet-endothelium interactions were analyzed in vivo by intravital microscopy in mesenteric venules of mice according to three parameters: (1) platelet rolling, (2) platelet adhesion, and (3) the presence of platelet clusters. A 10-Gy total-body irradiation of mice resulted in an increase in the frequency of appearance of these three types of platelet-endothelium interactions in postcapillary venules 6 and 24 h after exposure, whereas only minor alterations were seen in large venules. In addition, the duration of platelet adhesion was increased 24 h after irradiation in both postcapillary and large venules. However, P-selectin was not up-regulated on the platelet membrane and platelet-leukocytes were not seen rolling together, suggesting that changes in platelet-endothelial cell interaction result from endothelial cell activation rather than platelet activation. Our data suggest that irradiation transforms resting endothelial cells to a pro-adhesive surface for platelets, which could ultimately lead to thrombosis.  相似文献   

16.
Numerous studies have shown that polymorphonuclear neutrophils (PMNs) infiltrate the myocardium immediately after reperfusion of infarcted tissue. Studies with mAbs in vivo and cellular studies in vitro suggest that PMN-induced injury of the cardiac myocyte involve Mac-1 adhesion to myocyte ICAM-1. In this study we demonstrate that PMNs that have infiltrated the ischemic area begin to lose Mac-1 within the first 3 h. By the fifth hour of reperfusion, minimal CD11b staining is seen on PMNs using immunostaining, whereas CD11a remained unchanged. Immunoreactivity of postreperfusion cardiac lymph with R15.7 (anti-CD18) or MY904 (anti-CD11b) was positive in all animals but not for CD11a (R7.1), indicating a specific loss of Mac-1. Immunoprecipitation with either R15.7 or MY904 resulted in identical peptides (a doublet at 190 kDa and a band at 80 kDa), suggesting that both alpha and beta subunits of Mac-1 heterodimer were released. Immunoprecipitation of control PMN lysates revealed bands of 198 kDa and 91 kDa slightly greater than those from the released Mac-1. An in vitro model of homotypic aggregation showed a similar loss of Mac-1 from PMNs; immunoprecipitates of the supernatant demonstrated peptide bands identical with those found in postischemic cardiac lymph. The appearance of soluble Mac-1 in vitro was prevented by anti-CD18 mAb, R15.7, and also by protease inhibition by PMSF. Thus, in vivo and in vitro, activated PMNs lose Mac-1 in a process that may be dependent upon adhesion and subsequent proteolysis.  相似文献   

17.
Hyperbaric oxygen (HBO) is beingstudied as a therapeutic intervention for ischemia/reperfusion(I/R) injury. We have developed an in vitro endothelial cell model ofI/R injury to study the impact of HBO on the expression ofintercellular adhesion molecule-1 (ICAM-1) and polymorphonuclearleukocyte (PMN) adhesion. Human umbilical vein endothelial cell (HUVEC)and bovine aortic endothelial cell (BAEC) induction of ICAM-1 requiredsimultaneous exposure to both hypoxia and hypoglycemia as determined byconfocal laser scanning microscopy, ELISA, and Western blot. HBOtreatment reduced the expression of ICAM-1 to control levels. Adhesionof PMNs to BAECs was increased following hypoxia/hypoglycemia exposure(3.4-fold, P < 0.01) and was reduced to control levels withexposure to HBO (P = 0.67). Exposure of HUVECs and BAECs to HBOinduced the synthesis of endothelial cell nitric oxide synthase (eNOS).The NOS inhibitor nitro-L-arginine methyl ester attenuatedHBO-mediated inhibition of ICAM-1 expression. Our findings suggest thatthe beneficial effects of HBO in treating I/R injury may be mediated inpart by inhibition of ICAM-1 expression through the induction of eNOS.

  相似文献   

18.
Experimental autoimmune encephalomyelitis (EAE) is mediated by inflammatory cells recruited from the circulation to the CNS. We used intravital microscopy to investigate the mechanisms of this recruitment. No leukocyte rolling and very little adhesion was observed in healthy control mice. In contrast, both rolling and adhesion was observed in brain postcapillary venules before onset of physical symptoms of EAE. Rolling and adhesion remained elevated for 2 wk and returned to near normal levels by 5 wk postsymptom onset. Consistent with a role for P-selectin in recruitment to the CNS, P-selectin protein was detected in the brains and spinal cords of EAE mice. Expression was highest before symptom onset and decreased over the next 2 wk. The importance of alpha(4) integrin increased with time as anti-alpha(4) integrin blocked approximately 20, 50, and 60% of leukocyte rolling 2 days before disease onset, 5 days and 2 wk postonset of symptoms, respectively, and 85% of rolling 5 wk postsymptoms. Addition of anti-P-selectin to alpha(4) integrin Ab-treated mice blocked all remaining rolling at each time point. Interestingly, however, alpha(4) integrin-mediated rolling appeared to be entirely dependent on P-selectin as anti-P-selectin alone was able to completely block all leukocyte rolling. In the absence of rolling (with P-selectin Ab), a 70% reduction in adhesion was noted. A very similar reduction was seen when mice were treated with alpha(4) integrin-blocking Ab. In conclusion, we describe increased leukocyte trafficking in the brains of EAE mice with important overlapping roles for both P-selectin and alpha(4) integrin in mediating leukocyte-endothelial cell interactions.  相似文献   

19.
Polymorphonuclear leukocytes (PMNs) are essential to innate immunity in humans and contribute significantly to inflammation. Although progress has been made, the molecular basis for termination of inflammation in humans is incompletely characterized. We used human oligonucleotide microarrays to identify genes encoding inflammatory mediators that were differentially regulated during the induction of apoptosis. One hundred thirty-three of 212 differentially expressed genes encoding proinflammatory factors, signal transduction mediators, adhesion molecules, and other proteins that facilitate the inflammatory response were down-regulated during the induction of apoptosis following PMN phagocytosis. Among these, 42 genes encoded proteins critical to the inflammatory response, including receptors for IL-8 beta, IL-10 alpha, IL-13 alpha 1, IL-15 alpha, IL-17, IL-18, C1q, low-density lipoprotein, IgG Fc (CD32), and formyl peptide, Toll-like receptor 6, platelet/endothelial cell adhesion molecule-1 (CD31), P-selectin (CD62), IL-1 alpha, IL-16, and granulocyte chemoattractant protein-2 were down-regulated. Many of these genes were similarly down-regulated during Fas-mediated or camptothecin-induced apoptosis. We used flow cytometry to confirm that IL-8R beta (CXCR2) and IL-1 alpha were significantly down-regulated during PMN apoptosis. We also discovered that 23 genes encoding phosphoinositide and calcium-mediated signal transduction components, which comprise complex pathways essential to the inflammatory response of host cells, were differentially regulated during PMN apoptosis. Importantly, our data demonstrate that PMNs down-regulate proinflammatory capacity at the level of gene expression during induction of apoptosis. These findings provide new insight into the molecular events that resolve inflammation following PMN activation in humans.  相似文献   

20.
For in vivo study of the phenomena observed in vitro, PMN (polymorphonuclear leukocyte) extravasation was analysed quantitatively in the microcirculation of the hamster cheek pouch using a video system. Topical application of leukotriene B(4) or N-formyl-methionylleucyl- phenylalanine increased dose dependently the number of PMNs adhering to the venules. Eighty to 90% of the adhering PMNs disappeared from the vascular lumen into the venular wall within 10-12 rain after the adhesion. After PMNs had passed through the endothelial cell layer, they remained in the venular wall for more than 30 min after application of the chemoattractants and appeared in the extravascular space. Thus, the process could be divided into five steps: (1) rolling and (2) adhesion to the endothelium, (3) passage through the endothelial layer (4) remaining in the venular wall, and (5) passage through the basement membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号