首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marine sponges are well known for their associations with highly diverse, yet very specific and often highly similar microbiota. The aim of this study was to identify potential bacterial sub-populations in relation to sponge phylogeny and sampling sites and to define the core bacterial community. 16S ribosomal RNA gene amplicon pyrosequencing was applied to 32 sponge species from eight locations around the world''s oceans, thereby generating 2567 operational taxonomic units (OTUs at the 97% sequence similarity level) in total and up to 364 different OTUs per sponge species. The taxonomic richness detected in this study comprised 25 bacterial phyla with Proteobacteria, Chloroflexi and Poribacteria being most diverse in sponges. Among these phyla were nine candidate phyla, six of them found for the first time in sponges. Similarity comparison of bacterial communities revealed no correlation with host phylogeny but a tropical sub-population in that tropical sponges have more similar bacterial communities to each other than to subtropical sponges. A minimal core bacterial community consisting of very few OTUs (97%, 95% and 90%) was found. These microbes have a global distribution and are probably acquired via environmental transmission. In contrast, a large species-specific bacterial community was detected, which is represented by OTUs present in only a single sponge species. The species-specific bacterial community is probably mainly vertically transmitted. It is proposed that different sponges contain different bacterial species, however, these bacteria are still closely related to each other explaining the observed similarity of bacterial communities in sponges in this and previous studies. This global analysis represents the most comprehensive study of bacterial symbionts in sponges to date and provides novel insights into the complex structure of these unique associations.  相似文献   

2.
The red-beard sponge Clathria prolifera, which is widely distributed in the USA, has been widely used as a model system in cell biology and has been proposed as a suitable teaching tool on biology and environmental sciences. We undertook the first detailed microbiological study of this sponge on samples collected from the Chesapeake Bay. A combination of culture-based studies, denaturing gradient gel electrophoresis, and bacterial community characterization based on 16S rRNA gene sequencing revealed that C. prolifera contains a diverse assemblage of bacteria that is different from that in the surrounding water. C. prolifera individuals were successfully maintained in a flow-through or recirculation aquaculture system for over 6 months and shifts in the bacterial assemblages of sponges in aquaculture compared with wild sponges were examined. The proteobacteria, bacteroidetes, actinobacteria, and cyanobacteria represented over 90% of the species diversity present in the total bacterial community of the wild C. prolifera. Actinobacteria, cyanobacteria, and spirochetes were not represented in clones obtained from C. prolifera maintained in the aquaculture system although these three groups comprised ca. 20% of the clones from wild C. prolifera, showing a significant effect of aquaculture on the bacterial community composition. This is the first systematic characterization of the bacterial community from a sponge found in the Chesapeake Bay. Changes in sponge bacterial composition were observed in sponges maintained in aquaculture and demonstrate the importance of monitoring microbial communities when cultivating sponges in aquaculture systems.  相似文献   

3.
Marine sponges are associated with a remarkable array of microorganisms. Using a tag pyrosequencing technology, this study was the first to investigate in depth the microbial communities associated with three Red Sea sponges, Hyrtios erectus, Stylissa carteri and Xestospongia testudinaria. We revealed highly diverse sponge-associated bacterial communities with up to 1000 microbial operational taxonomic units (OTUs) and richness estimates of up to 2000 species. Altogether, 26 bacterial phyla were detected from the Red Sea sponges, 11 of which were absent from the surrounding sea water and 4 were recorded in sponges for the first time. Up to 100 OTUs with richness estimates of up to 300 archaeal species were revealed from a single sponge species. This is by far the highest archaeal diversity ever recorded for sponges. A non-negligible proportion of unclassified reads was observed in sponges. Our results demonstrated that the sponge-associated microbial communities remained highly consistent in the same sponge species from different locations, although they varied at different degrees among different sponge species. A significant proportion of the tag sequences from the sponges could be assigned to one of the sponge-specific clusters previously defined. In addition, the sponge-associated microbial communities were consistently divergent from those present in the surrounding sea water. Our results suggest that the Red Sea sponges possess highly sponge-specific or even sponge-species-specific microbial communities that are resistant to environmental disturbance, and much of their microbial diversity remains to be explored.  相似文献   

4.
Lee OO  Lau SC  Qian PY 《Microbial ecology》2006,52(4):693-707
As a crucial step in the identification of possible association between bacteria and sponges, we investigated if a unique bacterial population community was consistently associated with the surface of the sponge Mycale adhaerens, irrespective of environmental conditions. The composition of bacterial communities associated with the surface of sponges at three geographically distinctive sites in Hong Kong waters over four seasons was examined by analyzing terminal restriction fragment length polymorphism of the bacterial 16S rRNA genes. Statistical analysis indicated that bacterial communities on inanimate reference surfaces (polystyrene dishes deployed in the close vicinity of the sponge colonies for 7 days) had a relatively high degree of both site and seasonal specificities (R statistics of pairwise comparisons ∼1), which might be attributed to the differences in environmental conditions at different sites and seasons. On the contrary, the sponge-surface-associated bacterial communities from different sites and seasons were hardly distinguishable from each other (lowest R = −0.16) but were rather distinctive from the reference bacterial communities (R ∼ 1), suggesting a highly stable and distinctive bacteria–sponge association irrespective of the environmental conditions. The occurrence of some unique bacterial types in the sponge-surface-associated communities over space and time suggests that the associations are consistent and specific.  相似文献   

5.
Metagenomics is a powerful tool for mining the genetic repositories from environmental microorganisms. Bacteria associated with marine sponges (phylum Porifera) are rich sources of biologically active natural products. However, to date, few compounds are discovered from the sponge metagenomic libraries, and the main reason might be the difficulties in recovery of high molecular weight (HMW) DNA from sponge symbionts to construct large insert libraries. Here, we describe a method to recover HMW bacterial DNA from diverse sponges with high quality for bacterial artificial chromosome (BAC) library construction. Microorganisms concentrated from sponges by differential centrifugation were embedded in agarose plugs to lyse out the HMW DNA for recovery. DNA fragments over 436 kb size were recovered from three different types of sponges, Halichondria sp., Haliclona sp., and Xestospongia sp. To evaluate the recovered DNA quality, the diversity of bacterial DNA comprised in the HMW DNA derived from sponge Halichondria sp. was analyzed, and this HMW DNA sample was also cloned into a shuttle BAC vector between Escherichia coli and Streptomyces sp. The results showed that more than five types of bacterial DNA, i.e., Proteobacteria, Nitrospirae, Cyanobacteria, Planctomycetes, and unidentified bacteria, had been recovered by this method, and an average 100 kb size insert DNA in a constructed BAC library demonstrated that the recovered HMW DNA is suitable for metagenomic library construction.  相似文献   

6.
Marine sponges are diverse, abundant and provide a crucial coupling point between benthic and pelagic habitats due to their high filtration rates. They also harbour extensive microbial communities, with many microbial phylotypes found exclusively in sponge hosts and not in the seawater or surrounding environment, i.e. so‐called sponge‐specific clusters (SCs) or sponge‐ and coral‐specific clusters (SCCs). We employed DNA (16S rRNA gene) and RNA (16S rRNA)‐based amplicon pyrosequencing to investigate the effects of sublethal thermal stress on the bacterial biosphere of the Great Barrier Reef sponge Rhopaloeides odorabile. A total of 8381 operational taxonomic units (OTUs) (97% sequence similarity) were identified, affiliated with 32 bacterial phyla from seawater samples, 23 bacterial phyla from sponge DNA extracts and 18 bacterial phyla from sponge RNA extracts. Sublethal thermal stress (31°C) had no effect on the present and/or active portions of the R. odorabile bacterial community but a shift in the bacterial assemblage was observed in necrotic sponges. Over two‐thirds of DNA and RNA sequences could be assigned to previously defined SCs/SCCs in healthy sponges whereas only 12% of reads from necrotic sponges could be assigned to SCs/SCCs. A rapid decline in host health over a 1°C temperature increment suggests that sponges such as R. odorabile may be highly vulnerable to the effects of global climate change.  相似文献   

7.
Sponges are the most simple and primitive metazoans, yet they have various biological and ecological properties that make them an influential component of coral-reef ecosystems. Marine sponges provide refuge for many small invertebrates and are critical to benthic-pelagic coupling across a wide range of habitats. Reports of sponge disease have increased dramatically in recent years with sponge populations decimated throughout the Mediterranean and Caribbean. Reports also suggest an increased prevalence of sponge disease in Papua New Guinea, the Great Barrier Reef and in the reefs of Cozumel, Mexico. These epidemics can have severe impacts on the survival of sponge populations, the ecology of the reef and the fate of associated marine invertebrates. Despite the ecological and commercial importance of sponges, the understanding of sponge disease is limited. There has generally been a failure to isolate and identify the causative agents of sponge disease, with only one case confirming Koch's postulates and identifying a novel Alphaproteobacteria strain as the primary pathogen. Other potential disease agents include fungi, viruses, cyanobacteria and bacterial strains within the Bacillus and Pseudomonas genera. There is some evidence for correlations between sponge disease and environmental factors such as climate change and urban/agricultural runoff. This review summarizes the occurrence of sponge disease, describes the syndromes identified thus far, explores potential linkages with environmental change and proposes a strategy for future research towards better management of sponge disease outbreaks.  相似文献   

8.
Marine sponges harbor dense microbial communities of exceptionally high diversity. Despite the complexity of sponge microbiota, microbial communities in different sponges seem to be remarkably similar. In this study, we used a subset of a previously established 454 amplicon pyrosequencing dataset (Schmitt and Taylor, unpublished data). Five Mediterranean sponges were chosen including the model sponge Aplysina aerophoba to determine the extent of uniformity by defining (i) the core microbial community, consisting of bacteria found in all sponges, (ii) the variable microbial community, consisting of bacteria found in 2–4 sponges, and (iii) the species-specific community, consisting of bacteria found in only one sponge. Using the enormous sequencing depth of pyrosequencing the diversity in each of the five sponges was extended to up to 15 different bacterial phyla per sponge with Proteobacteria and Chloroflexi being most diverse in each of the five sponges. Similarity comparison of bacteria on phylum and phylotype level revealed most similar communities in A. aerophoba and A. cavernicola and the most dissimilar community in Pseudocorticium jarrei. A surprising minimal core bacterial community was found when distribution of 97% operational taxonomic units (OTUs) was analyzed. Core, variable, and species-specific communities were comprised of 2, 26, and 72% of all OTUs, respectively. This indicates that each sponge contains a large set of unique bacteria and shares only few bacteria with other sponges. However, host species-specific bacteria are probably still closely related to each other explaining the observed similarity among bacterial communities in sponges.  相似文献   

9.
The focal intent of this study was to find out an alternative strategy for the antibiotic usage against bacterial infections. The quorum sensing inhibitory (QSI) activity of marine sponges collected from Palk Bay, India was evaluated against acyl homoserine lactone (AHL) mediated violacein production in Chromobacterium violaceum (ATCC 12472), CV026 and virulence gene expressions in clinical isolate Serratia marcescens PS1. Out of 29 marine sponges tested, the methanol extracts of Aphrocallistes bocagei (TS 8), Haliclona (Gellius) megastoma (TS 25) and Clathria atrasanguinea (TS 27) inhibited the AHL mediated violacein production in C. violaceum (ATCC 12472) and CV026. Further, these sponge extracts inhibited the AHL dependent prodigiosin pigment, virulence enzymes such as protease, hemolysin production and biofilm formation in S. marcescens PS1. However, these sponge extracts were not inhibitory to bacterial growth, which reveals the fact that the QSI activity of these extracts was not related to static or killing effects on bacteria. Based on the obtained results, it is envisaged that the marine sponges could pave the way to prevent quorum sensing (QS) mediated bacterial infections.  相似文献   

10.
Bacterial communities of marine sponges are believed to be an important partner for host survival but remain poorly studied. Sponges show difference in richness and abundance of microbial population inhabiting them. Three marine sponges belonging to the species of Pione vastifica, Siphonochalina siphonella and Suberea mollis were collected from Red sea in Jeddah and were investigated using high throughput sequencing. Highly diverse communities containing 105 OTUs were identified in S. mollis host. Only 61 and 43 OTUs were found in P. vastifica and S. siphonella respectively. We identified 10 different bacterial phyla and 31 genera using 27,356 sequences. Most of the OTUs belong to phylum Proteobacteria (29%–99%) comprising of Gammaproteobacteria, Alphaproteobacteria, and Deltaproteobacteria where later two were only detected in HMA sponge, S. mollis. A number of 16S rRNA sequences (25%) were not identified to phylum level and may be novel taxa. Richness of bacterial community and Shannon, Simpson diversity revealed that sponge S. mollis harbors high diversity compared to other two LMA sponges. Dominance of Proteobacteria in sponges may indicate an ecological significance of this phylum in the Red sea sponges. These differences in bacterial composition may be due to difference in location site or host responses to environmental conditions. To the best of our knowledge, the microbial communities of these sponges have never been studied before and this is first attempt to unravel bacterial diversity using PCR-based 454-pyrosequencing method.  相似文献   

11.
Many marine sponges, hereafter termed high-microbial-abundance (HMA) sponges, harbor large and complex microbial consortia, including bacteria and archaea, within their mesohyl matrices. To investigate vertical microbial transmission as a strategy to maintain these complex associations, an extensive phylogenetic analysis was carried out with the 16S rRNA gene sequences of reproductive (n = 136) and adult (n = 88) material from five different Caribbean species, as well as all published 16S rRNA gene sequences from sponge offspring (n = 116). The overall microbial diversity, including members of at least 13 bacterial phyla and one archaeal phylum, in sponge reproductive stages is high. In total, 28 vertical-transmission clusters, defined as clusters of phylotypes that are found both in adult sponges and their offspring, were identified. They are distributed among at least 10 bacterial phyla and one archaeal phylum, demonstrating that the complex adult microbial community is collectively transmitted through reproductive stages. Indications of host-species specificity and cospeciation were not observed. Mechanistic insights were provided using a combined electron microscopy and fluorescence in situ hybridization analysis, and an indirect mechanism of vertical transmission via nurse cells is proposed for the oviparous sponge Ectyoplasia ferox. Based on these phylogenetic and mechanistic results, we suggest the following symbiont transmission model: entire microbial consortia are vertically transmitted in sponges. While vertical transmission is clearly present, additional environmental transfer between adult individuals of the same and even different species might obscure possible signals of cospeciation. We propose that associations of HMA sponges with highly sponge-specific microbial communities are maintained by this combination of vertical and horizontal symbiont transmission.  相似文献   

12.
A stable and specific bacterial community was shown to be associated with the Mediterranean sponge Chondrilla nucula. The associated bacterial communities were demonstrated to be highly similar for all studied specimens regardless of sampling time and geographical region. In addition, analysis of 16S rDNA clone libraries revealed three constantly C. nucula-associated bacterial phylotypes belonging to the Acidobacteria, the Gamma- and Deltaproteobacteria present in sponge specimens from two Mediterranean regions with distinct water masses (Ligurian Sea and Adriatic Sea). For the first time, candidate division TM7 bacteria were found in marine sponges. A major part (79%) of the C. nucula-derived 16S rDNA sequences were closely related to other sponge-associated bacteria. Phylogenetic analysis identified 14 16S rRNA gene sequence clusters, seven of which consisted of exclusively sponge-derived sequences, whereas the other seven clusters contained additional environmental sequences. This study adds to a growing database on the stability and variability of microbial consortia associated with marine sponges.  相似文献   

13.
Culture-independent molecular techniques, 16S rDNA clone library alongside RFLP and phylogenetic analysis, were applied to investigate the bacterial diversity associated with three South China Sea sponges, Stelletta tenui, Halichondria rugosa and Dysidea avara. A wide bacterial diversity was detected according to total genomic DNA-based 16S rDNA clone library, abundant clones with low identify with sequences retrieved from database were found as well as uncultured sponge symbionts. The phylogenetic analysis shows that the bacterial community structure of Stelletta tenui is similar to that of Halichondria rugosa comprising gamma-Proteobacteria and Firmicutes. Whereas, alpha-Proteobacteria, gamma-Protebacteria, Bacteroidetes and uncultured sponge symbionts were found in sponge Dysidea avara, suggesting that Dysidea avara has the highest bacteria diversity among these sponges. A specific sponge–microbe association is suggested based on the difference of bacterial diversity among these three sponges from the same geography location and the observed sponge species-specific bacteria.  相似文献   

14.
Marine sponges contain complex assemblages of bacterial symbionts, the roles of which remain largely unknown. We identified diverse bacterial nifH genes within sponges and found that nifH genes are expressed in sponges. This is the first demonstration of the expression of any protein-coding bacterial gene within a sponge. Two sponges Ircinia strobilina and Mycale laxissima were collected from Key Largo, Florida and had delta(15)N values of c. 0-1 per thousand and 3-4 per thousand respectively. The potential for nitrogen fixation by symbionts was assessed by amplification of nifH genes. Diverse nifH genes affiliated with Proteobacteria and Cyanobacteria were detected, and expression of nifH genes affiliated with those from cyanobacteria was detected. The nifH genes from surrounding seawater were similar to those of Trichodesmium and clearly different from the cyanobacterial nifH genes detected in the two sponges. This study advances understanding of the role of bacterial symbionts in sponges and suggests that provision of fixed nitrogen is a means whereby symbionts benefit sponges in nutrient-limited reef environments. Nitrogen fixation by sponge symbionts is possibly an important source of new nitrogen to the reef environment that heretofore has been neglected and warrants further investigation.  相似文献   

15.
Sponges are ancient metazoans that host diverse and complex microbial communities. Sponge-associated microbial diversity has been studied from wide oceans across the globe, particularly in subtidal regions, but the microbial communities from intertidal sponges have remained mostly unexplored. Here we used pyrosequencing to characterize the microbial communities in 12 different co-occurring intertidal marine sponge species sampled from the Atlantic coast, revealing a total of 686 operational taxonomic units (OTUs) at 97% sequence similarity. Taxonomic assignment of 16S ribosomal RNA tag sequences estimated altogether 26 microbial groups, represented by bacterial (75.5%) and archaeal (22%) domains. Proteobacteria (43.4%) and Crenarchaeota (20.6%) were the most dominant microbial groups detected in all the 12 marine sponge species and ambient seawater. The Crenarchaeota microbes detected in three Atlantic Ocean sponges had a close similarity with Crenarchaeota from geographically separated subtidal Red Sea sponges. Our study showed that most of the microbial communities observed in sponges (73%) were also found in the surrounding ambient seawater suggesting possible environmental acquisition and/or horizontal transfer of microbes. Beyond the microbial diversity and community structure assessments (NMDS, ADONIS, ANOSIM), we explored the interactions between the microbial communities coexisting in sponges using the checkerboard score (C-score). Analyses of the microbial association pattern (co-occurrence) among intertidal sympatric sponges revealed the random association of microbes, favoring the hypothesis that the sponge-inhabiting microbes are recruited from the habitat mostly by chance or influenced by environmental factors to benefit the hosts.  相似文献   

16.
Microbial communities are linked with marine sponge are diverse in their structure and function. Our understanding of the sponge-associated microbial diversity is limited especially from Red Sea in Saudi Arabia where few species of sponges have been studied. Here we used pyrosequencing to study two marine sponges and coral species sampled from Obhur region from Red sea in Jeddah. A total of 168 operational taxonomic units (OTUs) were identified from Haliclona caerulea, Stylissa carteri and Rhytisma fulvum. Taxonomic identification of tag sequences of 16S ribosomal RNA revealed 6 different bacterial phyla and 9 different classes. A proportion of unclassified reads were was also observed in sponges and coral sample. We found diverse bacterial communities associated with two sponges and a coral sample. Diversity and richness estimates based on OUTs revealed that sponge H. caerulea had significantly high bacterial diversity. The identified OTUs showed unique clustering in three sponge samples as revealed by Principal coordinate analysis (PCoA). Proteobacteria (88–95%) was dominant phyla alonwith Bacteroidetes, Planctomycetes, Cyanobacteria, Firmicutes and Nitrospirae. Seventeen different genera were identified where genus Pseudoalteromonas was dominant in all three samples. This is first study to assess bacterial communities of sponge and coral sample that have never been studied before to unravel their microbial communities using 454-pyrosequencing method.  相似文献   

17.
Bacteria were isolated from marine sponges from the Mediterranean and the Great Barrier Reef and characterized using numerical taxonomy techniques. A similar sponge-specific bacterial symbiont was found in 9 of 10 sponges examined from both geographic regions. This symbiont occurred in sponges of two classes and seven orders, and it probably has been associated with sponges over a long geological time scale. Another symbiont apparently specific to the spongeVerongia aerophoba was found. This sponge is yellow-orange, similar in color to the bacterial symbiont. These symbionts are two of a large mixed bacterial population present in many sponges.This paper constitutes No. V in the series Microbial Associations in Sponges.  相似文献   

18.
This first assessment of sponges on Australia’s deep western continental margin (100–1,100 m) found that highly species-rich sponge assemblages dominate the megabenthic invertebrate biomass in both southwestern (86%) and northwestern (35%) areas. The demosponge orders Poecilosclerida, Dictyoceratida, Haplosclerida, and Astrophorida are dominant, while the presence of the order Agelasida, lithistid sponges, and the Verongida are noteworthy in providing contrasts to other studies from the deep temperate Australian margin. Most sponge species appeared to be rare as two-thirds were present in only one or two samples—a finding consistent with studies of the shallow Australian sponge fauna. The Demospongiae and Calcarea had similar distribution and abundance patterns being found in the greatest numbers in the south on the outer shelf and shelf edge in hard substrates. In contrast, the Hexactinellida were more abundant at deeper depths and in soft substrates, and were more common in the north. Although the environmental factors that influence sponge distributions on the western margin cannot be completely understood from the physical covariates analyzed in this study, the data suggest depth-related factors, substrate type, and current regimes are the most influential. Incompletely documented historic demersal trawling may partly account for the lower sponge biomass found in the north. The potentially high importance of sponges to benthic ecosystems, as well as the potential for high impacts on sponges by bottom trawling, indicates that maintaining healthy sponge assemblages should be an important consideration for marine conservation planners. Successful management will need to be under-pinned by additional research that better identifies the ecological roles of sponges, and their distributions over local and broad environmental scales.  相似文献   

19.
Microbes associated with marine sponges play significant roles in host physiology. Remarkable levels of microbial diversity have been observed in sponges worldwide through both culture-dependent and culture-independent studies. Most studies have focused on the structure of the bacterial communities in sponges and have involved sponges sampled from shallow waters. Here, we used pyrosequencing of 16S rRNA genes to compare the bacterial and archaeal communities associated with two individuals of the marine sponge Inflatella pellicula from the deep-sea, sampled from a depth of 2,900 m, a depth which far exceeds any previous sequence-based report of sponge-associated microbial communities. Sponge-microbial communities were also compared to the microbial community in the surrounding seawater. Sponge-associated microbial communities were dominated by archaeal sequencing reads with a single archaeal OTU, comprising ∼60% and ∼72% of sequences, being observed from Inflatella pellicula. Archaeal sequencing reads were less abundant in seawater (∼11% of sequences). Sponge-associated microbial communities were less diverse and less even than any other sponge-microbial community investigated to date with just 210 and 273 OTUs (97% sequence identity) identified in sponges, with 4 and 6 dominant OTUs comprising ∼88% and ∼89% of sequences, respectively. Members of the candidate phyla, SAR406, NC10 and ZB3 are reported here from sponges for the first time, increasing the number of bacterial phyla or candidate divisions associated with sponges to 43. A minor cohort from both sponge samples (∼0.2% and ∼0.3% of sequences) were not classified to phylum level. A single OTU, common to both sponge individuals, dominates these unclassified reads and shares sequence homology with a sponge associated clone which itself has no known close relative and may represent a novel taxon.  相似文献   

20.
This study analyzed the bioactivity of extracts from 25 Antarctic demosponge species against 20 bacterial isolates and 1 diatom species collected from the waters off the western Antarctic Peninsula. All sponge species had lipophilic and hydrophilic extracts assayed at two concentrations (1× and 3× natural concentration) against 16 strains of Gamma Proteobacteria, 1 Flavobacterium, and 3 unidentified species of bacteria isolated from sympatric sponges. The majority of the bacterial isolates had no growth inhibition with only one isolate found to consistently have any growth inhibition due to sponge extracts. The sponges also had lipophilic and hydrophilic extracts assayed at three concentrations (0.3×, 1×, and 3× natural concentration) against the chain-forming pennate diatom Syndroposis sp. Almost every sponge’s lipophilic extract (96%) resulted in significant diatom mortality at the estimated natural concentration with the majority of the extracts (60%) still resulting in significant mortality at 30% of the natural concentration. The hydrophilic extracts of 60% of the sponges resulted in significant diatom mortality at the natural concentration. Even at 30% of the natural concentration, 24% of the hydrophilic sponge extracts resulted in significant diatom mortality. These sponges appear to have stronger defenses against diatom fouling than bacterial growth suggesting that there may be more selective pressure for chemical defenses against diatoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号