首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the ubiquitin-proteasome system and the molecular chaperones are implicated to play an important role in pathogenesis of familial amyotrophic lateral sclerosis (FALS) caused by mutations in Cu/Zn-superoxide dismutase (SOD1), the mechanism underlying the causes of this fatal disease is still poorly understood. Here we found that co-chaperone CHIP (carboxyl terminus of Hsc70-interacting protein), together with molecular chaperones Hsc70/Hsp70 and Hsp90, associates with FALS-linked mutant SOD1 proteins in cultured human cells. S5a subunit of 26S proteasomes, which recognizes polyubiquitylated proteins, also interacts with mutant SOD1 proteins. Over-expression of CHIP leads to the reduction in cellular levels of mutant SOD1 as well as the suppression of cytotoxicity induced by mutant SOD1. Unusually, rather than increasing the level of poly-ubiquitylated SOD1, over-expressed CHIP alters the ubiquitylation pattern of mutant SOD1 proteins. Both down-regulation and ubiquitylation of mutant SOD1 are greatly reduced by a mutant CHIP protein lacking U-box domain. Taken together, these results suggest that co-chaperone CHIP, possibly with another E3 ligase(s), modulates the ubiquitylation of mutant SOD1 and renders them more susceptible for proteasomal degradation.  相似文献   

2.
ER stress and UPR in familial amyotrophic lateral sclerosis   总被引:2,自引:0,他引:2  
The primary mechanism by which mutations in Cu, Zn-superoxide dismutase (SOD1) contribute to progressive motor neuron loss in familial amyotrophic lateral sclerosis (FALS) remains unknown. Misfolded protein aggregates, ubiquitin-proteasome system impairment and neuronal apoptosis mediated by death receptor or mitochondrial-dependent pathways are implicated in mutant SOD1-induced toxicity. Recent evidence from cellular and transgenic rodent models of FALS proposes activation of a third apoptotic pathway linked to sustained endoplasmic reticulum (ER) stress. Here, we review the emerging role of ER stress and the unfolded protein response (UPR) in the pathogenesis of mutant SOD1-linked FALS. The UPR observed in FALS rodents is described which encompasses induction of key ER-resident chaperones during presymptomatic disease, leading to activation of stress transducers and pro-apoptotic molecules by late stage disease. Importantly, mutant SOD1 co-aggregates with UPR components and recruits to the ER, suggesting a direct adverse effect on ER function. By contrast, the opposing neuroprotective effects of wild-type SOD1 overexpression on UPR signalling are also highlighted. In addition, the potential impact of neuronal Golgi apparatus (GA) fragmentation and subsequent disturbances in intracellular protein trafficking on motor neuron survival in FALS is also discussed. We propose that ER stress and UPR may be coupled to GA dysfunction in mutant SOD1-mediated toxicity, promoting ER-initiated cell death signalling in FALS.  相似文献   

3.
Neurofilament pathology is a hallmark of sporadic and familial amyotrophic lateral sclerosis (SALS and FALS). The disease mechanisms underlying this pathology are presently unclear, but recent evidence in SALS patients suggest that reductions in neurofilament light subunit (NFL) mRNA may contribute to the death of motor neurones. Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1) represent the best-studied cause of FALS, and a number of laboratory models of SOD1-mediated disease exist. Here we have used microdissected lumbar spinal cord motor neurones from human SOD1 FALS patients as well as G93A SOD1 transgenic mice and demonstrated that reduced NFL mRNA levels are seen in both. To probe the molecular mechanisms underpinning these observations, we generated NSC34 motor neurone-like cell lines expressing wild-type and mutant SOD1. NSC34 cells expressing G37R or G93A SOD1 showed selective reductions in NFL and NFM mRNA and protein. These data suggest that NFL mRNA reductions are common to SALS and FALS patients, and that cells and mice expressing mutant SOD1 may enable us to characterize the molecular mechanism(s) responsible for the loss of neurofilament mRNA.  相似文献   

4.
High molecular weight detergent-insoluble complexes of superoxide dismutase 1 (SOD1) enzyme are a biochemical abnormality associated with mutant SOD1-linked familial amyotrophic lateral sclerosis (FALS). In the present study, SOD1 protein from spinal cords of transgenic FALS mice was fractionated according to solubility in saline, zwitterionic, non-ionic or anionic detergents. Both endogenous mouse SOD1 and mutant human SOD1 were least soluble in SDS, followed by NP-40 and CHAPS, with an eight-fold greater detergent resistance of mutant protein overall. Importantly, high molecular weight mutant SOD1 complexes were isolated with SDS-extraction only. To reproduce SOD1 aggregate pathology in vitro, primary fibroblasts were isolated and cultured from neonatal transgenic FALS mice. Fibroblasts expressed abundant mutant SOD1 without spontaneous aggregation over time with passage. Proteasomal inhibition of cultures using lactacystin induced dose-dependent aggregation and increased the SDS-insoluble fraction of mutant SOD1, but not endogenous SOD1. In contrast, paraquat-mediated superoxide stress in fibroblasts promoted aggregation of endogenous SOD1, but not mutant SOD1. Treatment of cultures with peroxynitrite or the copper chelator diethyldithiocarbamate (DDC) alone did not modulate aggregation. However, DDC inhibited lactacystin-induced mutant SOD1 aggregation in transgenic fibroblasts, while exogenous copper slightly augmented aggregation. These data suggest that SOD1 aggregates may derive from proteasomal or oxidation-mediated oligomerisation pathways from mutant and endogenous subunits respectively. Furthermore, these pathways may be affected by copper availability. We propose that non-neural cultures such as these transgenic fibroblasts with inducible SOD1 aggregation may be useful for rapid screening of compounds with anti-aggregation potential in FALS.  相似文献   

5.
Although we have a rather elaborate "working-cycle" for the 60 kDa molecular chaperones, which possess a cavity, and are called Anfinsen-cage-type chaperones to emphasize that they provide a closed, protected environment to help the folding of their substrates, our understanding of the molecular mechanism of how these chaperones help protein folding is still incomplete. The present study adds two novel elements to the mechanism of how Anfinsen-cage-type chaperones (members of the 60 kDa chaperone family) aid protein folding. It is proposed that (1) these chaperones do not generally unfold their targets, but by a multidirectional expansion preferentially loosen the tight, inner structure of the collapsed target protein; and (2) during the expansion water molecules enter the hydrophobic core of the target, this percolation being a key step in chaperone action. This study compares this chaperone-percolator model with existing explanations and suggests further experiments to test it. BioEssays 1999;21:959-965.  相似文献   

6.
SUMO-1 modification increases human SOD1 stability and aggregation   总被引:4,自引:0,他引:4  
The mutations in the gene encoding copper-zinc superoxide dismutase (SOD1) cause approximately 20% cases of familial amyotrophic lateral sclerosis (FALS), characterized by selective loss of motor neurons. Mutant SOD1 forms inclusions in tissues from FALS patients. However, the precise mechanism of the accumulation of mutant SOD1 remains unclear. Here we show that human SOD1 is a substrate modified by SUMO-1. A conversion of lysine 75 to an arginine within a SUMO consensus sequence in SOD1 completely abolishes SOD1 sumoylation. We further show that SUMO-1 modification, on both wild-type and mutant SOD1, increases SOD1 steady state level and aggregation. Moreover, SUMO-1 co-localizes onto the aggregates formed by SOD1. These findings imply that SUMO-1 modification on lysine 75 may participate in regulating SOD1 stability and its aggregation process. Thus, our results suggest that sumoylation of SOD1 may be involved in the pathogenesis of FALS associated with mutant SOD1.  相似文献   

7.
The aim of this work was to elucidate the oxidative folding mechanism of the macrocyclic cystine knot protein MCoTI-II. We aimed to investigate how the six-cysteine residues distributed on the circular backbone of the reduced unfolded peptide recognize their correct partner and join up to form a complex cystine-knotted topology. To answer this question, we studied the oxidative folding of the naturally occurring peptide using a range of spectroscopic methods. For both oxidative folding and reductive unfolding, the same disulfide intermediate species was prevalent and was characterized to be a native-like two-disulfide intermediate in which the Cys1-Cys18 disulfide bond was absent. Overall, the folding pathway of this head-to-tail cyclized protein was found to be similar to that of linear cystine knot proteins from the squash family of trypsin inhibitors. However, the pathway differs in an important way from that of the cyclotide kalata B1, in that the equivalent two-disulfide intermediate in that case is not a direct precursor of the native protein. The size of the embedded ring within the cystine knot motif appears to play a crucial role in the folding pathway. Larger rings contribute to the independence of disulfides and favor an on-pathway native-like intermediate that has a smaller energy barrier to cross to form the native fold. The fact that macrocyclic proteins are readily able to fold to a complex knotted structure in vitro in the absence of chaperones makes them suitable as protein engineering scaffolds that have remarkable stability.  相似文献   

8.
Inherited retinal dystrophy is a major cause of blindness worldwide. Recent molecular studies have suggested that protein folding and molecular chaperones might play a major role in the pathogenesis of these degenerations. Incorrect protein folding could be a common consequence of causative mutations in retinal degeneration disease genes, particularly mutations in the visual pigment rhodopsin. Furthermore, several retinal degeneration disease genes have recently been identified as putative facilitators of correct protein folding, molecular chaperones, on the basis of sequence homology. We also consider whether manipulation of chaperone levels or chaperone function might offer potential novel therapies for retinal degeneration.  相似文献   

9.
Abstract: Autosomal dominant familial amyotrophic lateral sclerosis (FALS) is associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Previous studies have implicated the involvement of metabolic dysfunction in ALS pathogenesis. To further investigate the biochemical features of FALS and sporadic ALS (SALS), we examined SOD activity and mitochondrial oxidative phosphorylation enzyme activities in motor cortex (Brodmann area 4), parietal cortex (Brodmann area 40), and cerebellum from control subjects, FALS patients with and without known SOD mutations, SALS patients, and disease controls (Pick's disease, progressive supranuclear palsy, diffuse Lewy body disease). Cytosolic SOD activity, predominantly Cu/Zn SOD, was decreased ∼50% in all regions in FALS patients with SOD mutations but was not significantly altered in other patient groups. Marked increases in complex I and II–III activities were seen in FALS patients with SOD mutations but not in SALS patients. We also measured electron transport chain enzyme activities in a transgenic mouse model of FALS. Complex I activity was significantly increased in the forebrain of 60-day-old G93A transgenic mice overexpressing human mutant SOD1, relative to levels in transgenic wild-type animals, supporting the hypothesis that the motor neuron disorder associated with SOD1 mutations involves a defect in mitochondrial energy metabolism.  相似文献   

10.
Approximately 20% of familial amyotrophic lateral sclerosis (FALS) arises from germ-line mutations in the superoxide dismutase-1 (SOD1) gene. However, the molecular mechanisms underlying the process have been elusive. Here, we show that a neuronal homologous to E6AP carboxyl terminus (HECT)-type ubiquitin-protein isopeptide ligase (NEDL1) physically binds translocon-associated protein-delta and also binds and ubiquitinates mutant (but not wild-type) SOD1 proportionately to the disease severity caused by that particular mutant. Immunohistochemically, NEDL1 is present in the central region of the Lewy body-like hyaline inclusions in the spinal cord ventral horn motor neurons of both FALS patients and mutant SOD1 transgenic mice. Two-hybrid screening for the physiological targets of NEDL1 has identified Dishevelled-1, one of the key transducers in the Wnt signaling pathway. Mutant SOD1 also interacted with Dishevelled-1 in the presence of NEDL1 and caused its dysfunction. Thus, our results suggest that an adverse interaction among misfolded SOD1, NEDL1, translocon-associated protein-delta, and Dishevelled-1 forms a ubiquitinated protein complex that is included in potentially cytotoxic protein aggregates and that mutually affects their functions, leading to motor neuron death in FALS.  相似文献   

11.
Calcineurin (CN) is a protein phosphatase involved in a wide range of cellular responses to calcium-mobilizing signals, and a role for this enzyme in neuropathology has been postulated. We have investigated the possibility that redox modulation of CN activity is relevant to neuropathological conditions where an imbalance in reactive oxygen species has been described. We have monitored CN activity in cultured human neuroblastoma SH-SY5Y cells and obtained evidence that CN activity is promoted by treatment with ascorbate or dithiothreitol and impaired by oxidative stress. Evidence for the existence of a redox regulation of this enzyme has been also obtained by overexpression of wild-type antioxidant Cu,Zn superoxide dismutase (SOD1) that promotes CN activity and protects it from oxidative inactivation. On the contrary, overexpression of mutant SOD1s associated with familial amyotrophic lateral sclerosis (FALS) impairs CN activity both in transfected human neuroblastoma cell lines and in the motor cortex of brain from FALS-transgenic mice. These data suggest that CN might be a target in the pathogenesis of SOD1-linked FALS.  相似文献   

12.
Mutations in a Cu, Zn-superoxide dismutase (SOD1) cause motor neuron death in human familial amyotrophic lateral sclerosis (FALS) and its mouse model, suggesting that mutant SOD1 has a toxic effect on motor neurons. However, the question of how the toxic function is gained has not been answered. Here, we report that the mutant SOD1s linked to FALS, but not wild-type SOD1, aggregated in association with the endoplasmic reticulum (ER) and induced ER stress in the cDNA-transfected COS7 cells. These cells showed an aberrant intracellular localization of mitochondria and microtubules, which might lead to a functional disturbance of the cells. Motor neurons of the spinal cord in transgenic mice with a FALS-linked mutant SOD1 also showed a marked increase of GRP78/BiP, an ER-resident chaperone, just before the onset of motor symptoms. These data suggest that ER stress is involved in the pathogenesis of FALS with an SOD1 mutation.  相似文献   

13.
Feng H  Vu ND  Zhou Z  Bai Y 《Biochemistry》2004,43(45):14325-14331
Protein folding intermediates and transition states are commonly characterized using a protein engineering procedure (Phi-value analysis) based on several assumptions, including (1) intermediates and transition states have native-like conformations and (2) single mutations from larger hydrophobic residues to smaller ones do not perturb their structures. Although Phi-value analysis has been widely used, these assumptions have not been tested to date because of the lack of high-resolution structures of intermediates and transition states. We recently have determined the structure of a folding intermediate for a four-helix bundle protein (Rd-apocytochrome b(562)) using NMR. The intermediate has the N-terminal helix unfolded. The other three helices fold in a native-like topology with extensive non-native hydrophobic interactions. Here, we have determined the Phi values for 14 hydrophobic core residues, including those with significant non-native interactions. All of the Phi values are in the normal range from 0 to 1, indicating that these non-native interactions cannot be identified by the common Phi-value analysis, and therefore, the first assumption is not valid for this intermediate. We also determined the structure of a mutant (F65A) of the intermediate and found that the structure of the intermediate is not perturbed by the mutation, supporting the second assumption. Together, these results suggest that Phi-value analysis may be valid for characterizing the energetics of the interactions between the mutated residue and others, but not for determining the detailed structures of intermediates and transition states because non-native interactions may exist and may not be identifiable by the common Phi-value analysis.  相似文献   

14.
Mutations in the superoxide dismutase 1 (SOD1) gene cause the degeneration of motor neurons in familial amyotrophic lateral sclerosis (FALS). An apoptotic process including caspase-1 and -3 has been shown to participate in the pathogenesis of FALS transgenic (Tg) mouse model. Here we report that IAP proteins, potent inhibitors of apoptosis, are involved in the FALS Tg mouse pathologic process. The levels of X-linked inhibitor of apoptosis protein (XIAP) mRNA and protein were significantly decreased in the spinal cord of symptomatic G93A-SOD1 Tg mice compared with littermates. In contrast, the levels of cIAP-1 mRNA and protein were increased in symptomatic G93A-SOD1 Tg mice, whereas the levels of cIAP-2 mRNA and protein were unchanged. In situ hybridization showed that the expression of XIAP was remarkably reduced in the motor neurons of Tg mice, and the expression of cIAP-1 was strongly increased in the reactive astrocytes of Tg mice. Overexpression of XIAP markedly inhibited the cell death and caspase-3 activity in the neuro2a cells expressing mutant SOD1. Deletional mutant analysis revealed that the N-terminal domain of XIAP, the BIR1-2 domains, was essential for this inhibitory activity. These results suggest that XIAP plays a role in the apoptotic mechanism in the progression of disease in mutant SOD1 Tg mice and holds therapeutic possibilities for FALS.  相似文献   

15.
Although molecular chaperones are essential components of protein homeostatic machinery, their mechanism of action and impact on adaptation and evolutionary dynamics remain controversial. Here we developed a physics-based ab initio multi-scale model of a living cell for population dynamics simulations to elucidate the effect of chaperones on adaptive evolution. The 6-loci genomes of model cells encode model proteins, whose folding and interactions in cellular milieu can be evaluated exactly from their genome sequences. A genotype-phenotype relationship that is based on a simple yet non-trivially postulated protein-protein interaction (PPI) network determines the cell division rate. Model proteins can exist in native and molten globule states and participate in functional and all possible promiscuous non-functional PPIs. We find that an active chaperone mechanism, whereby chaperones directly catalyze protein folding, has a significant impact on the cellular fitness and the rate of evolutionary dynamics, while passive chaperones, which just maintain misfolded proteins in soluble complexes have a negligible effect on the fitness. We find that by partially releasing the constraint on protein stability, active chaperones promote a deeper exploration of sequence space to strengthen functional PPIs, and diminish the non-functional PPIs. A key experimentally testable prediction emerging from our analysis is that down-regulation of chaperones that catalyze protein folding significantly slows down the adaptation dynamics.  相似文献   

16.
Abstract: Some cases of autosomal dominant familial amyotrophic lateral sclerosis (FALS) are associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1), suggesting that oxidative damage may play a role in ALS pathogenesis. To further investigate the biochemical features of FALS and sporadic ALS (SALS), we examined markers of oxidative damage to protein, lipids, and DNA in motor cortex (Brodmann area 4), parietal cortex (Brodmann area 40), and cerebellum from control subjects, FALS patients with and without known SOD mutations, SALS patients, and disease controls (Pick's disease, progressive supranuclear palsy, diffuse Lewy body disease). Protein carbonyl and nuclear DNA 8-hydroxy-2'-deoxyguanosine (OH8dG) levels were increased in SALS motor cortex but not in FALS patients. Malondialdehyde levels showed no significant changes. Immunohistochemical studies showed increased neuronal staining for hemeoxygenase-1, malondialdehyde-modified protein, and OH8dG in both SALS and FALS spinal cord. These studies therefore provide further evidence that oxidative damage may play a role in the pathogenesis of neuronal degeneration in both SALS and FALS.  相似文献   

17.
Macromolecular crowding has a profound effect upon biochemical processes in the cell. We have computationally studied the effect of crowding upon protein folding for 12 small domains in a simulated cell using a coarse-grained protein model, which is based upon Langevin dynamics, designed to unify the often disjoint goals of protein folding simulation and structure prediction. The model can make predictions of native conformation with accuracy comparable with that of the best current template-free models. It is fast enough to enable a more extensive analysis of crowding than previously attempted, studying several proteins at many crowding levels and further random repetitions designed to more closely approximate the ensemble of conformations. We found that when crowding approaches 40% excluded volume, the maximum level found in the cell, proteins fold to fewer native-like states. Notably, when crowding is increased beyond this level, there is a sudden failure of protein folding: proteins fix upon a structure more quickly and become trapped in extended conformations. These results suggest that the ability of small protein domains to fold without the help of chaperones may be an important factor in limiting the degree of macromolecular crowding in the cell. Here, we discuss the possible implications regarding the relationship between protein expression level, protein size, chaperone activity and aggregation.  相似文献   

18.
Aggregation of misfolded protein and resultant intracellular inclusion body formation are common hallmarks of mutant superoxide dismutase (mSOD1)-linked familial amyotrophic lateral sclerosis (FALS) and have been associated with the selective neuronal death. Protein disulfide isomerase (PDI) represents a family of enzymatic chaperones that can fold nascent and aberrant proteins in the endoplasmic reticulum (ER) lumen. Recently, our group found that S-nitrosylated PDI could contribute to protein misfolding and subsequent neuronal cell death. However, the exact role of PDI in the pathogenesis of ALS remains unclear. In this study, we propose that PDI attenuates aggregation of mutant/misfolded SOD1 and resultant neurotoxicity associated with ER stress. ER stress resulting in PDI dysfunction therefore provides a mechanistic link between deficits in molecular chaperones, accumulation of misfolded proteins, and neuronal death in neurodegenerative diseases. In contrast, S-nitrosylation of PDI inhibits its activity, increases mSOD1 aggregation, and increases neuronal cell death. Specifically, our data show that S-nitrosylation abrogates PDI-mediated attenuation of neuronal cell death triggered by thapsigargin. Biotin switch assays demonstrate S-nitrosylated PDI both in the spinal cords of SOD1 (G93A) mice and human patients with sporadic ALS. Therefore, denitrosylation of PDI may have therapeutic implications. Taken together, our results suggest a novel strategy involving PDI as a therapy to prevent mSOD1 aggregation and neuronal degeneration. Moreover, the data demonstrate that inactivation of PDI by S-nitrosylation occurs in both mSOD1-linked and sporadic forms of ALS in humans as well as mice.  相似文献   

19.
Abstract: Some cases of autosomal-dominant familial amyotrophic lateral sclerosis (FALS) have been associated with mutations in SOD1 , the gene that encodes Cu/Zn superoxide dismutase (Cu/Zn SOD). We determined the concentrations (µg of Cu/Zn SOD/mg of total protein), specific activities (U/µg of total protein), and apparent turnover numbers (U/µmol of Cu/Zn SOD) of Cu/Zn SOD in erythrocyte lysates from patients with known SOD1 mutations. We also measured the concentrations and activities of Cu/Zn SOD in FALS patients with no identifiable SOD1 mutations, sporadic ALS (SALS) patients, and patients with other neurologic disorders. The concentration and specific activity of Cu/Zn SOD were decreased in all patients with SOD1 mutations, with mean reductions of 51 and 46%, respectively, relative to controls. In contrast, the apparent turnover number of the enzyme was not altered in these patients. For the six mutations studied, there was no correlation between enzyme concentration or specific activity and disease severity, expressed as either duration of disease or age of onset. No significant alterations in the concentration, specific activity, or apparent turnover number of Cu/Zn SOD were detected in the FALS patients with no identifiable SOD1 mutations, SALS patients, or patients with other neurologic disorders. That Cu/Zn SOD concentration and specific activity are equivalently reduced in erythrocytes from patients with SOD1 mutations suggests that mutant Cu/Zn SOD is unstable in these cells. That concentration and specific activity do not correlate with disease severity suggests that an altered, novel function of the enzyme, rather than reduction of its dismutase activity, may be responsible for the pathogenesis of FALS.  相似文献   

20.
Feng H  Takei J  Lipsitz R  Tjandra N  Bai Y 《Biochemistry》2003,42(43):12461-12465
Structures of intermediates and transition states in protein folding are usually characterized by amide hydrogen exchange and protein engineering methods and interpreted on the basis of the assumption that they have native-like conformations. We were able to stabilize and determine the high-resolution structure of a partially unfolded intermediate that exists after the rate-limiting step of a four-helix bundle protein, Rd-apocyt b(562), by multidimensional NMR methods. The intermediate has partial native-like secondary structure and backbone topology, consistent with our earlier native state hydrogen exchange results. However, non-native hydrophobic interactions exist throughout the structure. These and other results in the literature suggest that non-native hydrophobic interactions may occur generally in partially folded states. This can alter the interpretation of mutational protein engineering results in terms of native-like side chain interactions. In addition, since the intermediate exists after the rate-limiting step and Rd-apocyt b(562) folds very rapidly (k(f) approximately 10(4) s(-1)), these results suggest that non-native hydrophobic interactions, in the absence of topological misfolding, are repaired too rapidly to slow folding and cause the accumulation of folding intermediates. More generally, these results illustrate an approach for determining the high-resolution structure of folding intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号