首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
FYVE domains are small zinc-finger-like domains found in many proteins that are involved in regulating membrane traffic and have been shown to bind specifically to phosphatidylinositol 3-phosphate (PtdIns-3-P). FYVE domains are thought to recruit PtdIns-3-P effectors to endosomal locations in vivo, where these effectors participate in controlling endosomal maturation and vacuolar protein sorting. We have compared the characteristics of PtdIns-3-P binding by the FYVE domain from Hrs-1 (the hepatocyte growth factor-regulated tyrosine kinase substrate) with those of specific phosphoinositide binding by Pleckstrin homology (PH) domains. Like certain PH domains (such as that from phospholipase C-delta(1)), the Hrs-1 FYVE domain specifically recognizes a single phosphoinositide. However, while phosphoinositide binding by highly specific PH domains is driven almost exclusively by interactions with the lipid headgroup, this is not true for the Hrs-1 FYVE domain. The phospholipase C-delta(1) PH domain shows a 10-fold preference for binding isolated headgroup over its preferred lipid (phosphatidylinositol 4,5-bisphosphate) in a membrane, while the Hrs-1 FYVE domain greatly prefers (more than 50-fold) intact lipid in a bilayer over the isolated headgroup (inositol 1,3-bisphosphate). By contrast with reports for certain PH domains, we find that this preference for membrane binding over interaction with soluble lipid headgroups does not require FYVE domain oligomerization.  相似文献   

2.
Song X  Xu W  Zhang A  Huang G  Liang X  Virbasius JV  Czech MP  Zhou GW 《Biochemistry》2001,40(30):8940-8944
The recruitment of specific cytosolic proteins to intracellular membranes through binding phosphorylated derivatives of phosphatidylinositol (PtdIns) controls such processes as endocytosis, regulated exocytosis, cytoskeletal organization, and cell signaling. Protein modules such as FVYE domains and PH domains that bind specifically to PtdIns 3-phosphate (PtdIns-3-P) and polyphosphoinositides, respectively, can direct such membrane targeting. Here we show that two representative Phox homology (PX) domains selectively bind to specific phosphatidylinositol phosphates. The PX domain of Vam7p selectively binds PtdIns-3-P, while the PX domain of the CPK PI-3 kinase selectively binds PtdIns-4,5-P(2). In contrast, the PX domain of Vps5p displays no binding to any PtdInsPs that were tested. In addition, the double mutant (Y42A/L48Q) of the PX domain of Vam7p, reported to cause vacuolar trafficking defects in yeast, has a dramatically decreased level of binding to PtdIns-3-P. These data reveal that the membrane targeting function of the Vam7p PX domain is based on its ability to associate with PtdIns-3-P, analogous to the function of FYVE domains.  相似文献   

3.
The ADP-ribosylation factor (Arf) family of GTP-binding proteins are regulators of membrane traffic and the actin cytoskeleton. Both negative and positive regulators of Arf, the centaurin beta family of Arf GTPase-activating proteins (GAPs) and Arf guanine nucleotide exchange factors, contain pleckstrin homology (PH) domains and are activated by phosphoinositides. To understand how the activities are coordinated, we have examined the role of phosphoinositide binding for Arf GAP function using ASAP1/centaurin beta4 as a model. In contrast to Arf exchange factors, phosphatidylinositol 4, 5-bisphosphate (PtdIns-4,5-P(2)) specifically activated Arf GAP. D3 phosphorylated phosphoinositides were less effective. Activation involved PtdIns-4,5-P(2) binding to the PH domain; however, in contrast to the Arf exchange factors and contrary to predictions based on the current paradigm for PH domains as independently functioning recruitment signals, we found the following: (i) the PH domain was dispensable for targeting to PDGF-induced ruffles; (ii) activation and recruitment could be uncoupled; (iii) the PH domain was necessary for activity even in the absence of phospholipids; and (iv) the Arf GAP domain influenced localization and lipid binding of the PH domain. Furthermore, PtdIns-4,5-P(2) binding to the PH domain caused a conformational change in the Arf GAP domain detected by limited proteolysis. Thus, these data demonstrate that PH domains can function as allosteric sites. In addition, differences from the published properties of the Arf exchange factors suggest a model in which feedforward and feedback loops involving lipid metabolites coordinate GTP binding and hydrolysis by Arf.  相似文献   

4.
Phox homology (PX) domains are named for a 130-amino acid region of homology shared with part of two components of the phagocyte NADPH oxidase (phox) complex. They are found in proteins involved in vesicular trafficking, protein sorting, and lipid modification. It was recently reported that certain PX domains specifically recognize phosphatidylinositol 3-phosphate (PtdIns-3-P) and drive recruitment of their host proteins to the cytoplasmic leaflet of endosomal and/or vacuolar membranes where this phosphoinositide is enriched. We have analyzed phosphoinositide binding by all 15 PX domains encoded by the Saccharomyces cerevisiae genome. All yeast PX domains specifically recognize PtdIns-3-P in protein-lipid overlay experiments, with just one exception (a significant sequence outlier). In surface plasmon resonance studies, four of the yeast PX domains bind PtdIns-3-P with high (micromolar range) affinity. Although the remaining PX domains specifically recognize PtdIns-3-P, they bind this lipid with only low affinity. Interestingly, many proteins with "low affinity" PX domains are known to form large multimeric complexes, which may increase the overall avidity for membranes. Our results establish that PtdIns-3-P, and not other phosphoinositides, is the target of all PX domains in S. cerevisiae and suggest a role for PX domains in assembly of multiprotein complexes at specific membrane surfaces.  相似文献   

5.
Bruton's tyrosine kinase (Btk) binds to phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P(3)) through the Btk pleckstrin homology (PH) domain, an interaction thought to be required for Btk membrane translocation during B cell receptor signaling. Here, we report that interaction of PtdIns-3,4,5-P(3) with the PH domain of Btk directly induces Btk enzymatic activation in an in vitro kinase assay. A point mutation that reduces interaction of PtdIns-3,4,5-P(3) with the Btk PH domain blocks in vitro PtdIns-3,4,5-P(3)-dependent Btk activation, whereas the PH domain deletion enhances Btk basal activity but eliminates the PtdIns-3,4,5-P(3)-dependent stimulation. Btk kinase activity and the Btk activation loop phosphorylation site are both required for the PtdIns-3,4,5-P(3)-mediated stimulation of Btk kinase activity. Together, these results suggest that the Btk PH domain is positioned such that it normally suppresses both Btk kinase activity and access to substrates; when interacting with PtdIns-3,4,5-P(3), this suppression is relieved, producing apparent Btk activation. In addition, using Src family kinase inhibitors and Btk catalytically inactive mutants, we demonstrate that in vivo, the activation of Btk is due to both Lyn phosphorylation and PtdIns-3,4,5-P(3)-mediated direct activation. Thus, the Btk-PtdIns-3,4,5-P(3) interaction serves to translocate Btk to the membrane and directly regulate its signaling function.  相似文献   

6.
Insulin evokes diverse biological effects through receptor-mediated tyrosine phosphorylation of the insulin receptor substrate (IRS) proteins. Here, we show that, in vitro, the IRS-1, -2 and -3 pleckstrin homology (PH) domains bind with different specificities to the 3-phosphorylated phosphoinositides. In fact, the IRS-1 PH domain binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdIns-3,4,5-P3), the IRS-2 PH domain to phosphatidylinositol 3,4-bisphosphate (PtdIns-3,4-P2), and the IRS-3 PH domain to phosphatidylinositol 3-phosphate. When expressed in NIH-IR fibroblasts and L6 myocytes, the IRS-1 and -2 PH domains tagged with green fluorescent protein (GFP) are localized exclusively in the cytoplasm. Stimulation with insulin causes a translocation of the GFP-IRS-1 and -2 PH domains to the plasma membrane within 3-5 min. This translocation is blocked by the phosphatidylinositol 3-kinase (PI 3-K) inhibitors, wortmannin and LY294002, suggesting that this event is PI 3-K dependent. Interestingly, platelet-derived growth factor (PDGF) did not induce translocation of the IRS-1 and -2 PH domains to the plasma membrane, indicating the existence of specificity for insulin. In contrast, the GFP-IRS-3 PH domain is constitutively localized to the plasma membrane. These results reveal a differential regulation of the IRS PH domains and a novel positive feedback loop in which PI 3-K functions as both an upstream regulator and a downstream effector of IRS-1 and -2 signaling.  相似文献   

7.
Kinetically distinct steps can be distinguished in the secretory response from neuroendocrine cells with slow ATP-dependent priming steps preceding the triggering of exocytosis by Ca(2+). One of these priming steps involves the maintenance of phosphatidylinositol 4, 5-bisphosphate (PtdIns-4,5-P(2)) through lipid kinases and is responsible for at least 70% of the ATP-dependent secretion observed in digitonin-permeabilized chromaffin cells. PtdIns-4,5-P(2) is usually thought to reside on the plasma membrane. However, because phosphatidylinositol 4-kinase is an integral chromaffin granule membrane protein, PtdIns-4,5-P(2) important in exocytosis may reside on the chromaffin granule membrane. In the present study we have investigated the localization of PtdIns-4,5-P(2) that is involved in exocytosis by transiently expressing in chromaffin cells a pleckstrin homology (PH) domain that specifically binds PtdIns-4, 5-P(2) and is fused to green fluorescent protein (GFP). The PH-GFP protein predominantly associated with the plasma membrane in chromaffin cells without any detectable association with chromaffin granules. Rhodamine-neomycin, which also binds to PtdIns-4,5-P(2), showed a similar subcellular localization. The transiently expressed PH-GFP inhibited exocytosis as measured by both biochemical and electrophysiological techniques. The results indicate that the inhibition was at a step after Ca(2+) entry and suggest that plasma membrane PtdIns-4,5-P(2) is important for exocytosis. Expression of PH-GFP also reduced calcium currents, raising the possibility that PtdIns-4,5-P(2) in some manner alters calcium channel function in chromaffin cells.  相似文献   

8.
Dbl family guanine nucleotide exchange factors (GEFs) for Rho family small GTPases invariably contain a pleckstrin homology (PH) domain that immediately follows their Dbl homology (DH) domain. Although the DH domain is responsible for GEF activity, the role of the PH domain is less clear. We previously reported that PH domains from several Dbl family members bind phosphoinositides with very low affinity (K(d) values in the 10 microM range). This suggests that, unlike several other PH domains, those from Dbl proteins will not function as independent membrane-targeting modules. To determine the functional relevance of low affinity phosphoinositide binding, we mutated the corresponding PH domain from Tiam-1 to abolish its weak, specific binding to phosphatidylinositol 3-phosphate. We first confirmed in vitro that phosphoinositide binding by the isolated DH/PH domain was impaired by the mutations but that intrinsic GEF activity was unaffected. We then introduced the PH domain mutations into full-length Tiam-1 and found that its ability to activate Rac1 or serum response factor in vivo was abolished. Immunofluorescence studies showed that membrane targeting of Tiam-1 was essentially unaffected by mutations in the C-terminal PH domain. Our studies therefore indicate that low affinity phosphatidylinositol 3-phosphate binding by the C-terminal PH domain may be critical for in vivo regulation and activity of Tiam-1 but that the PH domain exerts its regulatory effects without altering membrane targeting. We suggest instead that ligand binding to the PH domain induces conformational and/or orientational changes at the membrane surface that are required for maximum exchange activity of its adjacent DH domain.  相似文献   

9.
The pleckstrin homology (PH) domain is a small motif for membrane targeting in the signaling molecules. Phospholipase C (PLC)-gamma1 has two putative PH domains, an NH(2)-terminal and a split PH domain. Here we report studies on the interaction of the PH domain of PLC-gamma1 with translational elongation factor (EF)-1alpha, which has been shown to be a phosphatidylinositol 4-kinase activator. By pull-down of cell extract with the glutathione S-transferase (GST) fusion proteins with various domains of PLC-gamma1 followed by peptide sequence analysis, we identified EF-1alpha as a binding partner of a split PH domain of PLC-gamma1. Analysis by site-directed mutagenesis of the PH domain revealed that the beta2-sheet of a split PH domain is critical for the interaction with EF-1alpha. Moreover, Dot-blot assay shows that a split PH domain specifically binds to phosphoinositides including phosphatidylinositol 4-phosphate and phosphatidylinositol 4, 5-bisphosphate (PIP(2)). So the PH domain of PLC-gamma1 binds to both EF-1alpha and PIP(2). The binding affinity of EF-1alpha to the GST.PH domain fusion protein increased in the presence of PIP(2), although PIP(2) does not bind to EF-1alpha directly. This suggests that EF-1alpha may control the binding affinity between the PH domain and PIP(2). PLC-gamma1 is substantially activated in the presence of EF-1alpha with a bell-shaped curve in relation to the molar ratio between them, whereas a double point mutant PLC-gamma1 (Y509A/F510A) that lost its binding affinity to EF-1alpha shows basal level activity. Taken together, our data show that EF-1alpha plays a direct role in phosphoinositide metabolism of cellular signaling by regulating PLC-gamma1 activity via a split PH domain.  相似文献   

10.
The general receptor for phosphoinositides isoform 1 (GRP1) is recruited to the plasma membrane in response to activation of phosphoinositide 3-kinases and accumulation of phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)]. GRP1's pleckstrin homology (PH) domain recognizes PtdIns(3,4,5)P(3) with high specificity and affinity, however, the precise mechanism of its association with membranes remains unclear. Here, we detail the molecular basis of membrane anchoring by the GRP1 PH domain. Our data reveal a multivalent membrane docking involving PtdIns(3,4,5)P(3) binding, regulated by pH and facilitated by electrostatic interactions with other anionic lipids. The specific recognition of PtdIns(3,4,5)P(3) triggers insertion of the GRP1 PH domain into membranes. An acidic environment enhances PtdIns(3,4,5)P(3) binding and increases membrane penetration as demonstrated by NMR and monolayer surface tension and surface plasmon resonance experiments. The GRP1 PH domain displays a 28 nM affinity for POPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine/PtdIns(3,4,5)P(3) vesicles at pH 6.0, but binds 22-fold weaker at pH 8.0. The pH sensitivity is attributed in part to the His355 residue, protonation of which is required for the robust interaction with PtdIns(3,4,5)P(3) and significant membrane penetration, as illustrated by mutagenesis data. The binding affinity of the GRP1 PH domain for PtdIns(3,4,5)P(3)-containing vesicles is further amplified (by approximately 6-fold) by nonspecific electrostatic interactions with phosphatidylserine/phosphatidylinositol. Together, our results provide new insight into the multivalent mechanism of the membrane targeting and regulation of the GRP1 PH domain.  相似文献   

11.
Inositol polyphosphate 4 phosphatases (IP4Ps) are enzymes involved in the regulation of phosphoinositide 3-kinase lipid signaling. They catalyze the hydrolysis of the 4-position phosphate from phosphatidylinositol 3,4-bisphosphate to phosphatidylinositol 3-phosphate. In this paper we have characterized a lipid binding C2 domain located on the N-terminus of type I IP4Ps. Mutational analysis of the lipid binding loops suggests that Asp61, Asp120, Asp123, Lys122, Arg124 are involved in lipid binding in vitro. In addition, we show that this C2 domain binds calcium but calcium is not involved in lipid binding. This paper provides insight into the mechanism of membrane interaction of IP4Ps.  相似文献   

12.
13.
Crystal structures of the Dab homology domains of mouse disabled 1 and 2   总被引:4,自引:0,他引:4  
Disabled (Dab) 1 and 2 are mammalian homologues of Drosophila DAB. Dab1 is a key cytoplasmic mediator in Reelin signaling that controls cell positioning in the developing central nervous system, whereas Dab2 is an adapter protein that plays a role in endocytosis. DAB family proteins possess an amino-terminal DAB homology (DH) domain that is similar to the phosphotyrosine binding/phosphotyrosine interaction (PTB/PI) domain. We have solved the structures of the DH domains of Dab2 (Dab2-DH) and Dab1 (Dab1-DH) in three different ligand forms, ligand-free Dab2-DH, the binary complex of Dab2-DH with the Asn-Pro-X-Tyr (NPXY) peptide of amyloid precursor protein (APP), and the ternary complex of Dab1-DH with the APP peptide and inositol 1,4,5-trisphosphate (Ins-1,4,5-P3, the head group of phosphatidylinositol-4,5-diphosphate (PtdIns-4,5-P2)). The similarity of these structures suggests that the rigid Dab DH domain maintains two independent pockets for binding of the APP/lipoprotein receptors and phosphoinositides. Mutagenesis confirmed the structural determinants specific for the NPXY sequence and PtdIns-4,5-P2 binding. NMR spectroscopy confirmed that the DH domain binds to Ins-1,4,5-P3 independent of the NPXY peptides. These findings suggest that simultaneous interaction of the rigid DH domain with the NPXY sequence and PtdIns-4,5-P2 plays a role in the attachment of Dab proteins to the APP/lipoprotein receptors and phosphoinositide-rich membranes.  相似文献   

14.
BACKGROUND: The activity of Bruton's tyrosine kinase (Btk) is important for the maturation of B cells. A variety of point mutations in this enzyme result in a severe human immunodeficiency known as X-linked agammaglobulinemia (XLA). Btk contains a pleckstrin-homology (PH) domain that specifically binds phosphatidylinositol 3,4,5-trisphosphate and, hence, responds to signalling via phosphatidylinositol 3-kinase. Point mutations in the PH domain might abolish membrane binding, preventing signalling via Btk. RESULTS: We have determined the crystal structures of the wild-type PH domain and a gain-of-function mutant E41K in complex with D-myo-inositol 1,3,4,5-tetra-kisphosphate (Ins (1,3,4,5)P4). The inositol Ins (1,3,4,5)P4 binds to a site that is similar to the inositol 1,4,5-trisphosphate binding site in the PH domain of phospholipase C-delta. A second Ins (1,3,4,5)P4 molecule is associated with the domain of the E41K mutant, suggesting a mechanism for its constitutive interaction with membrane. The affinities of Ins (1,3,4,5)P4 to the wild type (Kd = 40 nM), and several XLA-causing mutants have been measured using isothermal titration calorimetry. CONCLUSIONS: Our data provide an explanation for the specificity and high affinity of the interaction with phosphatidylinositol 3,4,5-trisphosphate and lead to a classification of the XLA mutations that reside in the Btk PH domain. Mis-sense mutations that do not simply destabilize the PH fold either directly affect the interaction with the phosphates of the lipid head group or change electrostatic properties of the lipid-binding site. One point mutation (Q127H) cannot be explained by these facts, suggesting that the PH domain of Btk carries an additional function such as interaction with a Galpha protein.  相似文献   

15.
Targeting of a wide variety of proteins to membranes involves specific recognition of phospholipid head groups and insertion into lipid bilayers. For example, proteins that contain FYVE domains are recruited to endosomes through interaction with phosphatidylinositol 3-phosphate (PtdIns(3)P). However, the structural mechanism of membrane docking and insertion by this domain remains unclear. Here, the depth and angle of micelle insertion and the lipid binding properties of the FYVE domain of early endosome antigen 1 are estimated by NMR spectroscopy. Spin label probes incorporated into micelles identify a hydrophobic protuberance that inserts into the micelle core and is surrounded by interfacially active polar residues. A novel proxyl PtdIns(3)P derivative is developed to map the position of the phosphoinositide acyl chains, which are found to align with the membrane insertion element. Dual engagement of the FYVE domain with PtdIns(3)P and dodecylphosphocholine micelles yields a 6-fold enhancement of affinity. The additional interaction of phosphatidylserine with a conserved basic site of the protein further amplifies the micelle binding affinity and dramatically alters the angle of insertion. Thus, the FYVE domain is targeted to endosomes through the synergistic action of stereospecific PtdIns(3)P head group ligation, hydrophobic insertion and electrostatic interactions with acidic phospholipids.  相似文献   

16.
Phox (PX) domains are phosphoinositide (PI)-binding domains with broad PI specificity. Two cytosolic components of NADPH oxidase, p40(phox) and p47(phox), contain PX domains. The PX domain of p40(phox) specifically binds phosphatidylinositol 3-phosphate, whereas the PX domain of p47(phox) has two lipid binding sites, one specific for phosphatidylinositol 3,4-bisphosphate and the other with affinity for phosphatidic acid or phosphatidylserine. To delineate the mechanisms by which these PX domains interact with PI-containing membranes, we measured the membrane binding of these domains and respective mutants by surface plasmon resonance and monolayer techniques and also calculated the electrostatic potentials of the domains as a function of PI binding. Results indicate that membrane binding of both PX domains is initiated by nonspecific electrostatic interactions, which is followed by the membrane penetration of hydrophobic residues. The membrane penetration of the p40(phox) PX domain is induced by phosphatidylinositol 3-phosphate, whereas that of the p47(phox) PX domain is triggered by both phosphatidylinositol 3,4-bisphosphate and phosphatidic acid (or phosphatidylserine). Studies of enhanced green fluorescent protein-fused PX domains in HEK293 cells indicate that this specific membrane penetration is also important for subcellular localization of the two PX domains. Further studies on the full-length p40(phox) and p47(phox) proteins showed that an intramolecular interaction between the C-terminal Src homology 3 domain and the PX domain prevents the nonspecific monolayer penetration of p47(phox), whereas such an interaction is absent in p40(phox).  相似文献   

17.
The membrane binding affinity of the pleckstrin homology (PH) domain of phospholipase C (PLC)-delta1 was investigated using a vesicle coprecipitation assay and the structure of the membrane-associated PH domain was probed using solid-state (13)C NMR spectroscopy. Twenty per cent phosphatidylserine (PS) in the membrane caused a moderate but significant reduction of the membrane binding affinity of the PH domain despite the predicted electrostatic attraction between the PH domain and the head groups of PS. Solid-state NMR spectra of the PH domain bound to the phosphatidylcholine (PC)/PS/phosphatidylinositol 4,5-bisphosphate (PIP(2)) (75 : 20 : 5) vesicle indicated loss of the interaction between the amphipathic alpha2-helix of the PH domain and the interface region of the membrane which was previously reported for the PH domain bound to PC/PIP(2) (95 : 5) vesicles. Characteristic local conformations in the vicinity of Ala88 and Ala112 induced by the hydrophobic interaction between the alpha2-helix and the membrane interface were lost in the structure of the PH domain at the surface of the PC/PS/PIP(2) vesicle, and consequently the structure becomes identical to the solution structure of the PH domain bound to d-myo-inositol 1,4,5-trisphosphate. These local structural changes reduce the membrane binding affinity of the PH domain. The effects of PS on the PH domain were reversed by NaCl and MgCl(2), suggesting that the effects are caused by electrostatic interaction between the protein and PS. These results generally suggest that the structure and function relationships among PLCs and other peripheral membrane proteins that have similar PH domains would be affected by the local lipid composition of membranes.  相似文献   

18.
Mouse alpha 1-syntrophin sequences were produced as chimeric fusion proteins in bacteria and found to bind phosphatidylinositol 4, 5-bisphosphate (PtdIns4,5P2). Half-maximal binding occurred at 1.9 microM PtdIns4,5P2 and when 1.2 PtdIns4,5P2 were added per syntrophin. Binding was specific for PtdIns4,5P2 and did not occur with six other tested lipids including the similar phosphatidylinositol 4-phosphate. Binding was localized to the N-terminal pleckstrin homology domain (PH1); the second, C-terminal PH2 domain did not bind lipids. Key residues in PtdIns4,5P2 binding to a PH domain were found to be conserved in alpha-syntrophins' PH1 domains and absent in PH2 domains, suggesting a molecular basis for binding.  相似文献   

19.
PIKfyve is a phosphatidylinositol (PtdIns) 3-phosphate (P)-metabolizing enzyme, which, in addition to a C-terminally positioned catalytic domain, harbors several evolutionarily conserved domains, including a FYVE finger. The FYVE finger domains are thought to direct the protein localization to intracellular membrane PtdIns 3-P. Recent studies with several FYVE domain proteins challenge this general concept. Here we have examined the binding of PIKfyve's FYVE domain to PtdIns 3-P in vitro and in vivo and a plausible contribution of this binding mechanism for the intracellular localization of the full-length protein. We document now a specific and high affinity interaction of a recombinantly produced PIKfyve FYVE domain peptide fragment with PtdIns 3-P-containing liposomes that requires the presence of the conservative core of basic residues within the FYVE domain. PIKfyve localization to membranes of the late endocytic pathway was found to be absolutely dependent on the presence of an intact FYVE finger. Cell treatment with PI 3-kinase inhibitor wortmannin dissociated endosome-bound PIKfyve, indicating that the protein targeted the membrane PtdIns 3-P. An enzymatically inactive peptide fragment of the PIKfyve catalytic domain was found to also specifically bind to PtdIns 3-P-containing liposomes, with residue Lys-1999 being critical in the interaction. This binding, however, was of relatively low affinity and, in the cellular context, was found ineffective in directing the molecule to PtdIns 3-P-enriched endosomes. Collectively, these results demonstrate that interaction of the FYVE domain with PtdIns 3-P is absolutely necessary for PIKfyve targeting to the membranes of the late endocytic pathway and determine PIKfyve as a downstream effector of PtdIns 3-P.  相似文献   

20.
Mechanism of membrane binding of the phospholipase D1 PX domain   总被引:3,自引:0,他引:3  
Mammalian phospholipases D (PLD), which catalyze the hydrolysis of phosphatidylcholine to phosphatidic acid (PA), have been implicated in various cell signaling and vesicle trafficking processes. Mammalian PLD1 contains two different membrane-targeting domains, pleckstrin homology and Phox homology (PX) domains, but the precise roles of these domains in the membrane binding and activation of PLD1 are still unclear. To elucidate the role of the PX domain in PLD1 activation, we constructed a structural model of the PX domain by homology modeling and measured the membrane binding of this domain and selected mutants by surface plasmon resonance analysis. The PLD1 PX domain was found to have high phosphoinositide specificity, i.e. phosphatidylinositol 3,4,5-trisphosphate (PtdIns-(3,4,5)P(3)) > phosphatidylinositol 3-phosphate > phosphatidylinositol 5-phosphate > other phosphoinositides. The PtdIns(3,4,5)P(3) binding was facilitated by the cationic residues (Lys(119), Lys(121), and Arg(179)) in the putative binding pocket. Consistent with the model structure that suggests the presence of a second lipid-binding pocket, vesicle binding studies indicated that the PLD1 PX domain could also bind with moderate affinity to PA, phosphatidylserine, and other anionic lipids, which were mediated by a cluster of cationic residues in the secondary binding site. Simultaneous occupancy of both binding pockets synergistically increases membrane affinity of the PX domain. Electrostatic potential calculations suggest that a highly positive potential near the secondary binding site may facilitate the initial adsorption of the domain to the anionic membrane, which is followed by the binding of PtdIns(3,4,5)P(3) to its binding pocket. Collectively, our results suggest that the interaction of the PLD1 PX domain with PtdIns(3,4,5)P(3) and/or PA (or phosphatidylserine) may be an important factor in the spatiotemporal regulation and activation of PLD1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号