首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In mammals DNA methylation occurs at position 5 of cytosine in a CpG context and regulates gene expression. It plays an important role in diseases and inhibitors of DNA methyltransferases (DNMTs)—the enzymes responsible for DNA methylation—are used in clinics for cancer therapy. The most potent inhibitors are 5-azacytidine and 5-azadeoxycytidine. Zebularine (1-(β-D-ribofuranosyl)-2(1H)- pyrimidinone) is another cytidine analog described as a potent inhibitor that acts by forming a covalent complex with DNMT when incorporated into DNA. Here we bring additional experiments to explain its mechanism of action. First, we observe an increase in the DNA binding when zebularine is incorporated into the DNA, compared to deoxycytidine and 5-fluorodeoxycytidine, together with a strong decrease in the dissociation rate. Second, we show by denaturing gel analysis that the intermediate covalent complex between the enzyme and the DNA is reversible, differing thus from 5-fluorodeoxycytidine. Third, no methylation reaction occurs when zebularine is present in the DNA. We confirm that zebularine exerts its demethylation activity by stabilizing the binding of DNMTs to DNA, hindering the methylation and decreasing the dissociation, thereby trapping the enzyme and preventing turnover even at other sites.  相似文献   

2.
The presence of 5-azacytosine (ZCyt) residues in DNA leads to potent inhibition of DNA (cytosine-C5) methyltranferases (C5-MTases) in vivo and in vitro. Enzymatic methylation of cytosine in mammalian DNA is an epigenetic modification that can alter gene activity and chromosomal stability, influencing both differentiation and tumorigenesis. Thus, it is important to understand the critical mechanistic determinants of ZCyt's inhibitory action. Although several DNA C5-MTases have been reported to undergo essentially irreversible binding to ZCyt in DNA, there is little agreement as to the role of AdoMet and/or methyl transfer in stabilizing enzyme interactions with ZCyt. Our results demonstrate that formation of stable complexes between HhaI methyltransferase (M.HhaI) and oligodeoxyribonucleotides containing ZCyt at the target position for methylation (ZCyt-ODNs) occurs in both the absence and presence of co-factors, AdoMet and AdoHcy. Both binary and ternary complexes survive SDS-PAGE under reducing conditions and take on a compact conformation that increases their electrophoretic mobility in comparison to free M.HhaI. Since methyl transfer can occur only in the presence of AdoMet, these results suggest (1) that the inhibitory capacity of ZCyt in DNA is based on its ability to induce a stable, tightly closed conformation of M.HhaI that prevents DNA and co-factor release and (2) that methylation of ZCyt in DNA is not required for inhibition of M.HhaI.  相似文献   

3.
The methyltransferase (MTase) in the DsaV restriction--modification system methylates within 5'-CCNGG sequences. We have cloned the gene for this MTase and determined its sequence. The predicted sequence of the MTase protein contains sequence motifs conserved among all cytosine-5 MTases and is most similar to other MTases that methylate CCNGG sequences, namely M.ScrFI and M.SsoII. All three MTases methylate the internal cytosine within their recognition sequence. The 'variable' region within the three enzymes that methylate CCNGG can be aligned with the sequences of two enzymes that methylate CCWGG sequences. Remarkably, two segments within this region contain significant similarity with the region of M.HhaI that is known to contact DNA bases. These alignments suggest that many cytosine-5 MTases are likely to interact with DNA using a similar structural framework.  相似文献   

4.
The role of Glu119 in S-adenosyl-L-methionine-dependent DNA methyltransferase M.HhaI-catalyzed DNA methylation was studied. Glu119 belongs to the highly conserved Glu/Asn/Val motif found in all DNA C5-cytosine methyltransferases, and its importance for M.HhaI function remains untested. We show that formation of the covalent intermediate between Cys81 and the target cytosine requires Glu119, since conversion to Ala, Asp or Gln lowers the rate of methyl transfer 10(2)-10(6) fold. Further, unlike the wild-type M.HhaI, these mutants are not trapped by the substrate in which the target cytosine is replaced with the mechanism-based inhibitor 5-fluorocytosine. The DNA binding affinity for the Glu119Asp mutant is decreased 10(3)-fold. Thus, the ability of the enzyme to stabilize the extrahelical cytosine is coupled directly to tight DNA binding. The structures of the ternary protein/DNA/AdoHcy complexes for both the Glu119Ala and Glu119Gln mutants (2.70 A and 2.75 A, respectively) show that the flipped base is positioned nearly identically with that observed in the wild-type M.HhaI complex. A single water molecule in the Glu119Ala structure between Ala119 and the extrahelical cytosine N3 is lacking in the Glu119Gln and wild-type M.HhaI structures, and most likely accounts for this mutant's partial activity. Glu119 has essential roles in activating the target cytosine for nucleophilic attack and contributes to tight DNA binding.  相似文献   

5.
DNA cytosine-5 methyltransferases (C5-MTases) are valuable models to study sequence-specific modification of DNA and are becoming increasingly important tools for biotechnology. Here we describe a structure-guided rational protein design combined with random mutagenesis and selection to change the specificity of the HhaI C5-MTase from GCGC to GCG. The specificity change was brought about by a five-residue deletion and introduction of two arginine residues within and nearby one of the target recognizing loops. DNA protection assays, bisulfite sequencing and enzyme kinetics showed that the best selected variant is comparable to wild-type M.HhaI in terms of sequence fidelity and methylation efficiency, and supersedes the parent enzyme in transalkylation of DNA using synthetic cofactor analogs. The designed C5-MTase can be used to produce hemimethylated CpG sites in DNA, which are valuable substrates for studies of mammalian maintenance MTases.  相似文献   

6.
DNA damage caused by the binding of the tumorigen 7R,8S-diol 9S,10R-epoxide (B[a]PDE), a metabolite of bezo[a]pyrene, to guanine in CpG dinucleotide sequences could affect DNA methylation and, thus, represent a potential epigenetic mechanism of chemical carcinogenesis. In this work, we investigated the impact of stereoisomeric (+)- and (-)-trans-anti-B[a]P-N(2)-dG adducts (B(+) and B(-)) on DNA methylation by prokaryotic DNA methyltransferases M.SssI and M.HhaI. These two methyltransferases recognize CpG and GCGC sequences, respectively, and transfer a methyl group to the C5 atom of cytosine (C). A series of 18-mer unmethylated or hemimethylated oligodeoxynucleotide duplexes containing trans-anti-B[a]P-N(2)-dG adducts was generated. The B(+) or B(-) residues were introduced either 5' or 3' adjacent or opposite to the target 2'-deoxycytidines. The B[a]PDE lesions practically produced no effect on M.SssI binding to DNA but reduced M.HhaI binding by 1-2 orders of magnitude. In most cases, the benzo[a]pyrenyl residues decreased the methylation efficiency of hemimethylated and unmethylated DNA by M.SssI and M.HhaI. An absence of the methylation of hemimethylated duplexes was observed when either the (+)- or the (-)-trans-anti-B[a]P-N(2)-dG adduct was positioned 5' to the target dC. The effects observed may be related to the minor groove conformation of the bulky benzo[a]pyrenyl residue and to a perturbation of the normal contacts of the methyltransferase catalytic loop with the B[a]PDE-modified DNA. Our results indicate that a trans-anti-B[a]P-N(2)-dG lesion flanking a target dC in the CpG dinucleotide sequence on its 5'-side has a greater adverse impact on methylation than the same lesion when it is 3' adjacent or opposite to the target dC.  相似文献   

7.
5-Fluorocytosine in DNA is a mechanism-based inhibitor of HhaI methylase   总被引:14,自引:0,他引:14  
5-Fluorodeoxycytidine (FdCyd) was incorporated into a synthetic DNA polymer containing the GCGC recognition sequence of HhaI methylase to give a polymer with about 80% FdCyd. In the absence of AdoMet, poly(FdC-dG) bound competitively with respect to poly(dG-dC) (Ki = 3 nM). In the presence of AdoMet, the analogue caused a time-dependent, first-order (k = 0.05 min-1) inactivation of the enzyme. There is an ordered mechanism of binding in which enzyme first binds to poly(FdC-dG), then binds to AdoMet, and subsequently forms stable, inactive complexes. The complexes did not dissociate over the course of 3 days and were stable to heat (95 degrees C) in the presence of 1% SDS. Gel filtration of a complex formed with HhaI methylase, poly(FdC-dG), and [methyl-3H] AdoMet gave a peak of radioactivity eluting near the void volume. Digestion of the DNA in the complex resulted in a reduction of the molecular weight to the size of the methylase, and the radioactivity in this peak was shown to be associated with protein. These data indicate that the complexes contain covalently bound HhaI methylase, poly(FdC-dG), and methyl groups and that 5-fluorodeoxycytidine is a mechanism-based inactivator of the methylase. By analogy with other pyrimidine-modifying enzymes and recent studies on the mechanism of HhaI methylase (Wu & Santi, 1987), these results suggest that an enzyme nucleophile attacks FdCyd residues at C-6, activating the 5-position for one-carbon transfer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have determined the structure of a mutant (Q237W) of HhaI DNA methyltransferase, complexed with the methyl-donor product AdoHcy. The Q237W mutant proteins were crystallized in the monoclinic space group C2 with two molecules in the crystallographic asymmetric unit. Protein-protein interface calculations in the crystal lattices suggest that the dimer interface has the specific characteristics for homodimer protein-protein interactions, while the two active sites are spatially independent on the outer surface of the dimer. The solution behavior suggests the formation of HhaI dimers as well. The same HhaI dimer interface is also observed in the previously characterized binary (M.HhaI-AdoMet) and ternary (M.HhaI-DNA-AdoHcy) complex structures, crystallized in different space groups. The dimer is characterized either by a non-crystallographic two-fold symmetry or a crystallographic symmetry. The dimer interface involves three segments: the amino-terminal residues 2-8, the carboxy-terminal residues 313-327, and the linker (amino acids 179-184) between the two functional domains--the catalytic methylation domain and the DNA target recognition domain. Both the amino- and carboxy-terminal segments are part of the methylation domain. We also examined protein-protein interactions of other structurally characterized DNA MTases, which are often found as a 2-fold related 'dimer' with the largest dimer interface area for the group-beta MTases. A possible evolutionary link between the Type I and Type II restriction-modification systems is discussed.  相似文献   

9.
The review considers current views on the function of DNA methyltransferases (MTases) that belong to prokaryotic type II restriction–modification systems. A commonly accepted classification of MTases is described along with their primary and tertiary structures and molecular mechanisms of their specific interaction with DNA (including methylation). MTase inhibitors are also considered. Special emphasis is placed on the flipping of the target heterocyclic base out of the double helix and on the methods employed in its analysis. Base flipping is a fundamentally new type of DNA conformational changes and is also of importance in the case of other DNA-operating enzymes. MTases show unique sequence homology, and are similar in structure of functional centers and in the mechanism of methylation. These data contribute to the understanding of the general biological significance of methylation, since prokaryotic and eukaryotic MTases are structurally and functionally similar.  相似文献   

10.
Changes in the methylation pattern of genomic DNA, particularly hypermethylation of tumor suppressor genes, occur at early stages of tumor development. Errors in DNA methylation contribute to both initiation and progression of various cancers. This stimulates significant interest in searching for inhibitors of C5-DNA-methyltransferases (MTases). Here we review the known nucleoside mechanism-based reversible and irreversible inhibitors of the MTases, as well as non-nucleoside ones, and discuss their inhibitory mechanisms and application for MTase investigations and cancer therapy.  相似文献   

11.
Here we studied the inhibition of the catalytic domain of Dnmt3a methyltransferase (Dnmt3a-CD) by DNA duplexes containing the mechanism-based inhibitor pyrimidine-2(1H)-one (P) instead of the target cytosine. It has been shown that conjugates of Dnmt3a-CD with P-DNA (DNA containing pyrimidine-2(1H)-one) are not stable to heating at 65°C in 0.1% SDS. The yield of covalent intermediate increases in the presence of the regulatory factor Dnmt3L. The importance of the DNA minor groove for covalent intermediate formation during the methylation reaction catalyzed by Dnmt3a-CD has been revealed. P-DNA was shown to inhibit Dnmt3a-CD; the IC50 is 830 nM. The competitive mechanism of inhibition of Dnmt3a-CD by P-DNA has been elucidated. It is suggested that therapeutic effect of zebularine could be achieved by inhibition of not only Dnmt1 but also Dnmt3a.  相似文献   

12.
DNA methylation is an important cellular mechanism for controlling gene expression. Whereas the mutagenic properties of many DNA adducts, e.g., those arising from polycyclic aromatic hydrocarbons, have been widely studied, little is known about their influence on DNA methylation. We have constructed site-specifically modified 18-mer oligodeoxynucleotide duplexes containing a pair of stereoisomeric adducts derived from a benzo[a]pyrene-derived diol epoxide [(+)- and (-)-r7,t8-dihydroxy-t9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, or B[a]PDE] bound to the exocyclic amino group of guanine. The adducts, either (+)- or (-)-trans-anti-B[a]P-N(2)-dG (G*), positioned either at the 5'-side or the 3'-side deoxyguanosine residue in the recognition sequence of EcoRII restriction-modification enzymes (5'-...CCA/TGG...) were incorporated into 18-mer oligodeoxynucleotide duplexes. The effects of these lesions on complex formation and the catalytic activity of the EcoRII DNA methyltransferase (M.EcoRII) and EcoRII restriction endonuclease (R.EcoRII) were investigated. The M.EcoRII catalyzes the transfer of a methyl group to the C5 position of the 3'-side cytosine of each strand of the recognition sequence, whereas R.EcoRII catalyzes cleavage of both strands. The binding of R.EcoRII to the oligodeoxynucleotide duplexes and the catalytic cleavage were completely abolished when G was positioned at the 3'-side dG position (5'-...CCTGG*...). When G* was at the 5'-side dG position, binding was moderately diminished, but cleavage was completely blocked. In the case of M.EcoRII, binding is diminished by factors of 5-30 but the catalytic activity was either abolished or reduced 4-80-fold when the adducts were located at either position. Somewhat smaller effects were observed with hemimethylated oligodeoxynucleotide duplexes. These findings suggest that epigenetic effects, in addition to genotoxic effects, need to be considered in chemical carcinogenesis initiated by B[a]PDE, since the inhibition of methylation may allow the expression of genes that promote tumor development.  相似文献   

13.
DNA:m(5)C MTases comprise a catalytic domain with conserved residues of the active site and a strongly diverged TRD with variable residues involved in DNA recognition and binding. To date, crystal structures of 2 DNA:m(5)C MTases complexed with the substrate DNA have been obtained; however, for none of these enzymes has the importance of the whole set of DNA-binding residues been comprehensively studied. We built a comparative model of M.NgoPII, a close homologue and isomethylomer of M.HaeIII, and systematically analyzed the effect of alanine substitutions for the complete set of amino acid residues from its TRD predicted to be important for DNA binding and target recognition. Our data demonstrate that only 1 Arg residue is indispensable for the MTase activity in vivo and in vitro, and that mutations of only a few other residues cause significant reduction of the activity in vitro, with little effect on the activity in vivo. The identification of dispensable protein-DNA contacts in the wild-type MTase will serve as a platform for exhaustive combinatorial mutagenesis aimed at the design of new contacts, and thus construction of enzyme variants that retain the activity but exhibit potentially new substrate preferences.  相似文献   

14.
Methylation of nuclear DNA in Physarum polycephalum.   总被引:6,自引:0,他引:6       下载免费PDF全文
The restriction endonucleases HpaII and HhaI, whose action is inhibited by the presence of methylated base analogues at the recognition sequences in the DNA substrate, were used to investigate the distribution of 5-methylcytosine in nuclear DNA from Physarum polycephalum. Physarum DNA is digested into two fractions by these enzymes: a low-molecular-weight (M--) compartment comprising 80% of the DNA, and a high-molecular-weight (M+) compartment containing 20% of the DNA. The DNA fraction showing resistance to digestion by restriction endonuclease HpaII is cleaved by its isoschizomer MspI, indicating that methylated endonuclease-HpaII-specific sites are present in M + DNA. Additional properties of sequences in the M+ compartment were investigated.  相似文献   

15.
We studied the kinetics of methyl group transfer by the BamHI DNA-(cytosine-N(4)-)-methyltransferase (MTase) from Bacillus amyloliquefaciens to a 20-mer oligodeoxynucleotide duplex containing the palindromic recognition site GGATCC. Under steady state conditions the BamHI MTase displayed a simple kinetic behavior toward the 20-mer duplex. There was no apparent substrate inhibition at concentrations much higher than the K(m) for either DNA (100-fold higher) or S-adenosyl-l-methionine (AdoMet) (20-fold higher); this indicates that dead-end complexes did not form in the course of the methylation reaction. The DNA methylation rate was analyzed as a function of both substrate and product concentrations. It was found to exhibit product inhibition patterns consistent with a steady state random bi-bi mechanism in which the dominant order of substrate binding and product release (methylated DNA, DNA(Me), and S-adenosyl-l-homocysteine, AdoHcy) was Ado-Met DNA DNA(Me) AdoHcy. The M.BamHI kinetic scheme was compared with that for the T4 Dam (adenine-N(6)-)-MTase. The two differed with respect to an effector action of substrates and in the rate-limiting step of the reaction (product inhibition patterns are the same for the both MTases). From this we conclude that the common chemical step in the methylation reaction, methyl transfer from AdoMet to a free exocyclic amino group, is not sufficient to dictate a common kinetic scheme even though both MTases follow the same reaction route.  相似文献   

16.
In eukaryotes, C5-cytosine methylation is a common mechanism associated with a variety of functions such as gene regulation or control of genomic stability. Different subfamilies of eukaryotic methyltransferases (MTases) have been identified, mainly in metazoa, plants, and fungi. In this paper, we used hidden Markov models to detect MTases in completed or almost completed eukaryotic genomes, including different species of Protozoa. A phylogenetic analysis of MTases enabled us to define six subfamilies of MTases, including two new subfamilies. The dnmt1 subfamily that includes all the known MTases with a maintenance activity seems to be absent in the Protozoa. The dnmt2 subfamily seems to be the most widespread, being present even in the nonmethylated Dictyostelium discoideum. We also found two dnmt2 members in the bacterial genus Geobacter, suggesting that horizontal transfers of MTases occurred between eukaryotes and prokaryotes. Even if the direction of transfer cannot be determined, this relationship might be useful for understanding the function of this enigmatic subfamily of MTases. Globally, our analysis reveals a great diversity of MTases in eukaryotes, suggesting the existence of different methylation systems. Our results also suggest acquisitions and losses of different MTases in every eukaryotic lineage studied and that some eukaryotes appear to be devoid of methylation.  相似文献   

17.
The biologically most significant genotoxic metabolite of the environmental pollutant benzo[a]pyrene (B[a]P), (+)-7R,8S-diol 9S,10R-epoxide, reacts chemically with guanine in DNA, resulting in the predominant formation of (+)-trans-B[a]P-N(2)-dG and, to a lesser extent, (+)-cis-B[a]P-N(2)-dG adducts. Here, we compare the effects of the adduct stereochemistry and conformation on the methylation of cytosine catalyzed by two purified prokaryotic DNA methyltransferases (MTases), SssI and HhaI, with the lesions positioned within or adjacent to their CG and GCGC recognition sites, respectively. The fluorescence properties of the pyrenyl residues of the (+)-cis-B[a]P-N(2)-dG and (+)-trans-B[a]P-N(2)-dG adducts in complexes with MTases are enhanced, but to different extents, indicating that aromatic B[a]P residues are positioned in different microenvironments in the DNA-protein complexes. We have previously shown that the (+)-trans-isomeric adduct inhibits both the binding and methylating efficiencies (k(cat)) of both MTases [Subach OM, Baskunov VB, Darii MV, Maltseva DV, Alexandrov DA, Kirsanova OV, Kolbanovskiy A, Kolbanovskiy M, Johnson F, Bonala R, et al. (2006) Biochemistry45, 6142-6159]. Here we show that the stereoisomeric (+)-cis-B[a]P-N(2)-dG lesion has only a minimal effect on the binding of these MTases and on k(cat). The minor-groove (+)-trans adduct interferes with the formation of the normal DNA minor-groove contacts with the catalytic loop of the MTases. However, the intercalated base-displaced (+)-cis adduct does not interfere with the minor-groove DNA-catalytic loop contacts, allowing near-normal binding of the MTases and undiminished k(cat) values.  相似文献   

18.
4'-Thio-2'-deoxycytidine was synthesized as a 5'- protected phosphoramidite compatible with solid phase DNA synthesis. When incorporated as the target cytosine (C*) in the GC*GC recognition sequence for the DNA methyltransferase M. HhaI, methyl transfer was strongly inhibited. In contrast, these same oligonucleotides were normal substrates for the cognate restriction endonuclease R. HhaI and its isoschizomer R. Hin P1I. M. HhaI was able to bind both 4'-thio-modified DNA and unmodified DNA to equivalent extents under equilibrium conditions. However, the presence of 4'-thio-2'-deoxycytidine decreased the half-life of the complex by >10-fold. The crystal structure of a ternary complex of M. HhaI, AdoMet and DNA containing 4'-thio-2'-deoxycytidine was solved at 2.05 A resolution with a crystallographic R-factor of 0.186 and R-free of 0.231. The structure is not grossly different from previously solved ternary complexes containing M. HhaI, DNA and AdoHcy. The difference electron density suggests partial methylation at C5 of the flipped target 4'-thio-2'-deoxycytidine. The inhibitory effect of the 4'sulfur atom on enzymatic activity may be traced to perturbation of a step in the methylation reaction after DNA binding but prior to methyl transfer. This inhibitory effect can be partially overcome after a considerably long time in the crystal environment where the packing prevents complex dissociation and the target is accurately positioned within the active site.  相似文献   

19.
DNMT2 is a human protein that displays strong sequence similarities to DNA (cytosine-5)-methyltransferases (m(5)C MTases) of both prokaryotes and eukaryotes. DNMT2 contains all 10 sequence motifs that are conserved among m(5)C MTases, including the consensus S:-adenosyl-L-methionine-binding motifs and the active site ProCys dipeptide. DNMT2 has close homologs in plants, insects and Schizosaccharomyces pombe, but no related sequence can be found in the genomes of Saccharomyces cerevisiae or Caenorhabditis elegans. The crystal structure of a deletion mutant of DNMT2 complexed with S-adenosyl-L-homocysteine (AdoHcy) has been determined at 1.8 A resolution. The structure of the large domain that contains the sequence motifs involved in catalysis is remarkably similar to that of M.HHAI, a confirmed bacterial m(5)C MTase, and the smaller target recognition domains of DNMT2 and M.HHAI are also closely related in overall structure. The small domain of DNMT2 contains three short helices that are not present in M.HHAI. DNMT2 binds AdoHcy in the same conformation as confirmed m(5)C MTases and, while DNMT2 shares all sequence and structural features with m(5)C MTases, it has failed to demonstrate detectable transmethylase activity. We show here that homologs of DNMT2, which are present in some organisms that are not known to methylate their genomes, contain a specific target-recognizing sequence motif including an invariant CysPheThr tripeptide. DNMT2 binds DNA to form a denaturant-resistant complex in vitro. While the biological function of DNMT2 is not yet known, the strong binding to DNA suggests that DNMT2 may mark specific sequences in the genome by binding to DNA through the specific target-recognizing motif.  相似文献   

20.
Reactive oxygen and nitrogen species, generated by neutrophils and macrophages in chronically inflamed tissues, readily damage DNA, producing a variety of potentially genotoxic etheno base lesions; such inflammation-related DNA damage is now known to contribute to carcinogenesis. Although the human alkyladenine DNA glycosylase (AAG) can specifically bind DNA containing either 1,N(6)-ethenoadenine (εA) lesions or 3,N(4)-ethenocytosine (εC) lesions, it can only excise εA lesions. AAG binds very tightly to DNA containing εC lesions, forming an abortive protein-DNA complex; such binding not only shields εC from repair by other enzymes but also inhibits AAG from acting on other DNA lesions. To understand the structural basis for inhibition, we have characterized the binding of AAG to DNA containing εC lesions and have solved a crystal structure of AAG bound to a DNA duplex containing the εC lesion. This study provides the first structure of a DNA glycosylase in complex with an inhibitory base lesion that is induced endogenously and that is also induced upon exposure to environmental agents such as vinyl chloride. We identify the primary cause of inhibition as a failure to activate the nucleotide base as an efficient leaving group and demonstrate that the higher binding affinity of AAG for εC versus εA is achieved through formation of an additional hydrogen bond between Asn-169 in the active site pocket and the O(2) of εC. This structure provides the basis for the design of AAG inhibitors currently being sought as an adjuvant for cancer chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号