首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To manage the impacts of biological invasions, it is important to determine the mechanisms responsible for the effects invasive species have on native populations. When predation by an invader is the mechanism causing declines in a native population, protecting the native species will involve elucidating the factors that affect native vulnerability. To examine those factors, this study measured how a native species responded to an introduced predator, and whether the native response could result in a refuge from predation. Predation by the green crab, Carcinus maenas, has contributed to the decline in numbers of native soft-shell clams, Mya arenaria, and efforts to eradicate crabs have proven futile. We tested how crab foraging affected clam burrowing, and how depth in the sediment affected clam survival. Clams responded to crab foraging by burrowing deeper in the sediment. Clams at shallow depths were more vulnerable to predation by crabs. Results suggest soft-shell clam burrowing is an inducible defense in response to green crab predation because burrowing deeper results in a potential refuge from predation by crabs. For restoring the native clam populations, tents could exclude crabs and protect clams, but when tents must be removed, exposing the clams to cues from foraging crabs should induce the clams to burrow deeper and decrease vulnerability. In general, by exposing potential native prey to cues from introduced predators, we can test how the natives respond, identify whether the response results in a potential refuge, and evaluate the risks to native species survival in invaded communities.  相似文献   

2.
Experiments were conducted to determine whether locally abundant crab species prefer co-occurring littleneck clams, Protothaca staminea (Conrad, 1837) and Tapes philippinarum (A. Adams and Reeve, 1850), relative to a recently introduced species, the varnish clam, Nuttallia obscurata, (Reeve, 1857). Prey preference, handling time, pick-up success, profitability and consumption rates were investigated for two crab species, Dungeness crab, Cancer magister (Dana, 1852) and red rock crab, Cancer productus (Randall, 1839) crabs. Both crab species preferred varnish clams over the native species. This may be attributable to the lower handling time, higher pick-up success and increased profitability of consuming varnish clams. Handling time appeared to be a factor not only in species preference, but also in the degree of preference, with shorter handling times corresponding to stronger preference values. Both native and introduced bivalves burrow into the substratum, with the varnish clam burrowing deepest. When feeding on clams in limited substratum both crab species preferred the varnish clam. In the unlimited substratum trials Dungeness crabs preferred varnish clams (although to a lesser degree) while red rock crabs preferred littleneck clams. This was likely due to the significantly deeper burial of the varnish clam, making it less accessible. Although the morphology (i.e. thin shell, compressed shape) of the invader increases its vulnerability to predation, burial depth provides a predation refuge. These results demonstrate how interactions between native predators and the physical characteristics and behaviour of the invader can be instrumental in influencing the success of an invasive species.  相似文献   

3.
1. Trade-offs between competitive ability and tolerance of abiotic stress are widespread in the literature. Thus, condition-specific competition may explain spatial variability in the success of some biological invaders and why, in environments where there is small-scale environmental variability, competitively inferior and superior species can coexist. 2. We tested the hypothesis that differences in abiotic stress alter the outcome of competitive interactions between the native Sydney rock oysters Saccostrea glomerata and exotic Pacific oysters Crassostrea gigas by experimentally testing patterns of intra- and interspecific competition across a tidal elevation gradient of abiotic stress at three sites on the east coast of Australia. 3. At low and mid-intertidal heights, exotic C. gigas were able to rapidly overgrow and smother native S. glomerata, which grew at c. 60% of the exotic's rate. In high intertidal areas, where C. gigas displayed about 80% mortality but similar growth rates to S. glomerata, the native oyster was not affected by the presence of the exotic species. 4. Asymmetrical effects of the exotic species on the native could not be replicated by manipulating densities of conspecifics, confirming that effects at low and mid-intertidal heights were due to interspecific competition. 5. Our results suggest that the more rapid growth of C. gigas than S. glomerata comes at the cost of higher mortality under conditions of abiotic stress. Thus, although C. gigas may rapidly overgrow S. glomerata at low and mid tidal heights, the native oyster will not be competitively excluded by the exotic due to release from competition at high intertidal elevations. 6. The success of trade-offs in explaining spatial variation in the outcome of competitive interactions between C. gigas and S. glomerata strengthen the claim that these may be a useful tool in the quest to produce general predictive models of invasion success.  相似文献   

4.
Biodiversity and invasibility in grassland microcosms   总被引:2,自引:0,他引:2  
Jeffrey S. Dukes 《Oecologia》2001,126(4):563-568
In the years since Charles Elton proposed that more diverse communities should be less susceptible to invasion by exotic species, empirical studies have both supported and refuted Elton's hypothesis. Here, I use grassland community microcosms to test the effect of functional diversity on the success of an invasive annual weed (Centaurea solstitialis L.). I found that high functional diversity reduced the success of Centaurea by reducing resource availability. An equally important, but unstudied, question is whether diversity can buffer a community against the impacts of invasive species. In this experiment, although species diversity (independent of functional diversity) did not affect the success of the invader, the invader suppressed growth of species-poor communities more strongly. Invasion of Centaurea also increased summer evapotranspiration in species-poor communities. These results suggest that loss of species diversity alone does not affect community invasibility, but that communities with fewer species may be more likely to decline as a consequence of invasion.  相似文献   

5.
Native predators are postulated to have an important role in biotic resistance of communities to invasion and community resilience. Effects of predators can be complex, and mechanisms by which predators affect invasion success and impact are understood for only a few well-studied communities. We tested experimentally whether a native predator limits an invasive species’ success and impact on a native competitor for a community of aquatic insect larvae in water-filled containers. The native mosquito Aedes triseriatus alone had no significant effect on abundance of the invasive mosquito Aedes albopictus. The native predatory midge Corethrella appendiculata, at low or high density, significantly reduced A. albopictus abundance. This effect was not caused by trait-mediated oviposition avoidance of containers with predators, but instead was a density-mediated effect caused by predator-induced mortality. The presence of this predator significantly reduced survivorship of the native species, but high predator density also significantly increased development rate of the native species when the invader was present, consistent with predator-mediated release from interspecific competition with the invader. Thus, a native predator can indirectly benefit its native prey when a superior competitor invades. This shows the importance of native predators as a component of biodiversity for both biotic resistance to invasion and resilience of a community perturbed by successful invasion.  相似文献   

6.
We examined the relative contribution of recruitment, intraspecific species interactions, and predation in controlling the upper intertidal border of the northern acorn barnacle, Semibalanusbalanoides, in a tidal estuary in Maine. We hypothesized that the contracted border at sites that experienced low tidal currents was due to flow-mediated recruitment that resulted in reduced survival due to the absence of neighbor buffering of thermal stress (i.e., positive intraspecific interactions). We tested this hypothesis by manipulating the density of recently settled barnacles and their thermal environment in a field experiment. Counter to our original hypothesis, barnacles with neighbors suffered severe mortality at low-flow sites. When density-dependent predation by the green crab (Carcinusmaenus) was experimentally eliminated, however, we did detect evidence for positive interactions at the low-flow sites but not at the high-flow sites. In spite of the close proximity of the sites, maximum daily rock temperatures at the low-flow sites were slightly, but consistently, greater than those at high-flow sites. Our findings suggest that the upper intertidal border of S. balanoides in the Damariscotta River is limited at low-flow sites by a combination of reduced recruitment, elevated mortality from thermal stress and enhanced predation by green crabs. More generally, our findings highlight how physical stress and predation interact to alter the nature of density-dependent species interactions in natural assemblages. Received: 6 August 1998 / Accepted: 11 October 1998  相似文献   

7.
1. The balance of predation between closely related invasive and native species can be an important determinant of the success or failure of biological invasions. In Irish freshwaters, the introduced amphipod Gammarus pulex has replaced the native G. duebeni celticus, possibly through differential mutual intraguild predation (IGP). Theoretically, parasitism could mediate such predation and hence the invasion outcome. However, this idea remains poorly studied. 2. In a field survey, we show that the acanthocephalan parasite Echinorynchus truttae is present in more G. pulex populations than G. d. celticus populations. In addition, within parasitised populations, E. truttae is more prevalent in the invader than in the native. 3. We show for the first time that an acanthocephalan parasite mediates predation between its intermediate macroinvertebrate hosts. In a field experiment, E. truttae parasitism of the invader lowered IGP upon the unparasitised native. In laboratory experiments, parasitism of G. pulex significantly reduced their predatory impact on recently moulted female G. d. celticus. Parasitism also appeared to cause reduction in predatory behaviour, such as attacks per contact on precopula guarded female natives. 4. We conclude that higher parasite prevalence in invaders as compared with natives, by mediation of interspecific interactions, could promote species coexistence, or at least slow species replacements, in this particular biological invasion.  相似文献   

8.
Studying historic invasions can provide insight into the ongoing invasions that threaten global biodiversity. In this study, we reconsider the impacts of Littorina littorea and Carcinus maenas on the rocky intertidal community of the Gulf of Maine. Past research using invader-removal experiments demonstrated strong top-down effects of L. littorea on algal community structure; however, such removal experiments may overlook the long-term effects of niche shifts and local extinctions caused by invasive species. We considered how a niche-shift in the native littorine, Littorina saxatilis, may change the interpretation of L. littorea impacts. Using a factorial experiment crossing predator presence/absence with L. littorea presence/absence, we found that L. saxatilis is able to exert top-down control on ephemeral algae similar to that exerted by L.␣littorea and that both competition by L. littorea and predation by C. maenas have strong, negative impacts on L. saxatilis. We also found higher predation rates on protected shores and at lower tidal heights and preferential predation on L.␣saxatilis compared to L. littorea. While movement experiments demonstrate that behavioral response to tidal height is the proximate cause of L. saxatilis exclusion from the lower intertidal, our study suggests that the ultimate causes are the additive effects of competition from and predation by invasive species.  相似文献   

9.
The North Atlantic gastropod Littorina littorea exhibits a characteristic “intertidal” distribution: the snail is abundant in the littoral zone but scarce in the shallow subtidal and the relatively few subtidal individuals are larger (in shell size) on average than those in the intertidal zone. For highly mobile species like L. littorea, this vertical distribution is primarily determined by directional movement. Biotic and abiotic factors vary across tidal heights, and natural selection for movement to shore levels where fitness is maximized provides the ultimate (evolutionary) explanation for vertical distribution patterns. In this study, we asked whether variation in growth rate and/or predation pressure among tidal heights provide an ultimate explanation for vertical gradients in L. littorea size and abundance. We used a cage experiment to compare juvenile growth rate among tidal heights and a series of field and laboratory experiments to examine variation in predation pressure among tidal heights and snail size classes. Juvenile growth rates were highest in the low intertidal zone, declining at both higher and lower levels. Predation risk for tethered L. littorea increased with both decreasing tidal height and decreasing body size (shell height). Almost all tethered prey were consumed by shell- breaking predators and a census revealed that the two most abundant such predators were the crabs Carcinus maenas and Cancer borealis. Laboratory feeding experiments were used to compare size-dependent prey vulnerability and prey-size preferences for these two key predators. We found that L. littorea vulnerability decreased with increasing snail size and increased with increasing size of both predator species. However, whereas C. borealis were capable of consuming even the largest L. littorea, most Carcinus were unable to feed on individuals larger than 10 mm in shell height. Additionally, C. borealis preferred larger sizes of L. littorea than did Carcinus. Thus, Carcinus, which co-occurs with L. littorea in the intertidal, is a much less effective predator than C. borealis, which is found primarily in the subtidal. We conclude that predation on L. littorea by C. borealis and other subtidal consumers has resulted in the scarcity of this ecologically important grazer in the subtidal. This effect has been produced both through direct predation and by imposing strong selection for movement of L. littorea to higher tidal zones.  相似文献   

10.
Sargassum muticum (Yendo) Fensholt is an invasive species that is firmly established on intertidal and subtidal rocky shores of Europe and the Pacific coast of North America. Local success and spread of S. muticum is thought to rely on its reproductive potential that seems dependent on exogenous factors like tidal and lunar cycles. This study is the first to compare the reproductive patterns (periodicity of egg expulsion and embryo settlement) of this invader in two different habitats: the middle and low intertidal. The combination of monthly, daily, and tidal samples at triplicate sites within each habitat showed a semilunar periodicity of egg expulsion and embryo settlement coincident with increasing tidal amplitude just before full and new moons. In both habitats, duration of each egg expulsion event was ~1 week, and embryo settlement occurred during the first daily low tide and with the incoming high tide during spring tides. However, both expulsion and settlement started 1–2 d earlier, expulsion saturation was faster, and settlement was higher in the mid‐ compared to the low intertidal. Our results suggest that the exact timing of gamete expulsion and embryo release of S. muticum responds to local factors, including tidal cues, which result in differences between mid‐ and low‐intertidal habitats.  相似文献   

11.
Bioturbating lugworms (Arenicola marina) were excluded from 400 m2 plots of intertidal sand which initiated sequences of direct and indirect changes in the structure of the benthic community. The sessile, tube-building species Polydora cornuta and Lanice conchilega took advantage of the absence of lugworms and settled preferentially on lugworm exclusion plots. The protruding tubes provided attachment for an ephemeral development of algal tufts (Berkeleya colonies and Enteromorpha thalli) which in turn enhanced settlement of the juvenile drifting clams Mya arenaria and Macoma balthica. This causal chain of enhanced bivalve settlement in the presence of above-ground structures, like animal tubes and algae, on lugworm exclusion plots occurred in 2 years at different tidal zones with different tube builders, algae and juvenile clams. A significant response of L. conchilega in a year with relatively low lugworm abundances at the entire site suggests that not only the actual absence of large bioturbators was responsible for the establishment of tube-dwelling species, but also a cumulative change of the sediment in exclusion plots since the onset of the experiment. While the sediment on lugworm plots remained permeable, fine particles and organic matter accumulated at exclusion plots. It is suggested that these differences in sediment characteristics were the product of divergent benthic engineering by sediment destabilizing lugworms on control plots and sediment stabilizing species on exclusion plots. Cumulative changes of the sedimentary habitat and cascading effects in the benthic community may explain the persistence of patches that are dominated by either sediment stabilizing or destabilizing species in the assemblage mosaic of intertidal sediments.  相似文献   

12.
The niches invaded by exotic species are generally not entirely vacant, and one possible factor affecting the success of the invader to establish a permanent large population may be the ability of the former to outcompete native species. Eudiaptomus gracilis, which was not present in Italy before the 1980s, is becoming established in an increasing number of Northern Italian lakes, ultimately replacing the endemic E. padanus. Coexistence of the two species in Lake Candia lasted only 7 months, suggesting that species replacement was determined either by environmental changes or by strong competition. To assess whether the potential for interspecific competition existed and to identify species' traits which could explain the competitive superiority of E. gracilis, we examined field seasonal patterns, reproductive parameters and body size of the two species. E. padanus abundance was probably reduced by predation and parasitism, which favoured the displacement of the species shortly after invasion by E. gracilis. The temporarily underexploited niche provided an opportunity for the successful establishment of the invader. The reproductive patterns of the two species were found to be similar in most of their features, with the exception of a markedly larger clutch size and a smaller egg volume in the resident species. By contrast, the invader showed a higher adult:egg ratio and a lower death rate. Thus, despite the greater fecundity of E. padanus, the competitive success of the invader might be attributable to interspecific differences in developmental rates and/or juvenile mortality.  相似文献   

13.
Many invading species impact native species through predation, parasitism or competition, while others affect natives indirectly by restructuring their habitat. How invasive plants affect native animals, and to what extent native animals respond to changes in their habitat and the novel selection pressures that follow, is not well known. We investigated the impacts of a habitat-altering invader, the Atlantic cordgrass Spartina alterniflora, on the nesting success of Alameda song sparrows (Melospiza melodia pusillula), a California Species of Special Concern, in tidal marshes in three sites in San Francisco Bay. Date of laying was the most influential factor in determining daily survival rate of nests, but whether the nest was placed in exotic Spartina was the most important ecological variable. Nests placed in exotic Spartina had a success rate that was 30% lower than those placed in native vegetation. Nests in exotic Spartina were significantly more likely to fail due to tidal flooding than were nests placed in native vegetation, because the densest stands of exotic Spartina occurred at significantly lower elevations relative to the tides. Our results suggest that exotic Spartina may be an ecological trap for song sparrows in San Francisco Bay, attracting birds to nest sites that are often destroyed by tidal flooding.  相似文献   

14.
Ecological and historical factors influence the probability that a known invader will experience success in new locations. Using field and laboratory studies, we investigated how residence time and natural enemies (co-evolved castrating parasite, and native crabs) differ between two introduced populations of the intertidal snail, Batillaria attramentaria. The populations have substantially different invasion histories (~?10 vs.?>?80 years) and exhibit markedly different densities and tidal distributions. The less-dense, vertically-restricted population was recently introduced, and thus has potentially had less opportunity to fill the fundamental niche at that site. However, no increase in density or intertidal range occurred in this population over 10 years, suggesting that it had reached its realized niche. The newer population experienced much greater effects of native cancrid crabs than the older, high-density population, particularly below the minimum tidal elevation of observed snail distribution, where crabs were found in the greatest densities. Prevalence of parasite infection did not differ between populations. This is the first study documenting effects of predators on this invasive snail, which is widespread along coastlines of the northeast Pacific, whereas previous studies have suggested that the primary restriction on population growth rate was likely to be parasitic castration. Further, this study supports the general understanding that, while novel predators can reduce the impacts or population growth rates of invasive species, such top-down effects are not likely to preclude persistence at a given site.  相似文献   

15.
Understanding the factors that determine invasion success for non‐native plants is crucial for maintaining global biodiversity and ecosystem functioning. One hypothesized mechanism by which many exotic plants can become invasive is through the disruption of key plant–mycorrhizal mutualisms, yet few studies have investigated how these disruptions can lead to invader success. We present an individual‐based model to examine how mutualism strengths between a native plant (Impatiens capensis) and mycorrhizal fungus can influence invasion success for a widespread plant invader, Alliaria petiolata (garlic mustard). Two questions were investigated as follows: (a) How does the strength of the mutualism between the native I. capensis and a mycorrhizal fungus affect resistance (i.e., native plant maintaining >60% of final equilibrium plant density) to garlic mustard invasion? (b) Is there a non‐linear relationship between initial garlic mustard density and invasiveness (i.e., garlic mustard representing >60% of final equilibrium plant density)? Our findings indicate that either low (i.e., facultative) or high (i.e., obligate) mutualism strengths between the native plant and mycorrhizal fungus were more likely to lead to garlic mustard invasiveness than intermediate levels, which resulted in higher resistance to garlic mustard invasion. Intermediate mutualism strengths allowed I. capensis to take advantage of increased fitness when the fungus was present but remained competitive enough to sustain high numbers without the fungus. Though strong mutualisms had the highest fitness without the invader, they proved most susceptible to invasion because the loss of the mycorrhizal fungus resulted in a reproductive output too low to compete with garlic mustard. Weak mutualisms were more competitive than strong mutualisms but still led to garlic mustard invasion. Furthermore, we found that under intermediate mutualism strengths, the initial density of garlic mustard (as a proxy for different levels of plant invasion) did not influence its invasion success, as high initial densities of garlic mustard did not lead to it becoming dominant. Our results indicate that plants that form weak or strong mutualisms with mycorrhizal fungi are most vulnerable to invasion, whereas intermediate mutualisms provide the highest resistance to an allelopathic invader.  相似文献   

16.
Competitor coexistence is often facilitated by spatial segregation. Traditionally, spatial segregation is predicted to occur when species differ in the habitat in which they are either superior at competing for resources or less susceptible to predation. However, predictions from a behavioural model demonstrate that spatial segregation and coexistence can also occur in the absence of such interspecific trade‐offs in competitive ability and vulnerability to predation. Unlike other models of competitor coexistence this model predicts that when species rank both habitat productivity and ‘riskinesses’ similarly, but differ slightly in their habitat‐specific vulnerabilities to predators, they will tend to segregate across habitats, with the species experiencing the higher ratio of mortality risk across the habitats occurring primarily in the safer habitat. Here, we investigate the hypothesis that intraspecific trade‐offs between resource availability and mortality risk can lead to spatial segregation of competing species by (1) documenting the spatial (i.e. intertidal) distribution of two marine snails, Littorina sitkana and L. subrotundata and (2) performing field experiments to quantify growth and mortality rates of each species at ‘low’ and ‘high’ intertidal heights. Our results indicate that both species agree on the rankings of habitat riskiness and productivity, experiencing higher predation and higher growth in low‐ than in high‐intertidal habitats. However, L. sitkana and L. subrotundata experienced differences in their habitat‐specific mortality risks and growth rates. Despite both species being similarly at risk of predation in high‐intertidal habitats (where mortality was lower), L. subrotundata was subject to significantly higher mortality than L. sitkana at the low‐intertidal height. In contrast, growth rate differences between habitats were greater for L. sitkana than for L. subrotundata. Whereas both species grew at the same rate at the high‐intertidal level (where growth was lower), L. sitkana individuals grew more rapidly than L. subrotundata snails at the low‐intertidal level. As predicted by the behavioural model, the species that experienced the higher ratio of mortality across habitats (i.e. L. subrotundata) occurred exclusively in the safer, high‐intertidal habitat. Taken together, these results provide support for the hypothesis that spatial segregation, and potentially competitor coexistence, can occur in the absence of interspecific trade‐offs in resource acquisition ability or vulnerability to predation.  相似文献   

17.
Although warming and low dissolved oxygen (DO) levels are co‐occurring significant climatic stressors in the ocean, the combined effects of these stressors on marine benthic animals have not been well established. Here, we tested the effects of elevated temperatures and low dissolved oxygen levels on the survival, emerging behavior from sediment, and the respiration of juvenile cosmopolitan Manila clams (Venerupis philippinarum) by exposing them to two temperatures (20 and 23.5°C) and DO levels (3.5 and 6–7 mg/L). Although within previously described tolerable ranges of temperature and DO, this 3.5°C increase in temperature combined with a 50% decrease in DO had a devastating effect on the survival of clams (85% mortality after 8 days). The mortality of clams under normoxia at 23.5°C appeared to be higher than under the low DO condition at 20°C. On the other hand, more clams emerged from sediment under the low DO condition at 20°C than under any other conditions. Oxygen consumption rates were not significantly affected by different conditions. Our results suggest temperature elevation combined with low oxygen additively increases stress on Manila clams and that warming is at least as stressful as low DO in terms of mortality. However, low DO poses another threat as it may induce emergence from sediment, and, thus increase predation risk. This is the first evidence that a combination of warming and deoxygenation stressors should reduce population survival of clams much more so than changes in a single stressor.  相似文献   

18.
The Chinese mitten crab, Eriocheir sinensis is a successful invader. Whilst non-breeding adult E. sinensis have been associated with the destruction of riverbanks, little is known about the ecology of this species in its invaded areas. This is especially true of the juveniles which are a key migratory stage. Intertidal surveys along the Thames estuary indicated an increase in the population since the 1990s. Juvenile E. sinensis were abundant in the sampled upper tidal region of the Thames, refuging under boulders in the intertidal at low tide. Seasonal differences in sampled populations were observed, with a significantly lower abundance of crabs found during winter compared to summer. Mark-recaptures indicated movement in the intertidal occurring during high tide, with an influx of new crabs evident after a single tidal cycle. Endogenous rhythms were also apparent, with peaks in activity occurring corresponding with night-time high tide conditions. E. sinensis juveniles can successfully exclude similar sized native Carcinus maenas from shelters in the laboratory, regardless of which species originally inhabited the shelter. This may have implications for native estuarine Carcinus populations, which can rely on such intertidal shelters for refuges.  相似文献   

19.
Many invasive species exploit the disturbed habitats created by human activities. Understanding the effects of habitat disturbance on invasion success, and how disturbance interacts with other factors (such as biotic resistance to the invaders from the native fauna) may suggest new ways to reduce invader viability. In tropical Australia, commercial livestock production can facilitate invasion by the cane toad (Rhinella marina), because hoofprints left by cattle and horses around waterbody margins provide distinctive (cool, moist) microhabitats; nevertheless the same microhabitat can inhibit the success of cane toads by increasing the risks of predation or drowning. Metamorph cane toads actively select hoofprints as retreat-sites to escape dangerous thermal and hydric conditions in the surrounding landscape. However, hoofprint geometry is important: in hoofprints with steep sides the young toads are more likely to be attacked by predatory ants (Iridomyrmex reburrus) and are more likely to drown following heavy rain. Thus, anthropogenic changes to the landscape interact with predation by native taxa to affect the ability of cane toads in this vulnerable life-history stage to thrive in the harsh abiotic conditions of tropical Australia.  相似文献   

20.
Although common, confamilial naticid predation intensity was not very high in the geological record. Here, we gathered modern confamilial predation data from the Indian coasts and showed that confamilial naticid predation on a naticid species, Natica gualteriana, is exceptionally high at Chandipur, one of our studied areas. We studied the different aspects of confamilial predation from the Indian coasts and showed that the predators in Chandipur were highly efficient as evident from high drilling frequency (DF), site stereotypy and low prey effectiveness. Unusually high DF on N. gualteriana may be attributed to its new arrival in Chandipur where it faced competitive elimination through predation by sympatric naticid predators. Reports of failed invasion are rare. Natica gualteriana is a small invader and therefore its invasion success is threatened by resident populations of large species that extensively drill on young individuals of N. gualteriana just to break the bottleneck of their own offspring from competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号