首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
昆虫先天性免疫信号通路研究进展   总被引:1,自引:0,他引:1  
昆虫体内形成了强大的免疫防御系统,其被各种微生物攻击时能依靠病原相关分子模式识别蛋白对感染进行区分和激活体内信号通路诱导如抗菌肽之类的效应分子.昆虫体内控制先天性免疫的信号通路分别是:Toll通路、IMD通路和JAS/STAT通路,这3条通路在信号传递过程中存在协作,并且,这些通路与脊椎动物体内某些通路存在惊人相似、在免疫调控通路方面存在共同的进化起源.这揭示了先天性免疫在动物体内存在的普遍性和机体抵御病原感染的重要性.  相似文献   

2.
A number of clones containing major endosperm-specifically transcribed gene copies were selected from a cDNA library developed on the basis of barley endosperm mRNA. Approx. 30% of the recombinant clones carried sequences homologous to mRNA of various cereal storage proteins. Some of them appeared to be related to cDNA clones of wheat and barley storage proteins. The typical insert length ranged from 0.3 to 1.7 kB. A couple of clones among them were selected which revealed positive hybridization with all probes used. The positive signals disappeared after stringent washing of the filters. The nucleotide sequences of two representatives of the group were determined and corresponding amino acid sequence deduced after subsequent computer analysis. The comparison with known cereal storage protein genes revealed relatively high homology level with the central part of wheat high molecular weight (HMW) glutenine subunit genes. The fact suggests the cloned gene to belong to barley D-hordein family.  相似文献   

3.
The degradation of the majority of cellular proteins is mediated by the proteasomes. Ubiquitin-dependent proteasomal protein degradation is executed by a number of enzymes that interact to modify the substrates prior to their engagement with the 26S proteasomes. Alternatively, certain proteins are inherently unstable and undergo "default" degradation by the 20S proteasomes. Puzzlingly, proteins are by large subjected to both degradation pathways. Proteins with unstructured regions have been found to be substrates of the 20S proteasomes in vitro and, therefore, unstructured regions may serve as signals for protein degradation "by default" in the cell. The literature is loaded with examples where engagement of a protein into larger complexes increases protein stability, possibly by escaping degradation "by default". Our model suggests that formation of protein complexes masks the unstructured regions, making them inaccessible to the 20S proteasomes. This model not only provides molecular explanations for a recent theoretical "cooperative stability" principle, but also provokes new predictions and explanations in the field of protein regulation and functionality.  相似文献   

4.
Protein sorting in epithelial cells is the major event that drive the onset and the maintenance of the functional cell polarity. A lot of interdependent steps are involved in protein sorting and targeting. Recent data describing the last results obtained in this field will be reviewed in the first part of this article. Molecular signals harbored by proteins to specify their destination are thought to be the driven force to sort given protein in a given pathway. The basolateral targeting signals so far identified are known for several years and are of the same nature, whereas apical targeting signals are still discussed and are of diverse molecular nature. Dipeptidyl peptidase IV (DPP IV/CD26) targeting signals have not been described so far and it will be interesting to study these signals, since the protein reach the apical membrane of epithelial cells through different pathways that strongly depend on the cell type considered. These different pathways result in DPP IV membrane localizations that may explain the multifunctional properties of DPP IV such as enzymatic digestion, interaction with extracellular matrix proteins, capture and transport of circulating proteins. We have undertaken the study of DPP IV molecular targeting signals and we will described here how the transmembrane domain and the glycosylation of the ectodomain may be involved in DPP IV apical targeting, with a special reference to the cell type specificity.  相似文献   

5.
The aim of this study was to evaluate three principally different top-down protein prefractionation methods for plasma: high-abundance protein depletion, size fractionation and peptide ligand affinity beads, focusing in particular on compatibility with downstream analysis, reproducibility and analytical depth. Our data clearly demonstrates the benefit of high-abundance protein depletion. However, MS/MS analysis of the proteins eluted from the high-abundance protein depletion column show that more proteins than aimed for are removed and, in addition, that the depletion efficacy varies between the different high-abundance proteins. Although a smaller number of proteins were identified per fraction using the peptide ligand affinity beads, this technique showed to be both robust and versatile. Size fractionation, as performed in this study, focusing on the low molecular weight proteome using a combination of gel filtration chromatography and molecular weight cutoff filters, showed limitations in the molecular weight cutoff precision leading detection of high molecular weight proteins and, in the case of the cutoff filters, high variability. GeLC-MS/MS analysis of the fractionation methods in combination with pathway analysis demonstrates that increased fractionation primarily leads to high proteome coverage of pathways related to biological functions of plasma, such as acute phase reaction, complement cascade and coagulation. Further, the prefractionation methods in this study induces limited effect on the proportion of tissue proteins detected, thereby highlighting the importance of extensive or targeted downstream fractionation.  相似文献   

6.
7.
Ectodermal dysplasias are a large group of rare genetic disorders with developmental abnormalities in skin, teeth, hair and nails. Many of them are clinically serious and impair the life of patients. The cloning of the gene for the most common of them, X-linked anhidrotic ectodermal dysplasia, in 1996 opened the door to dissect novel developmental pathways at the molecular level. Since then, several new genes and proteins with novel functions have been identified.  相似文献   

8.
The Mn(4)Ca cluster of the oxygen-evolving complex (OEC) of photosynthesis catalyzes the light-driven splitting of water into molecular oxygen, protons, and electrons. The OEC is buried within photosystem II (PSII), a multisubunit integral membrane protein complex, and water must find its way to the Mn(4)Ca cluster by moving through protein. Molecular dynamics simulations were used to determine the energetic barriers for water permeation though PSII extrinsic proteins. Potentials of mean force (PMFs) for water were derived by using the technique of multiple steered molecular dynamics (MSMD). Calculation of free energy profiles for water permeation allowed us to characterize previously identified water channels, and discover new pathways for water movement toward the Mn(4)Ca cluster. Our results identify the main constriction sites in these pathways which may serve as selectivity filters that restrict both the access of solutes detrimental to the water oxidation reaction and loss of Ca(2+) and Cl(-) from the active site.  相似文献   

9.
Rho GTPase-activating proteins in cell regulation   总被引:35,自引:0,他引:35  
  相似文献   

10.
Inflammation in neurodegenerative disease--a double-edged sword   总被引:30,自引:0,他引:30  
Wyss-Coray T  Mucke L 《Neuron》2002,35(3):419-432
Inflammation is a defense reaction against diverse insults, designed to remove noxious agents and to inhibit their detrimental effects. It consists of a dazzling array of molecular and cellular mechanisms and an intricate network of controls to keep them in check. In neurodegenerative diseases, inflammation may be triggered by the accumulation of proteins with abnormal conformations or by signals emanating from injured neurons. Given the multiple functions of many inflammatory factors, it has been difficult to pinpoint their roles in specific (patho)physiological situations. Studies of genetically modified mice and of molecular pathways in activated glia are beginning to shed light on this issue. Altered expression of different inflammatory factors can either promote or counteract neurodegenerative processes. Since many inflammatory responses are beneficial, directing and instructing the inflammatory machinery may be a better therapeutic objective than suppressing it.  相似文献   

11.
12.
Intracellular signal transduction pathways transmit signals from the cell surface to various intracellular destinations, such as cytoskeleton and nucleus through a cascade of protein-protein interactions and activation events, leading to phenotypic changes such as cell proliferation, differentiation, and death. Over the past two decades, numerous signaling proteins and signal transduction pathways have been discovered and characterized. There are two major classes of signaling proteins: phosphoproteins (e.g., mitogen-activated protein kinases) and guanosine triphosphatases (GTPases; e.g., Ras and G proteins). They both function as molecular switches by addition and removal of one or more high-energy phosphate groups. This review discusses developments that seek to quantify the signal transduction processes with kinetic analysis and mathematical modeling of the signaling phosphoproteins and GTPases. These studies have provided insights into the sensitivity and specificity amplification of biological signals in integrated systems.  相似文献   

13.
Heterotrimeric G proteins in heart disease   总被引:5,自引:0,他引:5  
Guanine nucleotide binding proteins (G proteins) are largely grouped into three classes: heterotrimeric G proteins, ras-like or small molecular weight GTP binding proteins, and others like Gh. In the heart G proteins transduce signals from a variety of membrane receptors to generate diverse effects on contractility, heart rate, and myocyte growth. This central position of G proteins forming a switchboard between extracellular signals and intracellular effectors makes them candidates possibly involved in the pathogenesis of cardiac hypertrophy, heart failure, and arrhythmia. This review focuses primarily on discoveries of heterotrimeric G protein alterations in heart diseases that help us to understand the pathogenesis and pathophysiology. We also discuss the underlying molecular mechanisms of heterotrimeric G protein signalling.  相似文献   

14.
The literature data on the role of IRS1/IRS2 proteins, endogenous substrates for insulin receptor tyrosine kinase, in transduction of signals generated by insulin superfamily peptides (insulin, insulin-like growth factor) were analyzed. The molecular mechanisms of the functional coupling of IRS proteins with peptide receptors possessing a tyrosine kinase activity and SH2 domain-containing proteins (phosphatidylinositol 3-kinase, Grb2 adaptor protein, protein phosphotyrosine phosphatase) were discussed. The structural and functional properties of IRS proteins (distribution of functional domains and sites for tyrosine phosphorylation; conservatism of amino acid sequences) were characterized. The data on the alternative pathways of transduction of signals which are generated by insulin and related peptides and do not involve IRS proteins were analyzed. These pathways are realized through Shc proteins or via direct interaction between receptors and SH2 proteins. Amino acid sequences of IRS proteins and insulin superfamily tyrosine kinase receptors were compared. The homologous regions in IRS proteins and receptors, which can be responsible for their coupling with phosphatidylinositol 3-kinase and protein phosphotyrosine phosphatases, were identified.  相似文献   

15.
The secretory and endocytic pathways of eukaryotic organelles consist of multiple compartments, each with a unique set of proteins and lipids. Specific transport mechanisms are required to direct molecules to defined locations and to ensure that the identity, and hence function, of individual compartments are maintained. The localisation of proteins to specific membranes is complex and involves multiple interactions. The recent dramatic advances in understanding the molecular mechanisms of membrane transport has been due to the application of a multi-disciplinary approach, integrating membrane biology, genetics, imaging, protein and lipid biochemistry and structural biology. The aim of this review is to summarise the general principles of protein sorting in the secretory and endocytic pathways and to highlight the dynamic nature of these processes. The molecular mechanisms involved in this transport along the secretory and endocytic pathways are discussed along with the signals responsible for targeting proteins to different intracellular locations.  相似文献   

16.
Genetic and molecular analysis in Caenorhabditis elegans has produced new insights into how TGF beta-related pathways transduce signals and the developmental processes in which they function. These pathways are essential regulators of dauer formation, body-size determination, male copulatory structures and axonal guidance. Here, we review the insights that have come from standard molecular genetic experiments and discuss how the recently completed genome sequence has contributed to our understanding of these pathways.  相似文献   

17.
Sex steroids, through their receptors, have potent effects on the signal pathways involved in osteogenic or myogenic differentiation. However, a considerable segment of those signal pathways has a prominent role in epithelial neoplastic transformation. The capability to intervene locally has focused on specific ligands for the receptors. Nevertheless, many signals are mapped to interactions of steroid receptor motifs with heterologous regulatory proteins. Some of those proteins interact with the glucocorticoid receptor and other factors essential to cell fate. Interactions of steroid receptor domain motifs with heterologous proteins affect specific target pathways; consequently, manipulation of specified protein modules complexed with steroid receptors may be a next major step for enhancing molecular targeted therapeutics. In the future, intervention at specific sections of receptor primary sequence may prove therapeutically more efficient in targeting pathways of choice than ligand selectivity can be.  相似文献   

18.
线粒体自噬(mitochondrial autophagy, or mitophagy)指的是细胞通过自吞噬作用,降解与清除受损线粒体或者多余线粒体,其对整个线粒体网络的功能完整性和细胞存活具有重要作用。线粒体自噬过程受多种途径调控,PINK1/Parkin通路是其中的一条,其异常与多种疾病的发生密切相关,如心血管疾病、肿瘤和帕金森病等。在去极化线粒体中,磷酸酶及张力蛋白同源物(PTEN)诱导的激酶1(PTEN-induced kinase 1,PINK1)作为受损线粒体的分子传感器,触发线粒体自噬的起始信号,并将Parkin募集至线粒体;Parkin作为线粒体自噬信号的“增强子”,通过对线粒体蛋白质进一步泛素化介导自噬信号的扩大;去泛素化酶和PTEN-long蛋白参与调控该过程,并对维持线粒体稳态具有重要作用。本文主要对PINK1与Parkin蛋白质的分子结构和其介导线粒体自噬发生的分子机制,以及参与调控该途径的关键蛋白质进行综述,为进一步研究以线粒体自噬缺陷为特征的疾病治疗提供理论基础。  相似文献   

19.
Free-living amoebae are protozoa found in soil and water. Among them, some are pathogenic and many have been described as potential reservoirs of pathogenic bacteria. Their cell cycle is divided into at least two forms, the trophozoite and the cyst, and the differentiation process is named encystment. As cysts are more resistant to disinfection treatments than trophozoites, many studies focused on encystment, but until recently, little was known about cellular, biochemical, and molecular modifications operating during this process. Important signals and signaling pathways at play during encystment, as well as cell responses at the molecular level, have been described. This review summarizes our knowledge and focuses on new findings.  相似文献   

20.
Mitochondria play important roles as the powerhouse of the cell. After cerebral ischemia, mitochondria overproduce reactive oxygen species (ROS), which have been thoroughly studied with the use of superoxide dismutase transgenic or knockout animals. ROS directly damage lipids, proteins, and nucleic acids in the cell. Moreover, ROS activate various molecular signaling pathways. Apoptosis-related signals return to mitochondria, then mitochondria induce cell death through the release of pro-apoptotic proteins such as cytochrome c or apoptosis-inducing factor. Although the mechanisms of cell death after cerebral ischemia remain unclear, mitochondria obviously play a role by activating signaling pathways through ROS production and by regulating mitochondria-dependent apoptosis pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号