首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Force-induced bidirectional stepping of cytoplasmic dynein   总被引:4,自引:0,他引:4  
Cytoplasmic dynein is a minus-end-directed microtubule motor whose mechanism of movement remains poorly understood. Here, we use optical tweezers to examine the force-dependent stepping behavior of yeast cytoplasmic dynein. We find that dynein primarily advances in 8 nm increments but takes other sized steps (4-24 nm) as well. An opposing force induces more frequent backward stepping by dynein, and the motor walks backward toward the microtubule plus end at loads above its stall force of 7 pN. Remarkably, in the absence of ATP, dynein steps processively along microtubules under an external load, with less force required for minus-end- than for plus-end-directed movement. This nucleotide-independent walking reveals that force alone can drive repetitive microtubule detachment-attachment cycles of dynein's motor domains. These results suggest a model for how dynein's two motor domains coordinate their activities during normal processive motility and provide new clues for understanding dynein-based motility in living cells.  相似文献   

2.
Motor proteins are essential components of intracellular transport inside eukaryotic cells. These protein molecules use chemical energy obtained from hydrolysis of ATP to produce mechanical forces required for transporting cargos inside cells, from one location to another, in a directed manner. Of these motors, cytoplasmic dynein is structurally more complex than other motor proteins involved in intracellular transport, as it shows force and fuel (ATP) concentration dependent step‐size. Cytoplasmic dynein motors are known to work in a team during cargo transport and force generation. Here, we use a complete Monte‐Carlo model of single dynein constrained by in vitro experiments, which includes the effect of both force and ATP on stepping as well as detachment of motors under force. We then use our complete Monte‐Carlo model of single dynein motor to understand collective cargo transport by a team of dynein motors, such as dependence of cargo travel distance and velocity on applied force and fuel concentration. In our model, cargos pulled by a team of dynein motors do not detach rapidly under higher forces, confirming the experimental observation of longer persistence time of dynein team on microtubule under higher forces.  相似文献   

3.
Cytoplasmic dynein is a force-transducing ATPase that powers the movement of cellular cargoes along microtubules. Two identical heavy chain polypeptides (> 500 kDa) of the cytoplasmic dynein complex contain motor domains that possess the ATPase and microtubule-binding activities required for force production [1]. It is of great interest to determine whether both heavy chains (DHCs) in the dynein complex are required for progression of the mechanochemical cycle and motility, as observed for other dimeric motors. We have used transgenic constructs to investigate cooperative interactions between the two motor domains of the Drosophila cytoplasmic dynein complex. We show that 138 kDa and 180 kDa amino-terminal fragments of DHC can assemble with full-length DHC to form heterodimeric complexes containing only a single motor domain. The single-headed dynein complexes can bind and hydrolyze ATP, yet do not show the ATP-induced detachment from microtubules that is characteristic of wild-type homodimeric dynein. These results suggest that cooperative interactions between the monomeric units of the dimer are required for efficient ATP-induced detachment of dynein and unidirectional movement along the microtubule.  相似文献   

4.
Dynein is the large molecular motor that translocates to the (-) ends of microtubules. Dynein was first isolated from Tetrahymena cilia four decades ago. The analysis of the primary structure of the dynein heavy chain and the discovery that many organisms express multiple dynein heavy chains have led to two insights. One, dynein, whose motor domain comprises six AAA modules and two potential mechanical levers, generates movement by a mechanism that is fundamentally different than that which underlies the motion of myosin and kinesin. And two, organisms with cilia or flagella express approximately 14 different dynein heavy chain genes, each gene encodes a distinct dynein protein isoform, and each isoform appears to be functionally specialized. Sequence comparisons demonstrate that functionally equivalent isoforms of dynein heavy chains are well conserved across species. Alignments of portions of the motor domain result in seven clusters: (i) cytoplasmic dynein Dyhl; (ii) cytoplasmic dynein Dyh2; (iii) axonemal outer arm dynein alpha; (iv) outer arm dyneins beta and gamma; (v) inner arm dynein 1alpha; (vi) inner arm dynein 1beta; and (vii) a group of apparently single-headed inner arm dyneins. Some of the dynein groups contained more than one representative from a single organism, suggesting that these may be tissue-specific variants.  相似文献   

5.
Liang Y  Yu W  Li Y  Yu L  Zhang Q  Wang F  Yang Z  Du J  Huang Q  Yao X  Zhu X 《Molecular biology of the cell》2007,18(7):2656-2666
The microtubule-based motor cytoplasmic dynein/dynactin is a force generator at the kinetochore. It also transports proteins away from kinetochores to spindle poles. Regulation of such diverse functions, however, is poorly understood. We have previously shown that Nudel is critical for dynein-mediated protein transport, whereas mitosin, a kinetochore protein that binds Nudel, is involved in retention of kinetochore dynein/dynactin against microtubule-dependent stripping. Here we demonstrate that Nudel is required for robust localization of dynein/dynactin at the kinetochore. It localizes to kinetochores after nuclear envelope breakdown, depending mostly ( approximately 78%) on mitosin and slightly on dynein/dynactin. Depletion of Nudel by RNA interference (RNAi) or overexpression of its mutant incapable of binding either Lis1 or dynein heavy chain abolishes the kinetochore protein transport and mitotic progression. Similar to mitosin RNAi, Nudel RNAi also leads to increased stripping of kinetochore dynein/dynactin in the presence of microtubules. Taking together, our results suggest a dual role of kinetochore Nudel: it activates dynein-mediated protein transport and, when interacting with both mitosin and dynein, stabilizes kinetochore dynein/dynactin against microtubule-dependent stripping to facilitate the force generation function of the motor.  相似文献   

6.
In neurons, cytoplasmic dynein is synthesized in the cell body, but its function is to move cargo from the axon back to the cell body. Dynein must therefore be delivered to the axon and its motor activity must be regulated during axonal transport. Cytoplasmic dynein is a large protein complex composed of a number of different subunits. The dynein heavy chains contain the motor domains and the intermediate chains are involved in binding the complex to cargo. Five different intermediate chain polypeptides, which are the result of the alternative splicing of the two intermediate chain genes, have been identified. We have characterized two distinct pools of dynein that are transported from the cell body along the axon by different mechanisms. One pool, which contains the ubiquitous intermediate chain, is associated with the membranous organelles transported by kinesin in the fast transport component. The other pool, which contains the other developmentally regulated intermediate chains, is transported in slow component b. The mechanism of dynein regulation will therefore depend on which pool of dynein is recruited to function as the retrograde motor. In addition, the properties of the large pool of dynein associated with actin in slow component b are consistent with the hypothesis that this dynein may be the motor for microtubule transport in the axon.  相似文献   

7.
《Biophysical journal》2020,118(8):1930-1945
Cytoplasmic dynein is a two-headed molecular motor that moves to the minus end of a microtubule by ATP hydrolysis free energy. By employing its two heads (motor domains), cytoplasmic dynein exhibits various bipedal stepping motions: inchworm and hand-over-hand motions, as well as nonalternating steps of one head. However, the molecular basis to achieve such diverse stepping manners remains unclear because of the lack of an experimental method to observe stepping and the ATPase reaction of dynein simultaneously. Here, we propose a kinetic model for bipedal motions of cytoplasmic dynein and perform Gillespie Monte Carlo simulations that qualitatively reproduce most experimental data obtained to date. The model represents the status of each motor domain as five states according to conformation and nucleotide- and microtubule-binding conditions of the domain. In addition, the relative positions of the two domains were approximated by three discrete states. Accompanied by ATP hydrolysis cycles, the model dynein stochastically and processively moved forward in multiple steps via diverse pathways, including inchworm and hand-over-hand motions, similarly to experimental data. The model reproduced key experimental motility-related properties, including velocity and run length, as functions of the ATP concentration and external force, therefore providing a plausible explanation of how dynein achieves various stepping manners with explicit characterization of nucleotide states. Our model highlights the uniqueness of dynein in the coupling of ATPase with its movement during both inchworm and hand-over-hand stepping.  相似文献   

8.
Dyneins are the largest and most complex of the three classes of linear motor proteins in eukaryotic cells. The mass of the dynein motor domain is about ten times that of the other microtubule motor, kinesin. Dynein's homology with the AAA+ superfamily of mechanoenzymes distinguishes it from both kinesin and myosin, which share a common fold and ancestry as members of the G-protein superfamily. In contrast to the other motor proteins, little is known about the mechanism of dynein; its three-dimensional structure is unknown even at low resolution. Recent two-dimensional images from electron microscopy have revealed new details of its structure and how this changes to produce movement. These and the recently solved crystal structure of another AAA+ protein, ClpB, offer tantalising hints about dynein's mechanism, suggesting it may act like a molecular winch.  相似文献   

9.
Cytoplasmic dynein and kinesin are two-headed microtubule motor proteins that move in opposite directions on microtubules. It is known that kinesin steps by a 'hand-over-hand' mechanism, but it is unclear by which mechanism dynein steps. Because dynein has a completely different structure from that of kinesin and its head is massive, it is suspected that dynein uses multiple protofilaments of microtubules for walking. One way to test this is to ask whether dynein can step along a single protofilament. Here, we examined dynein and kinesin motility on zinc-induced tubulin sheets (zinc-sheets) which have only one protofilament available as a track for motor proteins. Single molecules of both dynein and kinesin moved at similar velocities on zinc-sheets compared to microtubules, clearly demonstrating that dynein and kinesin can walk on a single protofilament and multiple rows of parallel protofilaments are not essential for their motility. Considering the size and the motile properties of dynein, we suggest that dynein may step by an inchworm mechanism rather than a hand-over-hand mechanism.  相似文献   

10.
Bipolar spindle assembly critically depends on the microtubule plus‐end‐directed motor Eg5 that binds antiparallel microtubules and slides them in opposite directions. As such, Eg5 can produce the necessary outward force within the spindle that drives centrosome separation and inhibition of this antiparallel sliding activity results in the formation of monopolar spindles. Here, we show that upon depletion of the minus‐end‐directed motor dynein, or the dynein‐binding protein Lis1, bipolar spindles can form in human cells with substantially less Eg5 activity, suggesting that dynein and Lis1 produce an inward force that counteracts the Eg5‐dependent outward force. Interestingly, we also observe restoration of spindle bipolarity upon depletion of the microtubule plus‐end‐tracking protein CLIP‐170. This function of CLIP‐170 in spindle bipolarity seems to be mediated through its interaction with dynein, as loss of CLIP‐115, a highly homologous protein that lacks the dynein–dynactin interaction domain, does not restore spindle bipolarity. Taken together, these results suggest that complexes of dynein, Lis1 and CLIP‐170 crosslink and slide microtubules within the spindle, thereby producing an inward force that pulls centrosomes together.  相似文献   

11.
Gao YQ 《Biophysical journal》2006,90(3):811-821
Recent experiment showed that cytoplasmic dynein 1, a molecular motor responsible for cargo transport in cells, functions as a gear in response to external load. In the presence of vanishing or small external load, dynein walks with 24- or 32-nm steps, whereas at high external load, its step size is reduced to 8 nm. A simple model is proposed to account for this property of dynein. The model assumes that the chemical energy of ATP hydrolysis is used through a loose coupling between the chemical reaction and the translocation of dynein along microtubule. This loose chemomechanical coupling is represented by the loosely coupled motions of dynein along two different reaction coordinates. The first reaction coordinate is tightly coupled to the chemical reaction and describes the protein conformational changes that control the chemical processes, including ATP binding and hydrolysis, and ADP-Pi release. The second coordinate describes the translocation of dynein along microtubule, which is directly subject to the influence of the external load. The model is used to explain the experimental data on the external force dependence of the dynein step size as well as the ATP concentration dependence of the stall force. A number of predictions, such as the external force dependence of speed of translocation, ATP hydrolysis rate, and dynein step sizes, are made based on this theoretical model. This model provides a simple understanding on how a variable chemomechanical coupling ratio can be achieved and used to optimize the biological function of dynein.  相似文献   

12.
Cytoplasmic dynein is a large minus-end-directed microtubule motor complex, involved in many different cellular processes including intracellular trafficking, organelle positioning, and microtubule organization. Furthermore, dynein plays essential roles during cell division where it is implicated in multiple processes including centrosome separation, chromosome movements, spindle organization, spindle positioning, and mitotic checkpoint silencing. How is a single motor able to fulfill this large array of functions and how are these activities temporally and spatially regulated? The answer lies in the unique composition of the dynein motor and in the interactions it makes with multiple regulatory proteins that define the time and place where dynein becomes active. Here, we will focus on the different mitotic processes that dynein is involved in, and how its regulatory proteins act to support dynein. Although dynein is highly conserved amongst eukaryotes (with the exception of plants), there is significant variability in the cellular processes that depend on dynein in different species. In this review, we concentrate on the functions of cytoplasmic dynein in mammals but will also refer to data obtained in other model organisms that have contributed to our understanding of dynein function in higher eukaryotes.  相似文献   

13.
Boylan KL  Hays TS 《Genetics》2002,162(3):1211-1220
The microtubule motor cytoplasmic dynein powers a variety of intracellular transport events that are essential for cellular and developmental processes. A current hypothesis is that the accessory subunits of the dynein complex are important for the specialization of cytoplasmic dynein function. In a genetic approach to understanding the range of dynein functions and the contribution of the different subunits to dynein motor function and regulation, we have identified mutations in the gene for the cytoplasmic dynein intermediate chain, Dic19C. We used a functional Dic transgene in a genetic screen to recover X-linked lethal mutations that require this transgene for viability. Three Dic mutations were identified and characterized. All three Dic alleles result in larval lethality, demonstrating that the intermediate chain serves an essential function in Drosophila. Like a deficiency that removes Dic19C, the Dic mutations dominantly enhance the rough eye phenotype of Glued(1), a dominant mutation in the gene for the p150 subunit of the dynactin complex, a dynein activator. Additionally, we used complementation analysis to identify an existing mutation, shortwing (sw), as an allele of the dynein intermediate chain gene. Unlike the Dic alleles isolated de novo, shortwing is homozygous viable and exhibits recessive and temperature-sensitive defects in eye and wing development. These phenotypes are rescued by the wild-type Dic transgene, indicating that shortwing is a viable allele of the dynein intermediate chain gene and revealing a novel role for dynein function during wing development.  相似文献   

14.
Bidirectional cargo transport along microtubules is carried out by opposing teams of kinesin and dynein motors. Despite considerable study, the factors that determine whether these competing teams achieve net anterograde or retrograde transport in cells remain unclear. The goal of this work is to use stochastic simulations of bidirectional transport to determine the motor properties that most strongly determine overall cargo velocity and directionality. Simulations were carried out based on published optical tweezer characterization of kinesin‐1 and kinesin‐2, and for available data for cytoplasmic dynein and the dynein‐dynactin‐BicD2 (DDB) complex. By varying dynein parameters and analyzing cargo trajectories, we find that net cargo transport is predicted to depend minimally on the dynein stall force, but strongly on dynein load‐dependent detachment kinetics. In simulations, dynein is dominated by kinesin‐1, but DDB and kinesin‐1 are evenly matched, recapitulating recent experimental work. Kinesin‐2 competes less well against dynein and DDB, and overall, load‐dependent motor detachment is the property that most determines a motor's ability to compete in bidirectional transport. It follows that the most effective intracellular regulators of bidirectional transport are predicted to be those that alter motor detachment kinetics rather than motor velocity or stall force.   相似文献   

15.
Sakakibara H  Oiwa K 《The FEBS journal》2011,278(17):2964-2979
Dynein, which is a minus-end-directed microtubule motor, is crucial to a range of cellular processes. The mass of its motor domain is about 10 times that of kinesin, the other microtubule motor. Its large size and the difficulty of expressing and purifying mutants have hampered progress in dynein research. Recently, however, electron microscopy, X-ray crystallography and single-molecule nanometry have shed light on several key unsolved questions concerning how the dynein molecule is organized, what conformational changes in the molecule accompany ATP hydrolysis, and whether two or three motor domains are coordinated in the movements of dynein. This minireview describes our current knowledge of the molecular organization and the force-generating mechanism of dynein, with emphasis on findings from electron microscopy and single-molecule nanometry.  相似文献   

16.
To address questions about mechanisms of filament-based organelle transport, a system was developed to image and track mitochondria in an intact Drosophila nervous system. Mutant analyses suggest that the primary motors for mitochondrial movement in larval motor axons are kinesin-1 (anterograde) and cytoplasmic dynein (retrograde), and interestingly that kinesin-1 is critical for retrograde transport by dynein. During transport, there was little evidence that force production by the two opposing motors was competitive, suggesting a mechanism for alternate coordination. Tests of the possible coordination factor P150(Glued) suggested that it indeed influenced both motors on axonal mitochondria, but there was no evidence that its function was critical for the motor coordination mechanism. Observation of organelle-filled axonal swellings ("organelle jams" or "clogs") caused by kinesin and dynein mutations showed that mitochondria could move vigorously within and pass through them, indicating that they were not the simple steric transport blockades suggested previously. We speculate that axonal swellings may instead reflect sites of autophagocytosis of senescent mitochondria that are stranded in axons by retrograde transport failure; a protective process aimed at suppressing cell death signals and neurodegeneration.  相似文献   

17.
Three classes of cytoskeletal motor protein have been identified—myosins, kinesins and dyneins. Together, these proteins are now thought to be responsible for the remarkable variety of movements that occur in eukaryotic cells and that are essential for reproduction and survival. Crystallographic analysis of the myosin and kinesin motor domains at atomic resolution has provided insight into their mechanism of force production. However, because of its relative intractability to molecular manipulation, definition of the dynein motor domain, let alone progress in understanding how it works, has been slower. Evidence now indicates that the microtubule-binding domain of dynein is spatially isolated from the ATPase domain at the tip of a projecting coiled coil. As proposed here, this curious arrangement might serve to accommodate multiple copies of the outsized and functionally complex motor heads on the microtubule surface.  相似文献   

18.
In the axoneme of eukaryotic flagella the dynein motor proteins form crossbridges between the outer doublet microtubules. These motor proteins generate force that accumulates as linear tension, or compression, on the doublets. When tension or compression is present on a curved microtubule, a force per unit length develops in the plane of bending and is transverse to the long axis of the microtubule. This transverse force (t-force) is evaluated here using available experimental evidence from sea urchin sperm and bull sperm. At or near the switch point for beat reversal, the t-force is in the range of 0.25-1.0 nN/ micro m, with 0.5 nN/ micro m the most likely value. This is the case in both beating and arrested bull sperm and in beating sea urchin sperm. The total force that can be generated (or resisted) by all the dyneins on one micron of outer doublet is also approximately 0.5 nN. The equivalence of the maximum dynein force/ micro m and t-force/ micro m at the switch point may have important consequences. Firstly, the t-force acting on the doublets near the switch point of the flagellar beat is sufficiently strong that it could terminate the action of the dyneins directly by strongly favoring the detached state and precipitating a cascade of detachment from the adjacent doublet. Secondly, after dynein release occurs, the radial spokes and central-pair apparatus are the structures that must carry the t-force. The spokes attached to the central-pair projections will bear most of the load. The central-pair projections are well-positioned for this role, and they are suitably configured to regulate the amount of axoneme distortion that occurs during switching. However, to fulfill this role without preventing flagellar bend formation, moveable attachments that behave like processive motor proteins must mediate the attachment between the spoke heads and the central-pair structure.  相似文献   

19.
FKBP52 is a steroid receptor-associated immunophilin that binds via a tetratricopeptide repeat (TPR) domain to hsp90. FKBP52 has also been shown to interact either directly or indirectly via its peptidylprolyl isomerase (PPIase) domain with cytoplasmic dynein, a motor protein involved in retrograde transport of vesicles toward the nucleus. The functional role for the PPIase domain in receptor movement was demonstrated by showing that expression of the PPIase domain fragment of FKBP52 in 3T3 cells inhibits dexamethasone-dependent nuclear translocation of a green fluorescent protein-glucocorticoid receptor chimera. Here, we show that cytoplasmic dynein is co-immunoadsorbed with two other TPR domain proteins that bind hsp90 (the cyclophilin CyP-40 and the protein phosphatase PP5). Both proteins possess PPIase homology domains, and co-immunoadsorption of cytoplasmic dynein with each is blocked by the PPIase domain fragment of FKBP52. Using purified proteins, we show that FKBP52, PP5, and the PPIase domain fragment bind directly to the intermediate chain of cytoplasmic dynein. PP5 colocalizes with both cytoplasmic dynein and microtubules, and expression of the PPIase domain fragment of FKBP52 in 3T3 cells disrupts its cytoskeletal localization. We conclude that the PPIase domains of the hsp90-binding immunophilins interact directly with cytoplasmic dynein and that this interaction with the motor protein is responsible for the microtubular localization of PP5 in vivo.  相似文献   

20.
Nudel and Lis1 appear to regulate cytoplasmic dynein in neuronal migration and mitosis through direct interactions. However, whether or not they regulate other functions of dynein remains elusive. Herein, overexpression of a Nudel mutant defective in association with either Lis1 or dynein heavy chain is shown to cause dispersions of membranous organelles whose trafficking depends on dynein. In contrast, the wild-type Nudel and the double mutant that binds to neither protein are much less effective. Time-lapse microscopy for lysosomes reveals significant reduction in both frequencies and velocities of their minus end-directed motions in cells expressing the dynein-binding defective mutant, whereas neither the durations of movement nor the plus end-directed motility is considerably altered. Moreover, silencing Nudel expression by RNA interference results in Golgi apparatus fragmentation and cell death. Together, it is concluded that Nudel is critical for dynein motor activity in membrane transport and possibly other cellular activities through interactions with both Lis1 and dynein heavy chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号