首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
DNA methylation is essential in mammalian development. We have hypothesized that methylation differences induced by trisomy 21 (T21) contribute to the phenotypic characteristics and heterogeneity in Down syndrome (DS). In order to determine the methylation differences in T21 without interference of the interindividual genomic variation, we have used fetal skin fibroblasts from monozygotic (MZ) twins discordant for T21. We also used skin fibroblasts from MZ twins concordant for T21, normal MZ twins without T21, and unrelated normal and T21 individuals. Reduced Representation Bisulfite Sequencing (RRBS) revealed 35 differentially methylated promoter regions (DMRs) (Absolute methylation differences = 25%, FDR < 0.001) in MZ twins discordant for T21 that have also been observed in comparison between unrelated normal and T21 individuals. The identified DMRs are enriched for genes involved in embryonic organ morphogenesis (FDR = 1.60 e -03) and include genes of the HOXB and HOXD clusters. These DMRs are maintained in iPS cells generated from this twin pair and are correlated with the gene expression changes. We have also observed an increase in DNA methylation level in the T21 methylome compared to the normal euploid methylome. This observation is concordant with the up regulation of DNA methyltransferase enzymes (DNMT3B and DNMT3L) and down regulation of DNA demethylation enzymes (TET2 and TET3) observed in the iPSC of the T21 versus normal twin. Altogether, the results of this study highlight the epigenetic effects of the extra chromosome 21 in T21 on loci outside of this chromosome that are relevant to DS associated phenotypes.  相似文献   

4.
Exposure to cigarette smoking affects the epigenome and could increase the risk of developing diseases such as cancer and cardiovascular disorders. Changes in DNA methylation associated with smoking may help to identify molecular pathways that contribute to disease etiology. Previous studies are not completely concordant in the identification of differentially methylated regions in the DNA of smokers. We performed an epigenome-wide DNA methylation study in a group of monozygotic (MZ) twins discordant for smoking habits to determine the effect of smoking on DNA methylation. As MZ twins are considered genetically identical, this model allowed us to identify smoking-related DNA methylation changes independent from genetic components. We investigated the whole blood genome-wide DNA methylation profiles in 20 MZ twin pairs discordant for smoking habits by using the Illumina HumanMethylation450 BeadChip. We identified 22 CpG sites that were differentially methylated between smoker and non-smoker MZ twins by intra-pair analysis. We confirmed eight loci already described by other groups, located in AHRR, F2RL3, MYOG1 genes, at 2q37.1 and 6p21.33 regions, and also identified several new loci. Moreover, pathway analysis showed an enrichment of genes involved in GTPase regulatory activity. Our study confirmed the evidence of smoking-related DNA methylation changes, emphasizing that well-designed MZ twin models can aid the discovery of novel DNA methylation signals, even in a limited sample population.  相似文献   

5.
BACKGROUND: Monozygotic (MZ) twinning is a poorly understood phenomenon that may result in subtle biologic differences between twins, despite their identical inheritance. These differences may in part account for discordant expression of disease in MZ twin pairs. Due to their stochastic nature, differences in X chromosome inactivation patterns are one source of such variation in female MZ twins. MATERIALS AND METHODS: We investigated X chromosome inactivation patterns in the blood of 41 MZ twin pairs based on methylation of the androgen receptor gene using a Hpa II-PCR assay. Twenty-six female MZ twin pairs with autoimmune disease (rheumatoid arthritis or multiple sclerosis) were studied. In addition, we studied 15 newborn female MZ twin pairs who were characterized at birth with respect to the anatomy of chorionic membranes (dichorionic versus monochorionic). RESULTS: We found a strong correlation between dichorionic fetal anatomy and differences in X chromosome inactivation patterns between members of an MZ twin pair. In contrast, all monochorionic twin pairs had closely correlated patterns of X chromosome inactivation. X chromosome inactivation patterns did not distinguish between MZ twin pairs who were concordant or discordant for autoimmune disease. CONCLUSIONS: The highly similar patterns of X chromosome inactivation among monochorionic twin pairs may result from their shared placental blood supply during intrauterine life. Alternatively, these patterns may indicate that X chromosome inactivation occurs before the twinning event in this anatomic subgroup of MZ twins. The data further suggest that these factors do not make a major contribution to the high discordance rates for autoimmune disease in MZ twin pairs.  相似文献   

6.
We describe monozygotic twins discordant for childhood leukemia and secondary thyroid carcinoma. We used bisulfite pyrosequencing to compare the constitutive promoter methylation of BRCA1 and several other tumor suppressor genes in primary fibroblasts. The affected twin displayed an increased BRCA1 methylation (12%), compared with her sister (3%). Subsequent bisulfite plasmid sequencing demonstrated that 13% (6 of 47) BRCA1 alleles were fully methylated in the affected twin, whereas her sister displayed only single CpG errors without functional implications. This between-twin methylation difference was also found in irradiated fibroblasts and untreated saliva cells. The BRCA1 epimutation may have originated by an early somatic event in the affected twin: approximately 25% of her body cells derived from different embryonic cell lineages carry one epigenetically inactivated BRCA1 allele. This epimutation was associated with reduced basal protein levels and a higher induction of BRCA1 after DNA damage. In addition, we performed a genome-wide microarray analysis of both sisters and found several copy number variations, i.e., heterozygous deletion and reduced expression of the RSPO3 gene in the affected twin. This monozygotic twin pair represents an impressive example of epigenetic somatic mosaicism, suggesting a role for constitutive epimutations, maybe along with de novo genetic alterations in recurrent tumor development.  相似文献   

7.
为研究DNA甲基化在帕金森病发病机制中的作用,本研究用环境毒素1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)连续腹腔给药诱导小鼠帕金森病(Parkison's disease,PD)模型,应用ELISA检测小鼠黑质脑组织总体甲基化水平,应用实时荧光定量PCR方法检测DNA甲基转移酶表达水平,探讨MPTP诱导的小鼠PD模型黑质部位是否存在DNA甲基化异常.进一步应用甲基化DNA免疫共沉淀结合DNA甲基化芯片方法,构建MPTP诱导的小鼠PD模型黑质脑组织DNA甲基化谱,并寻找DNA甲基化修饰异常的PD相关基因对其进行验证.结果表明,模型组小鼠黑质脑组织DNA总体甲基化水平较对照组显著降低,Dnmt1的表达水平显著增高.利用DNA甲基化芯片在全基因组内筛选出甲基化差异修饰位点共48个,涉及44个基因,这些甲基化差异基因参与信号转导、分子转运、转录调控、发育、细胞分化、凋亡调控、氧化应激、蛋白质降解等生物学过程.在甲基化差异修饰基因中,对Uchl1基因及Arih2基因进行了甲基化水平以及表达水平的验证.结果表明,模型组小鼠黑质脑组织Uchl1启动子区域甲基化水平较对照组增高,m RNA及蛋白质表达水平降低,Arih2启动子区域甲基化水平较对照组降低,m RNA及蛋白质表达水平增高.实验结果进一步证实,DNA甲基化修饰异常在帕金森病发病机制中有重要作用,环境因素(如MPTP)可以通过改变DNA甲基化修饰参与帕金森病的发生发展.  相似文献   

8.
Monozygotic (MZ) twin pair discordance for childhood-onset Type 1 Diabetes (T1D) is ∼50%, implicating roles for genetic and non-genetic factors in the aetiology of this complex autoimmune disease. Although significant progress has been made in elucidating the genetics of T1D in recent years, the non-genetic component has remained poorly defined. We hypothesized that epigenetic variation could underlie some of the non-genetic component of T1D aetiology and, thus, performed an epigenome-wide association study (EWAS) for this disease. We generated genome-wide DNA methylation profiles of purified CD14+ monocytes (an immune effector cell type relevant to T1D pathogenesis) from 15 T1D–discordant MZ twin pairs. This identified 132 different CpG sites at which the direction of the intra-MZ pair DNA methylation difference significantly correlated with the diabetic state, i.e. T1D–associated methylation variable positions (T1D–MVPs). We confirmed these T1D–MVPs display statistically significant intra-MZ pair DNA methylation differences in the expected direction in an independent set of T1D–discordant MZ pairs (P = 0.035). Then, to establish the temporal origins of the T1D–MVPs, we generated two further genome-wide datasets and established that, when compared with controls, T1D–MVPs are enriched in singletons both before (P = 0.001) and at (P = 0.015) disease diagnosis, and also in singletons positive for diabetes-associated autoantibodies but disease-free even after 12 years follow-up (P = 0.0023). Combined, these results suggest that T1D–MVPs arise very early in the etiological process that leads to overt T1D. Our EWAS of T1D represents an important contribution toward understanding the etiological role of epigenetic variation in type 1 diabetes, and it is also the first systematic analysis of the temporal origins of disease-associated epigenetic variation for any human complex disease.  相似文献   

9.
《Genomics》2023,115(2):110565
BackgroundDespite being essentially genetically identical, monozygotic (MZ) twins can be discordant for congenital heart disease (CHD), thus highlighting the importance of in utero environmental factors for CHD pathogenesis. This study aimed to identify the epigenetic variations between discordant MZ twin pairs that are associated with CHD at birth.MethodsCord blood of CHD-discordant MZ twins from the Chongqing Longitudinal Twin Study Cohort was subjected to whole-genome bisulfite sequencing, then validated by MeDIP-qPCR and qRT-PCR.Results379 DMRs mapped to 175 differentially methylated genes (DMGs) were associated with CHD. Functional enrichment analysis identified these DMGs are involved in histone methylation, actin cytoskeleton organization, the regulation of cell differentiation, and adrenergic signaling in cardiomyocytes. Of note, SPESP1 and NOX5 were hypermethylated in CHD, and associated with lower gene expression levels.ConclusionsSpecific DNA methy (DNAm) variations in cord blood were associated with CHD, thus illustrating new biomarkers and potential interventional targets for CHD.Trial registrationChiCTR-OOC-16008203, registered on 1 April 2016 at the Chinese Clinical Trial Registry.  相似文献   

10.
11.
One of the best studied read-outs of epigenetic change is the differential expression of imprinted genes, controlled by differential methylation of imprinted control regions (ICRs). To address the impact of genotype on the epigenome, we performed a detailed study in 128 pairs of monozygotic (MZ) and 128 pairs of dizygotic (DZ) twins, interrogating the DNA methylation status of the ICRs of IGF2, H19, KCNQ1, GNAS and the non-imprinted gene RUNX1. While we found a similar overall pattern of methylation between MZ and DZ twins, we also observed a high degree of variability in individual CpG methylation levels, notably at the H19/IGF2 loci. A degree of methylation plasticity independent of the genome sequence was observed, with both local and regional CpG methylation changes, discordant between MZ and DZ individual pairs. However, concordant gains or losses of methylation, within individual twin pairs were more common in MZ than DZ twin pairs, indicating that de novo and/or maintenance methylation is influenced by the underlying DNA sequence. Specifically, for the first time we showed that the rs10732516 [A] polymorphism, located in a critical CTCF binding site in the H19 ICR locus, is strongly associated with increased hypermethylation of specific CpG sites in the maternal H19 allele. Together, our results highlight the impact of the genome on the epigenome and demonstrate that while DNA methylation states are tightly maintained between genetically identical and related individuals, there remains considerable epigenetic variation that may contribute to disease susceptibility.  相似文献   

12.
Childhood psychotic symptoms are associated with increased rates of schizophrenia, other psychiatric disorders, and suicide attempts in adulthood; thus, elucidating early risk indicators is crucial to target prevention efforts. There is considerable discordance for psychotic symptoms between monozygotic twins, indicating that child-specific non-genetic factors must be involved. Epigenetic processes may constitute one of these factors and have not yet been investigated in relation to childhood psychotic symptoms. Therefore, this study explored whether differences in DNA methylation at age 10 were associated with monozygotic twin discordance for psychotic symptoms at age 12. The Environmental Risk (E-Risk) Longitudinal Twin Study cohort of 2,232 children (1,116 twin pairs) was assessed for age-12 psychotic symptoms and 24 monozygotic twin pairs discordant for symptoms were identified for methylomic comparison. Children provided buccal samples at ages 5 and 10. DNA was bisulfite modified and DNA methylation was quantified using the Infinium HumanMethylation450 array. Differentially methylated positions (DMPs) associated with psychotic symptoms were subsequently tested in post-mortem prefrontal cortex tissue from adult schizophrenia patients and age-matched controls. Site-specific DNA methylation differences were observed at age 10 between monozygotic twins discordant for age-12 psychotic symptoms. Similar DMPs were not found at age 5. The top-ranked psychosis-associated DMP (cg23933044), located in the promoter of the C5ORF42 gene, was also hypomethylated in post-mortem prefrontal cortex brain tissue from schizophrenia patients compared to unaffected controls. These data tentatively suggest that epigenetic variation in peripheral tissue is associated with childhood psychotic symptoms and may indicate susceptibility to schizophrenia and other mental health problems.  相似文献   

13.
Monozygotic (MZ) twins do not show complete concordance for many complex diseases; for example, discordance rates for autoimmune diseases are 20%-80%. MZ discordance indicates a role for epigenetic or environmental factors in disease. We used MZ twins discordant for psoriasis to search for genome-wide differences in DNA methylation and gene expression in CD4(+) and CD8(+) cells using Illumina's HumanMethylation27 and HT-12 expression assays, respectively. Analysis of these data revealed no differentially methylated or expressed genes between co-twins when analyzed separately, although we observed a substantial amount of small differences. However, combined analysis of DNA methylation and gene expression identified genes where differences in DNA methylation between unaffected and affected twins were correlated with differences in gene expression. Several of the top-ranked genes according to significance of the correlation in CD4(+) cells are known to be associated with psoriasis. Further, gene ontology (GO) analysis revealed enrichment of biological processes associated with the immune response and clustering of genes in a biological pathway comprising cytokines and chemokines. These data suggest that DNA methylation is involved in an epigenetic dysregulation of biological pathways involved in the pathogenesis of psoriasis. This is the first study based on data from MZ twins discordant for psoriasis to detect epigenetic alterations that potentially contribute to development of the disease.  相似文献   

14.
15.
Vu TH  Li T  Nguyen D  Nguyen BT  Yao XM  Hu JF  Hoffman AR 《Genomics》2000,64(2):132-143
  相似文献   

16.
17.
18.
Epigenetic inactivation of genes by promoter hypermethylation, a major mechanism in the initiation and progression of tobacco-induced cancer, has also been associated with lung cancer induced through environmental and occupational exposures. Our previous study of gene methylation in workers from the MAYAK nuclear enterprise identified a significantly higher prevalence for methylation of the p16 gene (CDKN2A) in adenocarcinomas from workers compared to tumors from non-worker controls. The purpose of this investigation was to determine whether genes in addition to p16 are "targeted" for silencing and whether overall gene methylation was more common in radiation-induced adenocarcinoma. A significant increase in the prevalence of methylation of GATA5 was seen in tumors from workers compared to tumors from controls. The prevalence for methylation of PAX5 beta and H-cadherin did not differ in tumors from workers and controls. Evaluating the frequency for methylation of a five-gene panel revealed that 93% of adenocarcinomas from workers compared to 66% of tumors from controls were methylated for at least one gene. Moreover, a twofold increase was seen in the number of tumors methylated for three or more genes for tumors from workers compared to controls. Increased frequency for inactivation of genes by promoter hypermethylation and targeting of tumor suppressor genes such as GATA5 may be factors that contribute to the increased risk for lung cancer associated with radiation exposure.  相似文献   

19.
白细胞介素-10(interleukin-10,IL-10)是在类风湿性关节炎中发挥重要免疫调节作用的细胞因子,其基因失活与已分化的Th1和Th2细胞染色质结构重塑有关。为了探讨IL-10基因启动子甲基化及基因失活在类风湿性关节炎(Rheumatoid Arthritis,RA)发病和进展中的作用,采用逆转录聚合酶链反应(RT-PCR)、酶联免疫吸附实验(enzyme linked immunosorbent assay,ELISA)及甲基化特异性聚合酶链反应(MSP), 分别检测34例类风湿性关节炎患者和30例健康人外周血单个核细胞 IL-10 mRNA、蛋白表达水平及基因启动子甲基化状态。结果显示,病例组IL-10 mRNA及蛋白表达均低于健康对照组,无统计学差异(P>0.05)。病例组甲基化率(85.29%)高于健康对照组(43.33%), 具有统计学差异(x2 =12.439,P=0.000)。IL-10基因启动子甲基化状态与其mRNA表达呈显著负相关(r=-0.579, P=0.001), 与所累关节数显著相关,但与血沉(ESR)、C反应蛋白(CRP)、类风湿因子(RF)、年龄均无相关性(P>0.05)。IL-10 mRNA表达与年龄、所累关节数、ESR、CRP及RF均无相关性(P>0.05)。上述结果提示,启动子甲基化可能是IL-10基因失活的重要机制,IL-10基因异常高甲基化状态可能参与了RA的发生发展。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号