首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims

A commonly accepted challenge when visualising plant roots in X-ray micro Computed Tomography (μCT) images is the similar X-ray attenuation of plant roots and soil phases. Soil moisture content remains a recognised, yet currently uncharacterised source of segmentation error. This work sought to quantify the effect of soil moisture content on the ability to segment roots from soil in μCT images.

Methods

Rice (Oryza sativa) plants grown in contrasting soils (loamy sand and clay loam) were μCT scanned daily for nine days whilst drying from saturation. Root volumes were segmented from μCT images and compared with volumes derived by root washing.

Results

At saturation the overlapping attenuation values of root material, water-filled soil pores and soil organic matter significantly hindered segmentation. However, in dry soil (ca. six days of drying post-saturation) the air-filled pores increased image noise adjacent to roots and impeded accurate visualisation of root material. The root volume was most accurately segmented at field capacity.

Conclusions

Root volumes can be accurately segmented from μCT images of undisturbed soil without compromising the growth requirements of the plant providing soil moisture content is kept at field capacity. We propose all future studies in this area should consider the error associated with scanning at different soil moisture contents.  相似文献   

2.
Summary The influence of soil moisture content and soil water potential on plant water potential, transpiration and net-photosynthesis of potted larch (Larix decidua), spruce (Picea abies) and pine (Pinus cembra) was studied under constant and close to optimum conditions in a laboratory.The equilibrium plant water potential measured under non-transpiring conditions came close to soil water potential, but in moist soil the equilibrium potential was slightly lower, particularly in larch where transpiration was not fully arrested. In very dry soil, plants had higher water potential than soil, presumably due to roots exploiting the wettest points within the soil.Pine, spruce and larch utilised a large part of soil moisture (down to 25wt.% soil water content or –1.5 bars potential) while maintaining plant water potential near –8, –9.5 and –12.5 bars respectively. A similar pattern occurred in dry soil. The differences between species are explained by differing stomatal sensitivity to water potential.Pine began a gradual reduction in gas-exchange below a soil water potential of –0.4 bars. Larch showed no marked reduction until the soil potential fell to –3.5 bars but below this the shut-down in gas-exchange was rapid. Spruce lay in between.In spite of the early and sensitive gas-exchange reduction with decreasing soil moisture, pine maintained the highest net photosynthesis/transpiration ratio and thus used limited soil water more slowly and economically than the other species.Seedlings maintained a higher rate of gas-exchange in strong light than in weak light, especially at low soil water potentials.  相似文献   

3.
Acacia ampliceps Maslin and Eucalyptus camaldulensis Dehnh. were grown for one year in lysimeters at three soil moisture regimes: 100 % (well-watered), 75 % (medium-watered) and 50 % (low-watered) of total plant available water. Biomass yield of both species increased with increase in soil moisture. Water-use efficiency (WUE) of E. camaldulensis decreased and that of A. ampliceps increased markedly with decrease in available soil moisture. A. ampliceps showed 4 – 5 times more biomass yield than E. camaldulensis grown at similar soil moisture. A. ampliceps showed almost 5, 9 and 12 times higher WUE than E. camaldulensis under low-, medium- and well-watered treatments, respectively. Significant negative correlation of 13C with WUE (r = –0.99) was observed in A. ampliceps. In contrast, 13C of E. camaldulensis showed a significant positive correlation with WUE (r = 0.82).  相似文献   

4.
Analysis of soil moisture variations in an irrigated orchard root zone   总被引:1,自引:1,他引:0  
Polak  Amir  Wallach  Rony 《Plant and Soil》2001,233(2):145-159
Soil moisture and suction head in an irrigated orchard were continuously monitored by time domain reflectometry (TDR) probes and gypsum blocks, respectively, during and between successive irrigation events. On each side of the trees in the plot, two 30-cm long probes were installed vertically 10 cm below the soil surface (denoted as shallow) and another two probes were installed vertically 40 cm below the soil surface (denoted as deep). The variation in moisture content measured by the TDR probes between successive irrigation events was qualitatively divided into four stages: the first was during water application; the second initiated when irrigation stopped and the moisture content in the layer sharply decreased, mainly due to free drainage. The succeeding moderate soil-moisture decrease, caused by the simultaneous diminishing free drainage and root uptake, was the third stage. During the fourth stage, moisture depletion from the layer was solely by root uptake. The slopes of moisture content variation with time throughout this stage enabled the monitoring of water availability to the plant. The range of moisture content variations and moisture depletion rates between subsequent irrigation events was higher in the shallow (10–40 cm) than in the deeper (40–70 cm) layer. Irrigation nonuniformity and spatial variability of soil hydraulic properties contributed to the unevenness of the moisture distribution in the soil profile. However, as soon as moisture content within a layer reached field capacity, namely the free drainage had stopped, irrigation uniformity had a negligible effect on water flux to the plant roots. The measured data indicate that soil moisture is fully available to the plant as long as the momentary moisture flux from the soil bulk to the soil–root interface can replenish the moisture being depleted to supply, under non-stressed conditions, the atmospheric water demand. This flux is dominated by the local momentary value of the soil's bulk hydraulic conductivity, K r, and it stays constant for a certain range of K r values, controlled by the increasing root suction. A decrease in water availability to the plant appears for longer irrigation intervals as a break in the constant soil-moisture depletion rate during stage 4. This break is better correlated to a threshold K r value than to threshold values of moisture content or suction. Therefore, it is suggested that moisture content or suction used to measure water availability or to control irrigation first be alibrated by K r() or K r() curves, respectively.  相似文献   

5.
Hydraulic lift, the transport of water from deep in the soil through plant root systems into the drier upper soil layers, has been demonstrated in several woody plant species. Here the volume of water involved in hydraulic lift by a mature sugar maple tree is estimated. Twenty-four intact soil cores were collected from the vicinity of a sugar maple tree at the same positions at which thermocouple psychrometers had been placed. Desorption measurements were made on the soil cores and the data were fitted to the Campbell relation for soil matric potential versus soil water content . The psychrometer data were filtered to obtain the diurnal component contributed by hydraulic lift. The diurnal component in was combined with the Campbell relation for each soil core to obtain the increase in soil water content due to hydraulic lift. The additional water contents were numerically integrated to obtain a volume of 102±54 1 of water which was hydraulically lifted each night. The volume of hydraulically lifted water (HLW) is sufficiently great that in ecosystems where hydraulic lift occurs it should be included in models for calculating the water balance. However, a previous analysis of the stable hydrogen isotope composition (D) of water in understory plants around trees conducting hydraulic lift implies a much greater volume of HLW than that calculated from the analysis performed above. To reconcile these differences, it is hypothesized that some understory plants preferentially extract HLW due to its higher matric potential and that the proportion of this water source within the xylem sap of at least some understory plants that use HLW was so great that the roots of these plants must therefore be in close proximity to the tree roots from which the HLW comes. The results of this study have implications for studies of plant competition where positive associations may exist as well as for ion uptake, nutrient cycling and the design of agroforestry systems.  相似文献   

6.
The wet campo (campo úmido) marsh type is widely distributed in the cerrado region of central Brazil. These marshes develop on slopes along margins of gallery forests where the water table persists at or near the soil surface year-round. Their grass and sedge vegetation covers spongy, highly organic (not peaty) soils. Ground and surface water seeping through the wet campos tends to be slightly acidic (pH about 5), ion-poor (conductivity less than 10 µS cm–1) and well oxygenated.A typical freshwater meiofaunal community develops in those wet campos where soils remain moist throughout the year (moisture content more than about 60% of soil wet weight). Such a community was studied from 1979–1982 in a wet campo in a protected natural area on the Fazenda Água Limpa of the Universidade de Brasília. It was dominated by nematodes, rotifers and harpacticoid copepods, and included protozoans, turbellarians, cyclopoid copepods, cladocerans, ostracods, oligochetes, hydracarines and several families of aquatic insect larvae. This community was most fully developed in the wetter areas.Species richness of the copepod community is the highest yet recorded in a freshwater system. The 29 species of harpacticoid copepods and 4 species of cyclopoid copepods displayed pronounced zonation which seemed best correlated with soil moisture content and water regime.  相似文献   

7.

Aims

Stable isotopes of oxygen and hydrogen are often used to determine plant water uptake depths. We investigated whether and to what extend soil moisture, clay content, and soil calcium carbonate influences the water isotopic composition.

Methods

In the laboratory, dried soil samples varying in clay content were rewetted with different amounts of water of known isotopic composition. Further, we removed soil carbonate from a subset of samples prior to rewetting. Water was extracted from samples via cryogenic vacuum extraction and analysed by mass spectrometry.

Results

The isotopic composition of extracted soil water was similarly depleted in both 18O and 2H with decreasing soil moisture and increasing clay and carbonate content. Soil carbonate changed the δ18O composition while δ2H was not affected.

Conclusions

Our results indicate that soil carbonate can cause artifacts for 18O isotopic composition of soil water. At low soil moisture and high carbonate content this could lead to conflicting results for δ18O and δ2H in plant water uptake studies.  相似文献   

8.
M. Zeroni  P. H. Jerie  M. A. Hall 《Planta》1977,134(2):119-125
In Vicia faba ethylene does not appear to move between different parts of the plant in physiologically significant amounts. The resistance to longitudinal movement is such that lateral emanation effectively isolates different parts of the plant from each other. When emanation is prevented, ethylene can be channelled to any part of the plant. Exposure of one section of a plant to 14C-labelled ethylene (up to 200 l/l) increased the internal concentration in other parts with ethylene that did not originate from the feeding chamber. A basipetal gradient of endogenous ethylene concentration was found in the lacuna of intact plants, the source of ethylene being the stem tissue. The permeability of stem tissue to ethylene decreases with age. The concentration of ethylene in tissues surrounding the lacuna is always higher than that in the lacuna and it is argued that compartmentation of ethylene occurs within these tissues.  相似文献   

9.
Summary Experiments were conducted to determine whether soil moisture content has an effect on the chemical forms of plant and soil iron. Soybean plants, variety Lee, were grown on Adelanto loam soil under greenhouse conditions. Two different moisture levels, 75 per cent and 120 per cent of the moisture equivalent, were maintained in soil samples placed in individual containers. The same moisture treatments were used for separate soil samples on which the test plants were grown.Soil iron forms were determined in the moisture-treated soil by using different extracting agents. A significant decrease in soil iron extracted with 10–4 M EDTA from soil at the high moisture level was attributed to a relative increase in the free calcium ion.Soybean plants grown under the high moisture level were chlorotic while those under the low moisture level were green in appearance. Plant samples were taken at two stages of growth for subsequent analysis.The chemical analysis of the leaf tissues have shown the presence of equal amounts of total iron and less amounts of water-soluble and active iron in chlorotic tissues as compared to non-chlorotic tissues. The difference found between chlorotic and non-chlorotic plants in the amount of iron in the water extract was in the trichloroacetic acid-soluble fraction. The water- and salt-soluble protein nitrogen was approximately the same in chlorotic and non-chlorotic leaves.  相似文献   

10.
Akhter  J.  Mahmood  K.  Tasneem  M.A.  Naqvi  M.H.  Malik  K.A. 《Plant and Soil》2003,249(2):263-269
Water-use efficiency (WUE) of Leptochloa fusca (L.) Kunth (Kallar grass) and Sporobolus arabicus Boiss. was determined under different soil moisture regimes. Plants grown in lysimeters were subjected to three soil moisture regimes, viz. well-watered (100%), medium-watered (75%), and low-watered (50%) of total available water (TAW). The soil moisture was restored on alternate days by adding the required volume of water on the basis of neutron moisture meter readings taken from neutron access tubes installed in each lysimeter. The grasses were harvested after suitable intervals (4 months) to obtain maximum biomass. Leaf samples collected at each harvest were analyzed for carbon-isotope discrimination (13C) with an isotope ratio (13C/12C) mass spectrometer. Results indicated significant differences in WUE of both grasses subjected to different water regimes. Sporobolus arabicus showed higher WUE than Kallar grass. However, Kallar grass showed better value of yield response factor (k y = 0.649) compared with Sporobolus (k y = 1.06) over the entire season. The data confirm that these grasses can be grown successfully in water-limited environments by selecting an optimum soil moisture level for maximum biomass production. The mean carbon-isotope discrimination (13C) of Kallar grass (–14.4) and Sporobolus (–12.8) confirm that both are C4 plants. The carbon-isotope discrimination () was significantly and negatively correlated with WUE of the two species studied. The results of the present study confirm that 13C or of leaves can be used as good predictor of WUE in some C4 plants.  相似文献   

11.
An efficient three-phase culture has been developed for plant regeneration of Leucopogon verticillatus (R. Br.) (Ericaceae formerly Epacridaceae [Ann. Missouri Bot. Gard. 85 (1998): 531–553]) via somatic embryogenesis as indicative of likely culture scenarios for other Ericaceae. The Ericaceae, particularly many Australian species, are often difficult to propagate by conventional forms of nursery propagation. Initiation of somatic embryos was best achieved using Gamborgs B5 medium, pH 6, 4% maltose, 0.7% agar with the plant growth regulators 10 µM TDZ and 5 µM IAA. Somatic embryos were removed from the parent tissue and transferred to half strength basal GB5 medium for elongation. Root development did not occur unless specific treatments were used, a 2–5 day pulse treatment of 100 µM IBA significantly increased root production. All roots produced in agar-medium were fine and easily damaged when removed from culture. The most successful rooting medium (>60%) was sand on oat medium, which facilitated easy removal from the substrate and improved the survival of plants when transferred to soil.  相似文献   

12.

Background and Aims

Cereals have two root systems. The primary system originates from the embryo when the seed germinates and can support the plant until it produces grain. The nodal system can emerge from stem nodes throughout the plant''s life; its value for yield is unclear and depends on the environment. The aim of this study was to test the role of nodal roots of sorghum and millet in plant growth in response to variation in soil moisture. Sorghum and millet were chosen as both are adapted to dry conditions.

Methods

Sorghum and millet were grown in a split-pot system that allowed the primary and nodal roots to be watered separately.

Key Results

When primary and nodal roots were watered (12 % soil water content; SWC), millet nodal roots were seven times longer than those of sorghum and six times longer than millet plants in dry treatments, mainly from an 8-fold increase in branch root length. When soil was allowed to dry in both compartments, millet nodal roots responded and grew 20 % longer branch roots than in the well-watered control. Sorghum nodal roots were unchanged. When only primary roots received water, nodal roots of both species emerged and elongated into extremely dry soil (0·6–1·5 % SWC), possibly with phloem-delivered water from the primary roots in the moist inner pot. Nodal roots were thick, short, branchless and vertical, indicating a tropism that was more pronounced in millet. Total nodal root length increased in both species when the dry soil was covered with plastic, suggesting that stubble retention or leaf mulching could facilitate nodal roots reaching deeper moist layers in dry climates. Greater nodal root length in millet than in sorghum was associated with increased shoot biomass, water uptake and water use efficiency (shoot mass per water). Millet had a more plastic response than sorghum to moisture around the nodal roots due to (1) faster growth and progression through ontogeny for earlier nodal root branch length and (2) partitioning to nodal root length from primary roots, independent of shoot size.

Conclusions

Nodal and primary roots have distinct responses to soil moisture that depend on species. They can be selected independently in a breeding programme to shape root architecture. A rapid rate of plant development and enhanced responsiveness to local moisture may be traits that favour nodal roots and water use efficiency at no cost to shoot growth.  相似文献   

13.
Duplex soils, consisting of a sandy surface soil (A-horizon) and silty-clay subsoil (B-horizon), occur in a boundary area between oasis and desert in northwestern China and create a challenging habitat for restoration of plant growth. We conducted an experiment in a 10-year-old H. ammodendron plantation forest to determine the influence of physical properties of duplex soil on water infiltration and plant root growth. We used a trenching method to assess root biomass, and classified roots into two diameter classes: fine (<2 mm) and coarse (>2 mm). Following a 26.7 mm rain event, water infiltrated to the B- horizon; further deep percolation was hindered by low hydraulic conductivity, so that B horizon remained at high available soil moisture for an extended period of time. Root biomass increased rapidly in, or very close to the B horizon, especially for coarse roots. The subsoil formed a barrier to root penetration, but may also reflect the accumulation of water resources at the boundary between the A- and B-horizon. Shoot growth and root distribution, shrub height and canopy area, and total root biomass were negatively correlation with depth to the B horizon, and that was reflected by quadratic functions. We conclude that the texture and structure of duplex soils influenced the soil environment for water infiltration and storage, indicating that the B-horizon underlying sand in duplex soils is advantageous for the growth, and development of planted sand-stabilizing vegetation. These results have important implications for sustainable development of sand-fixing plantations in desert ecosystems.  相似文献   

14.
Methods for preparing soil suspensions for countingAzotobacter chroococcum in vertisols by soil dilution and plating were investigated. Mechanical methods to promote disaggregation of soil and Azotobacter microcolonies by shaking soil suspensions with glass beads (10% w/v) or coarse sand (1–2 mm fraction) increased soil dispersion and Azotobacter colony counts. Chemical methods for disaggregation were unsatis-factory. The non-ionic detergent Agral (0.004, 0.02, 0.1, 0.5 and 2.5% w/v) had no significant effect on soil dispersion and Azotobacter count. Both sodium pyrophosphate (0.03, 0.1, 0.3 and 0.9% w/v) and sodium metaphosphate as Calgon (0.022, 0.066, 0.2, 0.6 and 1.8% w/v) increased soil dispersion but were toxic to Azotobacter. Increasing time of shaking soil: distilled water suspensions increased deflocculation of the clay and Azotobacter counts to a maximum after 6–23 hours shaking. Comparable results were obtained within 30–60 minutes of shaking with coarse sand, but shaking with coarse sand beyond 2 hours reduced counts through mechanical damage to cells. Counts from suspensions in physiological saline (0.75% NaCl) and in distilled water were similar. Counts from suspensions in Jensen's mineral base shaken for <3 hrs were lower than from distilled water due to flocculation fo the soil byCa2+ ions, but were higher on extended shaking up to 23 hours due to better cell protection. Shaking soil suspensions in distilled water with 10% w/v coarse sand for 30 minutes is recommended when counting Azotobacter in vertisols.  相似文献   

15.
Li  Yan  Wallach  Rony  Cohen  Yehezkel 《Plant and Soil》2002,243(2):131-142
A multiplexed TDR system and a heat-pulse system for stem sap flow measurements were used to determine the spatial and temporal pattern of root water uptake in field-grown corn. The TDR probes, 0.15 and 0.30 m in length, were buried vertically in the soil profile to a depth of 0.95 m below the soil surface and heat-pulse sensors were installed on the plant base. Nocturnal readings from TDR probes were used successfully to differentiate the two components of moisture change: root uptake and net drainage. The instantaneous rate of water extraction by the plant measured by the heat-pulse system agreed well with the integrated rate of root water uptake measured frequently (at half-hour or hourly intervals) by the TDR probes. This agreement enabled further exploration into the cause of the evolution of the spatial and temporal patterns of root water uptake during a drying cycle. The results indicated that right after irrigation in the well-watered soil profile, it is the spatial distribution of the roots that mainly determines the typical pattern of root extraction, in addition to the fact that the roots near the plant base are more effective than those farther away. The higher density and effectiveness of the roots near the plant base dry the soil rapidly so that soil hydraulic conductivity soon becomes a limiting factor for water uptake. Further analysis revealed that a decrease in root uptake occurs near the plant base under a given atmospheric demand when the relative bulk soil hydraulic conductivity decreases to 0.002K r. This suggests that low conductivity (high resistance) in the soil near the plant base is the initial cause for downward and lateral shifting of the root uptake pattern. Note that this critical value of hydraulic conductivity is not universal since it depends on the soil type and atmospheric water demand during the period under observation. Therefore, prior to the application of moisture content or suction head as measures of water availability or to control irrigation scheduling, it is suggested that these parameters be calibrated by the soil K() or K() curves, respectively, for the expected atmospheric water demand for the specific crop and growing period.  相似文献   

16.
Soybean [Glycine max (L.) Merr. cv. Williams 82 and A3127] plants were grown in the field under long-term soil moisture deficit and irrigation to determine the effects of severe drought stress on the photosynthetic capacity of soybean leaves. Afternoon leaf water potentials, stomatal conductances, intercellular CO2 concentrations and CO2-assimilation rates for the two soil moisture treatments were compared during the pod elongation and seed enlargement stages of crop development. Leaf CO2-assimilation rates were measured with either ambient (340 l CO2 l–1) or CO2-enriched (1800 l CO2 l–1) air. Although seed yield and leaf area per plant were decreased an average of 48 and 31%, respectively, as a result of drought stress, leaf water potentials were reduced only an average of 0.27 MPa during the sampling period. Afternoon leaf CO2-assimilation rates measured with ambient air were decreased an average of 56 and 49% by soil moisture deficit for Williams 82 and A3127, respectively. The reductions in leaf photosynthesis of both cultivars were associated with similar decreases in leaf stomatal conductance and with small increases in leaf intercellular CO2 concentration. When the CO2-enriched air was used, similar afternoon leaf CO2-assimilation rates were found between the soil moisture treatments at each stage of crop development. These results suggest that photosynthetic capacity of soybean leaves is not reduced by severe soil moisture deficit when a stress develops gradually under field conditions.Abbreviations Ci intercellular CO2 concentrations - Aa rates of CO2 assimilation measured with ambient air - Ae rates of CO2 assimilation measured with CO2-enriched air - gs stomatal conductances - RuBPCase ribulose-1,5-bisphosphate carboxylase  相似文献   

17.
Three species, wheat, maize and cotton, were grown in pots and subjected to high (85–100% field capacity, F), medium (65–85% F) and low (45–65% F) soil moisture treatments and high (700 l l–1) and low (350 l l–1) CO2 concentrations. Biomass production, photosynthesis, evapotranspiration and crop water use efficiency were investigated. Results showed that the daily photosynthesis rate was increased more in wheat and cotton at high [CO2] than in maize. In addition, differences were more substantial at low soil water treatment than at high soil water treatment. The daily leaf transpiration was reduced significantly in the three crops at the high CO2 concentration. The decrease at low soil water was smaller than at high soil water. Crop biomass production responses showed a pattern similar to photosynthesis, but the CO2-induced increase was more pronounced in root production than shoot production under all soil water treatments. Low soil water treatment led to more root biomass under high [CO2] than high soil water treatment. CO2 enrichment caused a higher leaf water use efficiency (WUE) of three crops and the increase was more significant in low than in high soil water treatment. Crop community WUE was also increased by CO2 enrichment, but the increase in wheat and cotton was much greater than in maize. We conclude that at least in the short-term, C3 plants such as wheat and cotton may benefit from CO2 enrichment especially under water shortage condition.  相似文献   

18.
Above-and belowground biomass distribution, isotopic composition of soil and xylem water, and carbon isotope ratios were studied along an aridity gradient in Patagonia (44–45°S). Sites, ranging from those with Nothofagus forest with high annual rainfall (770 mm) to Nothofagus scrub (520 mm), Festuca (290 mm) and Stipa (160 mm) grasslands and into desert vegetation (125 mm), were chosen to test whether rooting depth compensates for low rainfall. Along this gradient, both mean above-and belowground biomass and leaf area index decreased, but average carbon isotope ratios of sun leaves remained constant (at-27), indicating no major differences in the ratio of assimilation to stomatal conductance at the time of leaf growth. The depth of the soil horizon that contained 90% of the root biomass was similar for forests and grasslands (about 0.80–0.50 m), but was shallower in the desert (0.30 m). In all habitats, roots reached water-saturated soils or ground water at 2–3 m depth. The depth profile of oxygen and hydrogen isotope ratios of soil water corresponded inversely to volumetric soil water contents and showed distinct patterns throughout the soil profile due to evaporation, water uptake and rainfall events of the past year. The isotope ratios of soil water indicated that high soil moisture at 2–3 m soil depth had originated from rainy periods earlier in the season or even from past rainy seasons. Hydrogen and oxygen isotope ratios of xylem water revealed that all plants used water from recent rain events in the topsoil and not from water-saturated soils at greater depth. However, this study cannot explain the vegetation zonation along the transect on the basis of water supply to the existing plant cover. Although water was accessible to roots in deeper soil layers in all habitats, as demonstrated by high soil moisture, earlier rain events were not fully utilized by the current plant cover during summer drought. The role of seedling establishment in determining species composition and vegetation type, and the indirect effect of seedling establishment on the use of water by fully developed plant cover, are discussed in relation to climate change and vegetation modelling.  相似文献   

19.
The suction force of active roots ofFraxinus excelsior L. was estimated by the refractometric compensation method (compensation in a sucrose solution) and its dependence on the water content of soil was determined. Where differences in the soil humidity were excluded within the root system, the dependence could be expressed by a curve resembling the dependence of the suction force of soil on its water content. This dependence was valid both for the minimal gradients of suction forces between the over-and underground parts of the plant (pot experiments), as well as when transpiration and hence gradients were present (under field conditions). Where differences in soil humidity were formed within the root system, the dependence did not correspond to this basic curve, due to the compensation of root suction forces within the root system.  相似文献   

20.
The effect of soil moisture on the distribution of Steinernema riobrave in a sand column was determined. Larvae of Pectinophora gossypiella were used to detect S. riobrave infective juveniles (IJ) in each 2.5-cm section of 30-cm-long soil columns. Soil moisture was determined for each section and related to the numbers of nematodes recovered from infected insect baits. Infective juveniles of S. riobrave applied on the sand column surface showed some degree of positive geotaxis. IJ in soil columns with a consistent moisture gradient grouped in the upper 12.7 cm within a water potential range of ¯40 to ¯0.0055 MPa (2% to 14% moisture). Nematodes in sand columns that were gradually dehydrating moved down the soil column, aggregating on the 28th day between 15-23 cm in depth. Nematode redistribution over time allowed IJ to remain within a water potential range of ¯0.1 to ¯0.012 MPa (5.2% to 9.5% moisture).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号