首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of HDL2b, a major subclass (d = 1.063 - 1.100 g/ml) of human plasma high-density lipoproteins, with discoidal complexes composed of dimyristoylphosphatidylcholine (DMPC) and apolipoprotein A-I (weight ratio, DMPC/apolipoprotein A-I (2.1 - 2.5:1); dimensions, 10.0 x 4.4 nm) was investigated. Incubation at 37 degrees C for 4.5 h of HDL2b with discoidal complexes resulted in a transfer of DMPC from the discoidal complexes to the HDL2b, a release of lipid-free apolipoprotein A-I from the discoidal complexes during such transfer, and a dissociation of some apolipoprotein A-I from the HDL2b surface. The number of discoidal complexes degraded during interaction with HDL2b depended on the initial molar ratio of HDL2b to discoidal complexes. Approximately one molecule of HDL2b was required for the degradation of one discoidal complex particle, and the degradation process appeared limited by the capacity of the HDL2b for uptake of DMPC. Degradation of discoidal complexes was also observed when human plasma LDL (d = 1.006-1.063 g/ml) was substituted for HDL2b in the interaction mixture.  相似文献   

2.
Adipocyte plasma membranes purified from omental fat tissue biopsies of massively obese subjects possess specific binding sites for high-density lipoprotein (HDL3). This binding was independent of apolipoprotein E as HDL3 isolated from plasma of an apolipoprotein E-deficient individual was bound to a level comparable to that of normal HDL3. To examine the importance of apolipoprotein A-I, the major HDL3 apolipoprotein, in the specific binding of HDL3 to human adipocytes, HDL3 modified to contain varying proportions of apolipoproteins A-I and A-II was prepared by incubating normal HDL3 particles with different amounts of purified apolipoprotein A-II. As the apolipoproteins A-I-to-A-II ratio in HDL3 decreased, the binding of these particles to adipocyte plasma membranes was reduced. Compared to control HDL3, a 92 +/- 3.1% reduction (mean +/- S.E., n = 3) in maximum binding capacity was observed along with an increased binding affinity for HDL3 particles in which almost all of the apolipoprotein A-I had been replaced by A-II. The uptake of HDL cholesteryl ester by intact adipocytes as monitored by [3H]cholesteryl ether labeled HDL3, was also significantly reduced (about 35% reduction, P less than 0.005) by substituting apolipoprotein A-II for A-I in HDL3. These data suggest that HDL binding to human adipocyte membranes is mediated primarily by apolipoprotein A-I and that optimal delivery of cholesteryl ester from HDL to human adipocytes is also dependent on apolipoprotein A-I.  相似文献   

3.
Structure and function of apolipoprotein A-I and high-density lipoprotein   总被引:6,自引:0,他引:6  
Structural biology and molecular modeling have provided intriguing insights into the atomic details of the lipid-associated structure of the major protein component of HDL, apo A-I. For the first time, an atomic resolution map is available for future studies of the molecular interactions of HDL in such biological processes as ABC1-regulated HDL assembly, LCAT activation, receptor binding, reverse lipid transport and HDL heterogeneity. Within the context of this paradigm, the current review summarizes the state of HDL research.  相似文献   

4.
Human plasma high-density lipoproteins (HDL) are important vehicles in reverse cholesterol transport, the cardioprotective mechanism by which peripheral tissue-cholesterol is transported to the liver for disposal. HDL is the target of serum opacity factor (SOF), a substance produced by Streptococcus pyogenes that turns mammalian serum cloudy. Using a recombinant (r) SOF, we studied opacification and its mechanism. rSOF catalyzes the partial disproportionation of HDL into a cholesteryl ester-rich microemulsion (CERM) and a new HDL-like particle, neo HDL, with the concomitant release of lipid-free (LF)-apo A-I. Opacification is unique; rSOF transfers apo E and nearly all neutral lipids of approximately 100,000 HDL particles into a single large CERM whose size increases with HDL-CE content (r approximately 100-250 nm) leaving a neo HDL that is enriched in PL (41%) and protein (48%), especially apo A-II. rSOF is potent; within 30 min at 37 degrees C, 10 nM rSOF opacifies 4 microM HDL. At respective low and high physiological HDL concentrations, LF-apo A-I is monomeric and tetrameric. CERM formation and apo A-I release have similar kinetics suggesting parallel or rapid sequential steps. According to the reaction products and kinetics, rSOF is a heterodivalent fusogenic protein that uses a docking site to displace apo A-I and bind to exposed CE surfaces on HDL; the resulting rSOF-HDL complex recruits additional HDL with its binding-delipidation site and through multiple fusion steps forms a CERM. rSOF may be a clinically useful and novel modality for improving reverse cholesterol transport. With apo E and a high CE content, CERM could transfer large amounts of cholesterol to the liver for disposal via the LDL receptor; neo HDL is likely a better acceptor of cellular cholesterol than HDL; LF-apo A-I could enhance efflux via the ATP-binding casette transporter ABCA1.  相似文献   

5.
Gao X  Yuan S  Jayaraman S  Gursky O 《Biochemistry》2012,51(23):4633-4641
High-density lipoproteins (HDL, or "good cholesterol") are heterogeneous nanoparticles that remove excess cell cholesterol and protect against atherosclerosis. The cardioprotective action of HDL and its major protein, apolipoprotein A-I (apoA-I), is well-established, yet the function of the second major protein, apolipoprotein A-II (apoA-II), is less clear. In this review, we postulate an ensemble of apolipoprotein conformations on various HDL. This ensemble is based on the crystal structure of Δ(185-243)apoA-I determined by Mei and Atkinson combined with the "double-hairpin" conformation of apoA-II(dimer) proposed in the cross-linking studies by Silva's team, and is supported by the wide array of low-resolution structural, biophysical, and biochemical data obtained by many teams over decades. The proposed conformational ensemble helps integrate and improve several existing HDL models, including the "buckle-belt" conformation of apoA-I on the midsize disks and the "trefoil/tetrafoil" arrangement on spherical HDL. This ensemble prompts us to hypothesize that endogenous apoA-II (i) helps confer lipid surface curvature during conversion of nascent discoidal HDL(A-I) and HDL(A-II) containing either apoA-I or apoA-II to mature spherical HDL(A-I/A-II) containing both proteins, and (ii) hinders remodeling of HDL(A-I/A-II) by hindering the expansion of the apoA-I conformation. Also, we report that, although endogenous apoA-II circulates mainly on the midsize spherical HDL(A-I/A-II), exogenous apoA-II can bind to HDL of any size, thereby slightly increasing this size and stabilizing the HDL assembly. This suggests distinctly different effects of the endogenous and exogenous apoA-II on HDL. Taken together, the existing results and models prompt us to postulate a new structural and functional role of apoA-II on human HDL.  相似文献   

6.
Five lines of transgenic mice, which had integrated the human apolipoprotein (apo) A-I gene and various amounts of flanking sequences, were established. Normally, apoA-I is expressed mainly in liver and intestine, but all of the transgenic lines only expressed apoA-I mRNA in liver, strongly suggesting that 256 base pairs of 5'-flanking sequence was sufficient for liver apoA-I gene expression but that 5.5 kilobase pairs was not sufficient for intestinal expression. Mean plasma levels of human apoA-I varied in different lines from approximately 0.1 to 200% of normal mouse levels. This was not dependent on the amount of flanking sequence. Lipoprotein levels were studied in detail in one of the lines with a significantly increased apoA-I pool size. In one study, the total plasma apoA-I level (mouse plus human) was 381 +/- 43 mg/dl in six animals from this line, compared to 153 +/- 17 mg/dl in matched controls. Total and high density lipoprotein cholesterol (HDL-C) levels were increased 60% in transgenic animals, compared to controls (total cholesterol: 125 +/- 12 versus 78 +/- 13 mg/dl, p = 0.0001; HDL-C 90 +/- 7 versus 55 +/- 11 mg/dl, p = 0.0001). The molar ratio of HDL-C/apoA-I was significantly lower in transgenic animals, 17 +/- 1 versus 25 +/- 2 (p = 0.0001), suggesting the increase was in smaller HDL particles. This was confirmed by native gradient gel electrophoresis. This was not due to aberrant metabolism of human apoA-I in the mouse, since human apoA-I was distributed throughout the HDL particle size range and was catabolized at the same rate as mouse apoA-I. In another study of 23 transgenic mice, HDL-C and human apoA-I levels were highly correlated (r = 0.87, p less than 0.001). The slope of the correlation line also indicated the additional HDL particles were in the smaller size range. We conclude that human apoA-I can be incorporated into mouse HDL, and excessive amounts increase HDL-C levels primarily by increasing smaller HDL particles, comparable to human HDL3 (HDL-C/apoA-I molar ratio = 18).  相似文献   

7.
The protein heterogeneity of fractions isolated by immunoaffinity chromatography on anti-apolipoprotein A-I and anti-apolipoprotein A-II affinity columns was analyzed by high resolution two-dimensional gel electrophoresis. The two-dimensional gel electrophoresis profiles of the fractions were analyzed and automatically compared by the computer system MELANIE. Fractions containing apolipoproteins A-I + A-II and only A-I as the major protein components have been isolated from plasma and from high density lipoproteins prepared by ultracentrifugation. Similarities between the profiles of the fractions, as indicated by two-dimensional gel electrophoresis, suggested that those derived from plasma were equivalent to those from high density lipoproteins (HDL), which are particulate in nature. The established apolipoproteins (A-I, A-II, A-IV, C, D, and E) were visible and enriched in fractions from both plasma and HDL. However, plasma-derived fractions showed a much greater degree of protein heterogeneity due largely to enrichment in bands corresponding to six additional proteins. They were present in trace amounts in fractions isolated from HDL and certain of the proteins were visible in two-dimensional gel electrophoresis profiles of the plasma. These proteins are considered to be specifically associated with the immunoaffinity-isolated particles. They have been characterized in terms of Mr and pI. Computer-assisted measurements of protein spot-staining intensities suggest an asymmetric distribution of the proteins (as well as the established apolipoproteins), with four showing greater prominence in particles containing apolipoprotein A-I but no apolipoprotein A-II.  相似文献   

8.
The amino acid sequence of rabbit apolipoprotein A-I (apo A-I) has been determined by degradation and alignment of two overlapping sets of peptides obtained from tryptic and staphylococcal digestions. All of the peptides of rabbit apo A-I resulting from digestion by staphylococcal protease were isolated and sequenced except residues 33-37. A digestion with trypsin was employed to find overlapping and missing peptides. The N-terminus of rabbit apo A-I was confirmed by sequencing the intact protein up to 20 residues while the C-terminus was identified through its homology with human apo A-I. The protein contains 241 residues in its single chain. Its primary structure is highly homologous to the reported canine apo A-I (80%) and human apo A-I (78%), but exhibits less similarity with rat apo A-I (60%). Like human apo A-I, rabbit apo A-I contains very little histidine (2) and methionine (1); it does however have two residues of isoleucine. Based on a comparison of the hydrophobic-hydrophilic character of apo A-I residues with that of the two synthetic peptides that activated lecithin: cholesterol acyltransferase (Pownall et al. and Yokoyama et al.), we found that the five segments with the highest corresponding homologies on the protein are located within the N-terminal half. This suggests that the N-terminal half of apo A-I contains the major portion of regions activating lecithin: cholesterol acyltransferase.  相似文献   

9.
Apolipoprotein A-I (apoA-I) was liberated from human high-density lipoprotein (HDL) without exposure to organic solvents or chaotropic salts by the action of isolated insect hemolymph lipid transfer particle (LTP). LTP-catalyzed lipid redistribution results in transformation of HDL into larger, less dense particles accompanied by an overall decrease in HDL particle surface area:core volume ratio, giving rise to an excess of amphiphilic surface components. Preferential dissociation of apolipoprotein versus phospholipid and unesterified cholesterol from the particle surface results in apolipoprotein recovery in the bottom fraction following ultracentrifugation at a density = 1.23 g/mL. ApoA-I was then isolated from other contaminating HDL apolipoproteins by incubation with additional HDL in the absence of LTP, whereupon apolipoprotein A-II and the C apolipoproteins reassociate with the HDL surface by displacement of apoA-I. After a second density gradient ultracentrifugation, electrophoretically pure apoA-I was obtained. Sedimentation equilibrium experiments revealed that apoA-I isolated via this method exhibits a tendency to self-associate in an aqueous solution while its circular dichroism spectrum was indicative of a significant amount of alpha-helix. Both measurements are consistent with that observed on material prepared by denaturation/renaturation. The ability of apoA-I to activate lecithin:cholesterol acyltransferase was found to be similar to that of apoA-I isolated by conventional methods. The present results illustrate that LTP-mediated alteration in lipoprotein particle surface area leads to dissociation of substantial amounts of surface active apoprotein components, thus providing the opportunity to isolate apoA-I without the denaturation/renaturation steps common to all previous isolation procedures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Klon AE  Segrest JP  Harvey SC 《Biochemistry》2002,41(36):10895-10905
We have constructed a series of models for apolipoprotein A-I (apo A-I) bound to discoidal high-density lipoprotein (HDL) particles, based upon the molecular belt model [Segrest, J. P., et al. (1999) J. Biol. Chem. 274, 31755-31758] and helical hairpin models [Rogers, D. P., et al. (1998) Biochemistry 37, 11714-11725], and compared these with picket fence models [Phillips, J. C., et al. (1997) Biophys. J. 73, 2337-2346]. Molecular belt models for discoidal HDL particles with differing diameters are presented, illustrating that the belt model can explain the discrete changes in HDL particle size observed experimentally. Hairpin models are discussed for the binding of apo A-I to discoidal HDL particles with diameters identical to those for the molecular belt model. Two models are presented for the binding of three monomers of apo A-I to a 150 A diameter discoidal HDL particle. In one model, two monomers of apo A-I bind to the exterior of the HDL particle in an antiparallel belt, with a third monomer of apo A-I bound to the disk in a hairpin conformation. In the second model, all three monomers of apo A-I are bound to the discoidal HDL particle in a hairpin conformation. Previously published experimental data for each model are reviewed, with FRET favoring either the belt or hairpin models over the picket fence models for HDL particles with diameters of 105 A. Naturally occurring mutations appear to favor the belt model for the 105 A particles, while the 150 A HDL particles favor the presence of at least one hairpin.  相似文献   

11.
12.
13.
Apolipoprotein A-I (apoA-I) accepts cholesterol and phospholipids from ATP-binding cassette transporter A1 (ABCA1)-expressing cells to form high-density lipoprotein (HDL). Human apoA-I has two tertiary structural domains and the C-terminal domain (approximately amino acids 190–243) plays a key role in lipid binding. Although the high lipid affinity region of the C-terminal domain of apoA-I (residues 223–243) is essential for the HDL formation, the function of low lipid affinity region (residues 191–220) remains unclear. To evaluate the role of residues 191–220, we analyzed the structure, lipid binding properties, and HDL formation activity of Δ191–220 apoA-I, in comparison to wild-type and Δ223–243 apoA-I. Although deletion of residues 191–220 has a slight effect on the tertiary structure of apoA-I, the Δ191–220 variant showed intermediate behavior between wild-type and Δ223–243 regarding the formation of hydrophobic sites and lipid interaction through the C-terminal domain. Physicochemical analysis demonstrated that defective lipid binding of Δ191–220 apoA-I is due to the decreased ability to form α-helix structure which provides the energetic source for lipid binding. In addition, the ability to form HDL particles in vitro and induce cholesterol efflux from ABCA1-expressing cells of Δ191–220 apoA-I was also intermediate between wild-type and Δ223–243 apoA-I. These results suggest that despite possessing low lipid affinity, residues 191–220 play a role in enhancing the ability of apoA-I to bind to and solubilize lipids by forming α-helix upon lipid interaction. Our results demonstrate that the combination of low lipid affinity region and high lipid affinity region of apoA-I is required for efficient ABCA1-dependent HDL formation.  相似文献   

14.
The surface pressure (pi)-molecular area (A) isotherms for monolayers of human high-density lipoprotein (HDL3) and low-density lipoprotein (LDL) phospholipids and of mixed monolayers of these phospholipids with cholesterol spread at the air-water interface were used to deduce the likely molecular packing at the surfaces of HDL3 and LDL particles. LDL phospholipids form more condensed monolayers than HDL3 phospholipids; for example, the molecular areas of LDL and HDL3 phospholipids at pi = 10 dyn/cm are 88 and 75 A2/molecule, respectively. The closer packing in the LDL phospholipids monolayer can be attributed to the higher contents of saturated phosphatidylcholines and sphingomyelin relative to HDL3. Cholesterol condenses both HDL3 and LDL phospholipid monolayers but has a greater condensing effect on the LDL phospholipid monolayer. The pi-A isotherms for mixed monolayer of HDL3 phospholipid/cholesterol and LDL phospholipid/cholesterol at stoichiometries similar to those at the surfaces of lipoprotein particles suggest that the monolayer at the surface of the LDL particle is significantly more condensed than that at the surface of the HDL3 particle. The closer lateral packing in LDL is due to at least three factors: (1) the difference in phospholipid composition; (2) the higher unesterified cholesterol content in LDL; and (3) a stronger interaction between cholesterol and LDL phospholipids relative to HDL3 phospholipids. The influence of lipid molecular packing on the affinity of human apolipoprotein A-I (apo A-I) for HDL3 and LDL surface lipids was evaluated by monitoring the adsorption of 14C-methylated apo A-I to monolayers of these lipids spread at various initial surface pressures (pi i).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
In reconstituted high-density lipoproteins, apolipoprotein A-I and phosphatidylcholines combine to form disks in which the amphipathic alpha-helices of apolipoprotein A-1 bind to the edge of a lipid bilayer core, shielding the hydrophic lipid tails from the aqueous environment. We have employed experimental data, sequence analysis, and molecular modeling to construct an atomic model of such a reconstituted high-density lipoprotein disk consisting of two apolipoprotein A-I proteins and 160 palmitoyloleoylphosphatidylcholine lipids. The initial globular domain (1-47) of apolipoprotein A-I was excluded from the model, which was hydrated with an 8-A shell of water molecules. Molecular dynamics and simulated annealing were used to test the stability of the model. Both head-to-tail and head-to-head forms of a reconstituted high-density lipoprotein were simulated. In our simulations the protein contained and adhered to the lipid bilayer while providing good coverage of the lipid tails.  相似文献   

16.
HDL (high-density lipoproteins) remove cell cholesterol and protect from atherosclerosis. The major HDL protein is apoA-I (apolipoprotein A-I). Most plasma apoA-I circulates in lipoproteins, yet ~5% forms monomeric lipid-poor/free species. This metabolically active species is a primary cholesterol acceptor and is central to HDL biogenesis. Structural properties of lipid-poor apoA-I are unclear due to difficulties in isolating this transient species. We used thermal denaturation of human HDL to produce lipid-poor apoA-I. Analysis of the isolated lipid-poor fraction showed a protein/lipid weight ratio of 3:1, with apoA-I, PC (phosphatidylcholine) and CE (cholesterol ester) at approximate molar ratios of 1:8:1. Compared with lipid-free apoA-I, lipid-poor apoA-I showed slightly altered secondary structure and aromatic packing, reduced thermodynamic stability, lower self-associating propensity, increased adsorption to phospholipid surface and comparable ability to remodel phospholipids and form reconstituted HDL. Lipid-poor apoA-I can be formed by heating of either plasma or reconstituted HDL. We propose the first structural model of lipid-poor apoA-I which corroborates its distinct biophysical properties and postulates the lipid-induced ordering of the labile C-terminal region. In summary, HDL heating produces folded functional monomolecular lipid-poor apoA-I that is distinct from lipid-free apoA-I. Increased adsorption to phospholipid surface and reduced C-terminal disorder may help direct lipid-poor apoA-I towards HDL biogenesis.  相似文献   

17.
18.
The effects of altered serum 3,3',5-triiodothyronine levels on rat lipoprotein metabolism were examined. Daily injections of the hormone (50 micrograms/100 g body mass) over a period of six days led to an increase of 6.4-fold in the hepatic mRNA level for apolipoprotein(apo)A-I, and a 21% increase in serum apoA-I levels. 12h after a single injection of 3,3',5-triiodothyronine the rate of [14C]leucine incorporation into apoA-I increased 2.1 fold. Conversely, in hypothyroid rats there was a decrease in hepatic mRNA levels for apoA-I and a decreased rate of [14C]leucine incorporation into apoA-I. The increase in hepatic apoA-I mRNA levels following 3,3',5-triiodothyronine treatment occurred prior to significant changes in serum triacylglycerol levels. High-density lipoprotein (HDL) particles isolated from the serum of hyperthyroid rats were smaller and enriched in apoA-I compared to apoA-IV and apoE. Similar changes in HDL composition were observed following in vitro incubations of normal rat serum with purified rat apoA-I. The results suggest that during altered thyroid status, changes in serum HDL size and composition occur in association with significant changes in apoA-I gene expression.  相似文献   

19.
Clusterin/human complement lysis inhibitor (CLI) is incorporated stoichiometrically into the soluble terminal complement complex and inhibits the cytolytic reaction of purified complement components C5b-9 in vitro. Using an anti-clusterin affinity column, we found that an additional protein component with a molecular mass of 28-kDa co-purifies with clusterin from human plasma. We show by immunoblotting and amino acid sequencing that this component is apolipoprotein A-I (apoA-I). By using physiological salt buffers containing 0.5% Triton X-100, apoA-I is completely dissociated from clusterin bound to the antibody column. Free clusterin immobilized on the antibody-Sepharose selectively retains apoA-I from total human plasma. Delipidated apoA-I and to a lesser extent ultracentrifugation-purified high density lipoproteins (HDL) adsorbed to nitrocellulose also have a binding affinity for purified clusterin devoid of apoA-I. The isolated apoA-I-clusterin complex contains approximately 22% (w/w) lipids which are composed of 54% (mole/mol) total cholesterol (molar ratio of unesterified/esterified cholesterol, 0.58), 42% phospholipids, and 4% triglycerides. In agreement with the low lipid content, apoA-I-clusterin complexes are detected only in trace amounts in HDL fractions prepared by density ultracentrifugation. In free flow isotachophoresis, the purified apoA-I-clusterin complex has the same mobility as the native clusterin complex in human plasma and is found in the slow-migrating HDL fraction of fasting plasma. Our data indicate that clusterin circulates in plasma as a HDL complex, which may serve not only as an inhibitor of the lytic terminal complement cascade, but also as a regulator of lipid transport and local lipid redistribution.  相似文献   

20.
Prebeta1 HDL is the initial plasma acceptor of cell-derived cholesterol in reverse cholesterol transport. Recently, small amphipathic peptides composed of D-amino acids have been shown to mimic apolipoprotein A-I (apoA-I) as a precursor for HDL formation. ApoA-I mimetic peptides have been proposed to stimulate the formation of prebeta1 HDL and increase reverse cholesterol transport in apoE-null mice. The existence of a monoclonal antibody (MAb 55201) and a corresponding ELISA method that is selective for the detection of the prebeta(1) subclass of HDL provides a means of establishing a correlation between apoA-I mimetic dose and prebeta1 HDL formation in human plasma. Using this prebeta1 HDL ELISA, we demonstrate marked apoA-I mimetic dose-dependent prebeta1 HDL formation in human plasma. These results correlated with increases in band density of the plasma prebeta1 HDL, when observed by Western blotting, as a function of increased apoA-I mimetic concentration. Increased prebeta1 HDL formation was observed after as little as 1 min and was maximal within 1 h. Together, these data suggest that a high-throughput prebeta1 HDL ELISA provides a way to quantitatively measure a key component of the reverse cholesterol transport pathway in human plasma, thus providing a possible method for the identification of apoA-I mimetic molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号