首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyzed the formation of radiation-induced chromosome aberrations in the cells of the radioresistant colon carcinoma cell line WiDr after treatment with wortmannin, an inhibitor of PI-3 kinases, including DNA-PK. Cells irradiated in G0/G1 phase with 200 kV X rays were treated with wortmannin before or after irradiation. Chromosome-type and chromatid-type aberrations were scored in metaphase cells by either Giemsa staining or FISH. Moreover, DNA-PK activity was measured in the absence and presence of wortmannin. In irradiated G0/G1-phase WiDr cells, only chromosome-type aberrations, including simple and complex exchanges and excess acentrics, were observed. After addition of 1 to 20 microM wortmannin, the formation of chromosome-type exchange aberrations was completely suppressed. The irradiated cells displayed exclusively chromatid-type aberrations including simple and complex chromatid exchanges and chromatid/isochromatid breaks. Whether the chromatid-type aberrations arise during G0/G1 as a result of homologous recombination processes coping with damaged DNA or whether DNA damage induced during G0/G1 phase persists until S and G2 phase and is then processed by homologous recombination pathways must be investigated further.  相似文献   

2.
Sister chromatid exchanges in Chinese hamster chromosomes were studied after pulse-labeling cells with 3H-thymidine at various concentrations. Whereas the frequency of chromatid aberrations varied widely, depending upon tritium dose, there was no significant change in the sister chromatid exchange frequency, even with a 40-fold range of variation in the tritium concentration in the medium. When cells were exposed immediately after labeling to UV light at 40 erg/mm2 and examined at the second mitosis, the frequency of sister chromatid exchanges was found to be 4 times higher than that of the unirradiated controls. A synchronization treatment utilizing 2 mM thymidine also caused a two-fold rise in the exchange frequency above the control level. Furthermore, when synchronized cells were irradiated with UV light at a dose of 40 erg/mm2, the exchange frequency exceeded 5 times that of the untreated controls. However, this effect was detectable only when cells were irradiated at the earlier part of the S phase, while no change was detected when irradiated at the late S or G2 phase. A post-treatment of irradiated cells with caffeine caused a remarkable decrease in the frequency of sister chromatid exchanges. On the other hand, the frequency of chromatid aberrations of the deletion type increased strikingly after the same treatment. The results appear to suggest a certain correlation between the mechanism involved in the induction of sister chromatid exchanges and a post-replication repair of DNA damage.  相似文献   

3.
We have studied the impact of TP53 status on the extent and nature of chromosome damage seen in human skin fibroblasts after gamma irradiation beyond the G1-phase checkpoint but prior to the G2-phase checkpoint. Mitotic cells were examined in the absence and presence of treatment with nocodazole and the yield of aberrations was scored as a function of time postirradiation. The results revealed substantially greater damage in the absence of nocodazole, indicating that damage was being masked in its presence. While metaphase aberrations were seen exclusively in the presence of nocodazole, anaphase aberrations were seen principally in its absence. Furthermore, these were mostly of an unseparated, or "sticky", type that showed separation of the chromatids in the centromeric region, indicating normal degradation of cohesin, with retention of adhesion further out on the chromatid arms. Using postirradiation BrdU labeling and the absence of nocodazole, we were able to identify mitotic figures up to the third postirradiation mitosis. Analysis of the data revealed that in cells wild-type for TP53 the aberrant anaphases were lost after the first postirradiation mitosis, although they were still found in gradually decreasing amounts into the second and third postirradiation mitoses in E6-expressing cells. The data indicate that the formation of these sticky anaphases is independent of TP53 status, an observation that is consistent with the TP53 independence of transient G2-phase arrest. However, the consequences of the formation of these lesions appear to be very different. In the case of cells wild-type for TP53 this is chronic G1-phase arrest, while in E6 cells it is anaphase catastrophe.  相似文献   

4.
The induction of cytotoxicity, chromosomal aberrations, and sister chromatid exchanges (SCEs) was measured in CHO K-1c cells and in isogenic X-ray-sensitive mutant xrs-6c cells that had been irradiated with X rays and alpha particles in isoleucine-deficient alpha-minimal essential medium in G1 phase of the cell cycle. There was a noticeable shoulder region on the survival curve for CHO K-1c cells irradiated with very low doses of alpha particles, whereas this feature was absent for xrs-6c cells with alpha-particle doses as low as 0.5 cGy. Higher frequencies of chromatid-type aberrations were induced in G1-phase xrs-6c cells than in G1-phase CHO K-1c cells by both gamma- and alpha-particle irradiation. Induction of nonlethal chromosomal aberrations was observed following exposure to 2-6 cGy of alpha particles, doses yielding 97-100% cell survival. Irradiation with 0.5 cGy of alpha particles induced SCE; nearly 60% of irradiated cells contained significantly increased levels of SCE. However, only 3% of the nuclei of cells exposed to 0.5 cGy of alpha-particle radiation were actually traversed by an alpha particle. The observation that a large fraction of cells apparently survive exposure to very low doses of alpha-particle radiation with persistent genetic damage manifested by both chromosomal aberrations and SCEs may have important implications for the carcinogenic hazards of high-LET radiation.  相似文献   

5.
The rate of radiation damage to chromosomes by low doses of gamma rays (0.01-0.30 Gy) was studied in the root tips ofVicia faba. As criteria of the effect of ionizing radiation, the frequency of sister chromatid exchanges (SCEs), incidence of chromosomal aberrations and the number of micronuclei were evaluated and compared in irradiated cells. The results obtained confirmed that the analysis of SCEs did not represent an efficient indicator of radiation damage to chromosomes. On the contrary, the formation of chromosomal aberrations and micronuclei was effectively stimulated by low radiation doses, there being linear dose-effect relationships in the low doses region used.  相似文献   

6.
The present study was undertaken to compare the frequency of chromatid-type aberrations in Chinese hamster cells with previous results on accumulation of unrepaired DNA-strand breaks after incorporation of 3H-TdR or 125IUdR into DNA. A linear-quadratic function was fitted by the weighted-least-square method to the data on yield of chromatid aberrations at different dpm values. Based on a significant linear response at low doses, RBE for 125I in relation to 3H was calculated for (i) chromatid breaks (17 +/- 6), (ii) the sum of isochromatid breaks and chromatid exchanges (21 +/- 9), and (iii) the total number of chromatid aberrations (18 +/- 5). Analogously, the RBE for accumulation of DNA-strand breaks was determined (13 +/- 6). Our results are consistent with the assumption that chromosomal aberrations mainly originate from unrepaired DNA-strand breaks.  相似文献   

7.
3,4-epoxy-1-butene (EB), a primary metabolite of butadiene, is a direct-acting "S-dependent" genotoxicant that can induce sister chromatid exchanges (SCEs) and chromosome aberrations (CAs) in cycling cells in vitro. However, EB is almost inactive when splenic or peripheral blood lymphocytes are exposed at the G(0) stage of the cell cycle. To investigate whether repair of DNA lesions is responsible for the lack of cytogenetic responses seen after G(0) treatments, we used cytosine arabinoside (ara-C) to inhibit DNA polymerization during DNA repair. If enough repairable lesions are present, double-strand breaks should accumulate and form chromosome-type ("S-independent") deletions and exchanges. This is exactly what occurred. EB induced chromosome deletions and dicentrics at the first division following treatment, when the EB exposure was followed by ara-C. Without ara-C treatment, there was no induction of CAs. These experiments indicate that the relatively low levels of damage induced by EB in G(0) lymphocytes are removed by DNA repair prior to DNA synthesis and thus, before the production of SCEs or chromatid-type aberrations.  相似文献   

8.
The cytogenetic effect of hydrogen peroxide (H2O2) was investigated in human embryonic fibroblasts. Chromosome-type aberrations were found together with chromatid-type aberrations in metaphase cells harvested 24 h after a single 10-min treatment with 10(-5)-10(-3) M H2O2 in 0.9% NaCl solution. The chromosome-type aberrations were observed to be predominantly dicentrics and deletions. Both types of aberration showed a dose-response relationship to the dose of H2O2 over the range of 10(-5)-1.5 X 10(-4) M H2O2. The intercellular distribution of dicentrics showed a Poisson distribution. Centric and acentric rings and abnormal monocentrics were a minor fraction of the chromosome-type aberrations. The chromatid-type aberrations observed, such as breaks, exchanges and gaps, showed no dose-response relationship. The frequency of isochromatid breaks was higher than that of chromatid breaks and approximately 70% of the isochromatid breaks were found in the centromeric or pericentromeric region. The intercellular distribution of chromatid exchanges showed an over-dispersed distribution. The generation of aberrations by H2O2 was effectively suppressed by catalase and several scavengers of hydroxyl radicals (.OH) such as ethanol, dimethyl sulfoxide (DMSO) and mannitol. This result suggest that .OH plays an essential role in the generation of the chromosome aberrations by H2O2.  相似文献   

9.
Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder. Originally thought to be a variant of ataxia telangiectasia (AT), the cellular phenotype of NBS has been described as almost indistinguishable from that of AT. Since the gene involved in NBS has been cloned and its functions studied, we sought to further characterize its cellular phenotype by examining the response of density-inhibited, confluent cultures of human diploid fibroblasts to irradiation in the G(0)/G(1) phase of the cell cycle. Both NBS and AT cells were markedly sensitive to the cytotoxic effects of radiation. NBS cells, however, were proficient in recovery from potentially lethal damage and exhibited a pronounced radiation-induced G(1)-phase arrest. Irradiated AT cells showed no potentially lethal damage and no G(1)-phase arrest. Both cell types were hypersensitive to the induction of chromosomal aberrations, whereas the distribution of aberrations in irradiated NBS cells was similar to that of normal controls, AT cells showed a high frequency of chromatid-type aberrations. TP53 and CDKN1A (also known as p21(Waf1)) expression was attenuated in irradiated NBS cells, but maximal induction occurred 2 h postirradiation, as was observed in normal controls. The similarities and differences in cellular phenotype between irradiated NBS and AT cells are discussed in terms of the functional properties of the signaling pathways downstream of AT involving the NBS1 and TP53 proteins.  相似文献   

10.
The effect of novobiocin (an inhibitor of DNA topoisomerase and polymerase) on the frequency of chromosomal aberrations was examined in Chinese hamster V79 cells irradiated with gamma-rays in the plateau phase of growth and subcultured in the presence of novobiocin until the first mitosis after irradiation. Novobiocin alone affected cell survival, DNA synthesis and the mitotic frequency of unirradiated cells in a dose-dependent manner, without causing any significant increase in the frequency of chromosome- or chromatid-type aberrations. The frequency of chromosome-type aberrations induced by gamma-radiation was not influenced by novobiocin at 200 microM, but the frequency of chromosome deletions (but not rings and dicentrics) showed a two-fold increase when 300 microM novobiocin was present. Irradiation produced a low level of chromatid-type aberrations and post-treatment with novobiocin at concentrations greater than 100 microM significantly increased the frequency of chromatid gaps and breaks. The results support the idea that different radiation-induced lesions lead to chromosome- as opposed to chromatid-type aberrations.  相似文献   

11.
The clastogenic effect of irradiated human plasma   总被引:1,自引:0,他引:1  
Normal unirradiated human lymphocytes were cultured in medium containing 20 per cent homologous or autologous plasma collected from samples of blood exposed in vitro to various doses of X-irradiation. Metaphases were stained by the BrdU/FPG method. The yields of chromatid-type aberrations in cells at first mitosis (M1 cells) were similar for cultures containing plasma irradiated at 0, 0.05 or 0.25 Gy but were significantly increased at 0.5, 5.0 and 10.0 Gy. The response was dose dependent but the data were insufficient to propose a particular model of dose response. The absence of chromosome-type aberrations confirmed the suggestion that earlier workers' observations of dicentrics and rings were artefacts of long culture times. The level of chromosomal damage was unaffected by omitting folic acid from the medium. Irradiated plasma did not alter the frequency of sister chromatid exchange observed in M2 cells. The ratios of M1, M2 and M3 cells were markedly affected by the presence of irradiated plasma which caused a dose-dependent speeding up of the cell cycle.  相似文献   

12.
The effects of (56)Fe particles and (137)Cs gamma radiation were compared in TK6 and WTK1 human lymphoblasts, two related cell lines which differ in TP53 status and in the ability to rejoin DNA double-strand breaks. Both cell lines were more sensitive to the cytotoxic and clastogenic effects of (56)Fe particles than to those of gamma rays. However, the mutagenicity of (56)Fe particles and gamma rays at the TK locus was the same per unit dose and was higher for gamma rays than for (56)Fe particles at isotoxic doses. The respective RBEs for TK6 and WTK1 cells were 1.5 and 1.9 for cytotoxicity and 2.5 and 1.9 for clastogenicity, but only 1 for mutagenicity. The results indicate that complex lesions induced by (56)Fe particles are repaired less efficiently than gamma-ray-induced lesions, leading to fewer colony-forming cells, a slightly higher proportion of aberrant cells at the first division, and a lower frequency of viable mutants at isotoxic doses. WTK1 cells (mutant TP53) were more resistant to the cytotoxic effects of both gamma rays and (56)Fe particles, but showed greater cytogenetic and mutagenic damage than TK6 cells (TP53(+)). A deficiency in the number of damaged TK6 cells (a) reaching the first mitosis after exposure and (b) forming viable mutants can explain these results.  相似文献   

13.
The repair of X-ray induced DNA single strand breaks and DNA—protein cross-links was investigated in stationary phase, contact-inhibited mouse cells by the alkaline-elution technique. Approx. 90% of X-ray induced single strand breaks were rejoined during the first hour of repair, whereas most of the remaining breaks were rejoined more slowly during the next 5 h. At early repair times, the number of residual non-rejoined sungle strand breaks was approx. proportional to the X-ray dose. DNA—protein cross-links were removed at a slower rate (T1/2 approx. 10–12 h). Cells were held in stationary growth for various periods of time after irradiation before subculture at low density to score for colony survival (potentially lethal damage repair), chromosome aberrations in the first mitosis, and sister-chromatid exchanges in the second mitosis. Both cell killing and the frequency of chromosome aberrations decreased during the first several hours of recovery, reaching a minimum level by 6 h; this decrease correlated temporally with the repair of the slowly rejoining DNA-strand breaks. Relatively few sister-chromatid exchanges were observed when the cells were subcultured immediately after X-ray. The exchange frequency rose to maximum levels after a 4-h recovery interval, and returned to control levels after 12 h of recovery. The possible relationship of DNA repair to these changes in survival, chromosome aberrations, and sister-chromatid exchanges during liquid-holding recovery is discussed.  相似文献   

14.
A recent publication on both chromosome-type and chromatid-type aberrations in lymphocytes of patients during treatment with radium-224 for ankylosing spondilitis has revived the question of whether the chromatid-type aberrations may be the consequence of factors released by irradiated cells. Therefore, the aim of the present study was to investigate the influence of such a bystander phenomenon on the chromosome aberration pattern of lymphocytes. Monolayers of human lymphocytes were irradiated with 1 Gy of α-particles from an americium-241 source in the absence or presence of whole blood, autologous plasma or culture medium. In the presence of any liquid covering the monolayer during irradiation, the chromatid-type aberrations were, contrary to expectation, elevated. Whereas the intercellular distribution of dicentrics was significantly overdispersed, the chromatid-type aberrations showed a regular dispersion. It can be concluded that the enhanced frequency of chromatid aberrations is the result of a damage signal or a bystander phenomenon released by irradiated cells.  相似文献   

15.
16.
The mutagenic and carcinogenic potency of betel-nut components is well established. This study was undertaken to determine the genotoxic potency of an aqueous extract of raw betel nut (AEBN) in relation to the endogenous glutathione (GSH) level in mouse bone marrow cells (BMC) and human peripheral blood lymphocytes (PBLs), and to find out whether arecoline (ARC), an alkaloid of betel nut, could generate reactive oxygen species (ROS) in these cells. It was observed that AEBN has genotoxic properties, which is further enhanced by depletion of endogenous GSH levels. However, the degree of enhancement varies with the type of parameter and cell system studied. The present data indicate that the generation of ROS by ARC could partially contribute to the induction of chromosomal aberrations (CAs), since the frequency of ARC-induced CAs was reduced either by post-treatment with superoxide dismutase (SOD) or in anoxic conditions. However, the induction of sister chromatid exchanges (SCEs) probably involves p53-dependent changes in cell proliferation and allowing some repair of DNA damage. The extent of damage for each parameter was higher when the mice were exposed to AEBN for 30 days than 5 days. Longer exposure showed higher level of p53 expression in mouse BMC, which could block the damaged cells from proliferation and allow the cells to repair the DNA damage.  相似文献   

17.
Space exploration has the potential to yield exciting and significant discoveries, but it also brings with it many risks for flight crews. Among the less well studied of these are health effects from space radiation, which includes the highly charged, energetic particles of elements with high atomic numbers that constitute the galactic cosmic rays. In this study, we demonstrated that 1 Gy iron ions acutely administered to mice in vivo resulted in highly complex chromosome damage. We found that all types of aberrations, including dicentrics as well as translocations, insertions and acentric fragments, disappear rapidly with time after exposure, probably as a result of the death of heavily damaged cells, i.e. cells with multiple and/or complex aberrations. In addition, numerous cells have apparently simple exchanges as their only aberrations, and these cells appear to survive longer than heavily damaged cells. Eight weeks after exposure, the frequency of cells showing cytogenetic damage was reduced to less than 20% of the levels evident at 1 week, with little further decline apparent over an additional 8 weeks. These results indicate that exposure to 1 Gy iron ions produces heavily damaged cells, a small fraction of which appear to be capable of surviving for relatively long periods. The health effects of exposure to high-LET radiation in humans on prolonged space flights should remain a matter of concern.  相似文献   

18.
We have examined the chromosomal radiosensitivities of an ionizing-radiation- and MMS-sensitive mutant (M10), and a UV- and 4NQO-sensitive mutant (Q31), isolated from mouse lymphoma L5178Y cells, with regard to killing effects. In the first mitoses after 100 R γ-irradiations, it was found that M10 cells were highly radiosensitive in terms of chromosomal aberrations accompanying longer mitotic delay (3 h); the frequencies of both chromatid-type and chromosome-type aberrations were, respectively, about 7 and 4 times higher than that of wild-type L5178Y cells. Furthermore, chromatid exchanges, particularly triradials, isochromatid breaks with sister union, and chromatid gaps and breaks were markedly enhanced at G1 phase of M10 cells. In contrast, the chromosomal radiosensitivity of Q31 cells after 100 R irradiation was similar to that of L5178Y cells. On the other hand, spontaneous aberration frequencies (overall breaks per cell) of M10 and Q31 cells were, respectively, 5.1 and 2.2 times higher than that of wild-type L5178Y cells. The chromosomal hypersensitivity to γ-rays in M10 cells is discussed in the light of knowledge obtained from ataxia telangiectasia cells.  相似文献   

19.
O6-Methylguanine (O6-MeG) is induced in DNA by methylating environmental carcinogens and various cytostatic drugs. It is repaired by O6-methylguanine-DNA methyltransferase (MGMT). If not repaired prior to replication, the lesion generates gene mutations and leads to cell death, sister chromatid exchanges (SCEs), chromosomal aberrations and malignant transformation. To address the question of how O6-MeG is transformed into genotoxic effects, isogenic Chinese hamster cell lines either not expressing MGMT (phenotypically Mex), expressing MGMT (Mex+) or exhibiting the tolerance phenotype (Mex, methylation resistant) were compared as to their clastogenic response. Mex cells were more sensitive than Mex+ cells to N-methyl-N′-nitro-N-nitrosoguanidine (MNNG)-induced chromosomal breakage, with marked differences in sensitivity depending on recovery time. At early recovery time, when cells out of the first post-treatment mitosis were scored, aberration frequency was about 40% reduced in Mex+ as compared to Mex cells. At later stages of recovery when cells out of the second post-treatment mitosis were analyzed, the frequency of aberrations increased strongly in Mex cells whereas it dropped to nearly control level in Mex+ cells. From this we conclude that, in the first post-treatment replication cycle of Mex cells, only a minor part of aberrations (<40%) was due to O6-MeG whereas, in the second post-treatment replication cycle, the major part of aberrations (>90%) was caused by the lesion. Thus, O6-MeG is a potent clastogenic DNA damage that needs two DNA replication cycles in order to be transformed with high efficiency into aberrations. The same holds true for sister chromatid exchanges (SCEs). MNNG is highly potent in inducing SCEs in Mex cells in the second replication cycle after alkylation. Under these conditions, SCE induction is nearly completely prevented by the expression of MGMT. This is opposed to SCE induction in the first post-treatment replication cycle, where higher doses of MNNG were required to induce SCEs and no protective effect of MGMT was observed. This indicates that SCEs induced in the first replication cycle after alkylation are due to other lesions than O6-MeG. In methylation tolerant cells, which are characterized by impaired G–T mismatch binding and MSH2 expression, aberration frequency induced by MNNG was weakly reduced in the first and strongly reduced in the second post-treatment mitoses, as compared to CHO wild-type cells. The results indicate that mismatch repair of O6-MeG–T mispairs is decisively involved in O6-MeG born chromosomal instability and recombination. We also show that Mex+ and methylation tolerant cells are more resistant than Mex cells with regard to induction of apoptosis, indicating O6-MeG to be also an apoptosis-inducing lesion. The data are discussed as to the mechanism of cytotoxicity, aberration and SCE formation in cells treated with a methylating agent.  相似文献   

20.
Various types of DNA damage, induced by endo- and exogenous genotoxic impacts, may become processed into structural chromosome changes such as sister chromatid exchanges (SCEs) and chromosomal aberrations. Chromosomal aberrations occur preferentially within heterochromatic regions composed mainly of repetitive sequences. Most of the preclastogenic damage is correctly repaired by different repair mechanisms. For instance, after N-methyl-N-nitrosourea treatment one SCE is formed per >40,000 and one chromatid-type aberration per approximately 25 million primarily induced O6-methylguanine residues in Vicia faba. Double-strand breaks (DSBs) apparently represent the critical lesions for the generation of chromosome structural changes by erroneous reciprocal recombination repair. Usually two DSBs have to interact in cis or trans to form a chromosomal aberration. Indirect evidence is at hand for plants indicating that chromatid-type aberrations mediated by S phase-dependent mutagens are generated by post-replication (mis)repair of DSBs resulting from (rare) interference of repair and replication processes at the sites of lesions, mainly within repetitive sequences of heterochromatic regions. The proportion of DSBs yielding structural changes via misrepair has still to be established when DSBs, induced at predetermined positions, can be quantified and related to the number of SCEs and chromosomal aberrations that appear at these loci after DSB induction. Recording the degree of association of homologous chromosome territories (by chromosome painting) and of punctual homologous pairing frequency along these territories during and after mutagen treatment of wild-type versus hyperrecombination mutants of Arabidopsis thaliana, it will be elucidated as to what extent the interphase arrangement of chromosome territories becomes modified by critical lesions and contributes to homologous reciprocal recombination. This paper reviews the state of the art with respect to DNA damage processing in the course of aberration formation and the interphase arrangement of homologous chromosome territories as a structural prerequisite for homologous rearrangements in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号