首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behavior of Streptomyces peucetius var. caesius N47 was studied in a glucose limited chemostat with a complex cultivation medium. The steady-state study yielded the characteristic constants μ max over 0.10 h−1, Y XS 0.536 g g−1, and mS 0.54 mg g−1 h−1. The product of secondary metabolism, ɛ-rhodomycinone, was produced with characteristics Y PX 12.99 mg g−1 and m P 1.20 mg g−1 h−1. Significant correlations were found for phosphate and glucose consumption with biomass and ɛ-rhodomycinone production. Metabolic flux analysis was conducted to estimate intracellular fluxes at different dilution rates. TCA, PPP, and shikimate pathway fluxes exhibited bigger values with production than with growth. Environmental perturbation experiments with temperature, airflow, and pH changes on a steady-state chemostat implied that an elevation of pH could be the most effective way to shift the cells from growing to producing, as the pH change induced the biggest transient increase to the calculated ɛ-rhodomycinone flux.  相似文献   

2.
109Cd uptake was studied using the highly differentiated TC7 clone of Caco-2 cells as a model of human enterocyte function. Intracellular accumulation of 0.3 μm 109Cd involved a rapid and a slow uptake phase, which resulted in complete equilibration (t ?= 17.3 ± 1.3 min) with an apparent in-to-out distribution ratio (α e ) of 11.6 ± 0.8. The amplitude of the rapid phase (U 0) and the rate of the slow phase (V) were similarly reduced in the less differentiated PF11 clone, but comparable α e values were observed at equilibrium. In both clones, the t ? and α e values increased and decreased, respectively, upon addition of unlabeled Cd to the uptake media. In TC7 cells, 109Cd uptake at 1 min (U 1) was unaffected by Ca concentrations four order of magnitude in excess, but both U 0 and V demonstrated similar sensitivities to unlabeled Cd, Zn and sulfhydryl-reactive agents. Only U 0 disappeared when EDTA was present in the wash solutions. U 1 showed saturation kinetics and the data were found compatible with a model assuming rapid initial Cd binding and transport through a unique transport protein (K m = 3.8 ± 0.7 μm). Cd efflux kinetics demonstrated partial reversibility in EDTA-containing solutions, suggesting that the taken up Cd might be both tightly and loosely bound to intracellular binding sites. However, the displacement of 109Cd measured at 65 min failed to reveal this heterogeneity: the data were found compatible with a model equation assuming the presence of one class of high-capacity high-affinity binding sites. We conclude that a slow-transport fast-intracellular binding mechanism of Cd uptake best accounts for these results and that Cd transport most likely involves a carrier-type of protein unrelated to Ca absorption. Received: 19 January 1996/Revised: 23 January 1997  相似文献   

3.
Changes in leaf physiology with tree age and size could alter forest growth, water yield, and carbon fluxes. We measured tree water flux (Q) for 14 ponderosa pine trees in two size classes (12 m tall and ∼40 years old, and 36 m tall and ∼ 290 years old) to determine if transpiration (E) and whole-tree conductance (g t) differed between the two sizes of trees. For both size classes, E was approximately equal to Q measured 2 m above the ground: Q was most highly correlated with current, not lagged, water vapor pressure deficit, and night Q was <12% of total daily flux. E for days 165–195 and 240–260 averaged 0.97 mmol m–2 (leaf area, projected) s–1 for the 12-m trees and 0.57 mmol m–2 (leaf area) s–1 for the 36-m trees. When photosynthetically active radiation (I P) exceeded the light saturation for photosynthesis in ponderosa pine (900 μmol m–2 (ground) s–1), differences in E were more pronounced: 2.4 mmol m–2 (leaf area) s–1 for the 12-m trees and 1.2 mmol m–2 s–1 for the 36-m trees, yielding g t of 140 mmol m–2 (leaf area) s–1 for the 12-m trees and 72 mmol m–2 s–1 for the 36-m trees. Extrapolated to forests with leaf area index =1, the 36-m trees would transpire 117 mm between 1 June and 31 August compared to 170 mm for the 12-m trees, a difference of 15% of average annual precipitation. Lower g t in the taller trees also likely lowers photosynthesis during the growing season. Received: 19 April 1999 / Accepted: 23 March 2000  相似文献   

4.
Rheological properties of Chlorella pyrenoidosa culture grown heterotrophically in a 14 L fermentor were investigated. It was found that the fluid viscosity was rather low and remained almost unchanged during the cultivation, implying that no (or very few) viscous substances were excreted into the medium. Investigation of the condensed suspension of C. pyrenoidosa showed that for biomass concentration under 150 g.L−1, the suspension of C. pyrenoidosa exhibited Newtonian behavior, and the fluid viscosity was rather low (about 40 mPa·s) and increased very slowly with the increase in cell concentration. With further increase in biomass concentration however, the fluid rheological behavior changed to non-Newtonian, and the fluid viscosity increased rapidly with the increase in cell concentration. From the viewpoint of rheology, C. pyrenoidosa is an excellent organism for high-cell-density culture, and there will be no rheological problems at cell densities under 150 g.L−1.  相似文献   

5.
Analysis has been done to investigate the heat generation/absorption effects in a steady flow of non-Newtonian nanofluid over a surface which is stretching linearly in its own plane. An upper convected Maxwell model (UCM) has been utilized as the non-Newtonian fluid model in view of the fact that it can predict relaxation time phenomenon which the Newtonian model cannot. Behavior of the relaxations phenomenon has been presented in terms of Deborah number. Transport phenomenon with convective cooling process has been analyzed. Brownian motion “Db” and thermophoresis effects “Dt” occur in the transport equations. The momentum, energy and nanoparticle concentration profiles are examined with respect to the involved rheological parameters namely the Deborah number, source/sink parameter, the Brownian motion parameters, thermophoresis parameter and Biot number. Both numerical and analytic solutions are presented and found in nice agreement. Comparison with the published data is also made to ensure the validity. Stream lines for Maxwell and Newtonian fluid models are presented in the analysis.  相似文献   

6.
The Ca2+-activated maxi K+ channel was found in the apical membrane of everted rabbit connecting tubule (CNT) with a patch-clamp technique. The mean number of open channels (NP o ) was markedly increased from 0.007 ± 0.004 to 0.189 ± 0.039 (n= 7) by stretching the patch membrane in a cell-attached configuration. This activation was suggested to be coupled with the stretch-activation of Ca2+-permeable cation channels, because the maxi K+ channel was not stretch-activated in both the cell-attached configuration using Ca2+-free pipette and in the inside-out one in the presence of 10 mm EGTA in the cytoplasmic side. The maxi K+ channel was completely blocked by extracellular 1 μm charybdotoxin (CTX), but was not by cytoplasmic 33 μm arachidonic acid (AA). On the other hand, the low-conductance K+ channel, which was also found in the same membrane, was completely inhibited by 11 μm AA, but not by 1 μm CTX. The apical K+ conductance in the CNT was estimated by the deflection of transepithelial voltage (ΔV t ) when luminal K+ concentration was increased from 5 to 15 mEq. When the tubule was perfused with hydraulic pressure of 0.5 KPa, the ΔV t was only −0.7 ± 0.4 mV. However, an increase in luminal fluid flow by increasing perfusion pressure to 1.5 KPa markedly enhanced ΔV t to −9.4 ± 0.9 mV. Luminal application of 1 μm CTX reduced the ΔV t to −1.3 ± 0.6 mV significantly in 6 tubules, whereas no significant change of ΔV t was recorded by applying 33 μm AA into the lumen of 5 tubules (ΔV t =−7.2 ± 0.5 mV in control vs.ΔV t =−6.7 ± 0.6 mV in AA). These results suggest that the Ca2+-activated maxi K+ channel is responsible for flow-dependent K+ secretion by coupling with the stretch-activated Ca2+-permeable cation channel in the rabbit CNT. Received: 21 August 1997/Revised: 20 March 1998  相似文献   

7.
Two tubular undulating row photobioreactors (TURPs) with a very high illuminated surface/volume ratio (400 m−1) were designed and constructed for the growth of photosynthetic micro-organisms. Experiments were conducted under outdoor conditions; and Arthrospira recycling was performed with airlifts (one for each row). The rows in each reactor faced east-west and consisted of a flexible polyvinyl chloride pipe (22 m long, 0.01 m bore) arranged in a sinusoidal shape. We studied the hydraulic performance of the sine-shaped photobioreactor rows during culture recycling in the TURPs at a very high Reynolds number (4200), when Arthrospira showed Newtonian fluid behavior. The sinusoidal pipe arrangement imposed a sine waveform on the culture, which led to better light utilization. During summer, a volumetric productivity of 2.2 g l−1 day−1 was reached in the TURP-5r (5 rows m−2), whereas an area productivity of 35 g m−2 day−1 was obtained in the TURP-10r (10 rows m−2). This was due to more light being available in the TURP-5r, because its rows were more spaced out and the photic ratio (R f) was low (3.0). In the TURP-10r, the closer rows caused a dilution of the sunlight, but gave a better light distribution inside the Arthrospira culture and improved the light utilization. This was attributed to the high R f (6.0) of this reactor. Received: 8 October 1999 / Received revision: 20 January 2000 / Accepted: 23 January 2000  相似文献   

8.
In situ gas-exchange data, for branchlets of white spruce [Picea glauca (Moench) Voss.] in a mature mixed-wood boreal forest in central Canada (53°44′N 105°14′W), were subjected to a multiple regression analysis. Vapor pressure deficit (VPD) and branchlet temperature (tleaf) were both significant predictors (P<0.0001) of stomatal conductance to water vapor (gsw) and net photosynthesis (An), together explaining 67 and 64% of the variation in gsw and An, respectively. Since VPD and tleaf were autocorrelated in these field data, but also to further explore the nature of independent effects of temperature and humidity on water and CO2 exchange in white spruce, steady-state gas-exchange was performed on well-watered greenhouse-grown seedlings of white spruce. Results from laboratory experiments supported the following conclusions: (1) Transpiration (E) increases with VPD to an inflection point that increases linearly with tleaf. This tleaf effect on E could not be explained by trends in VPD, RH, An or PFD. Rather, our data support a model in which E and gsw are influenced by the balance between ’supply’ and ’loss’ of water to and from leaf tissue, respectively. The supply of water appears to be in accordance with Darcy’s law, where supply of water is proportional to the driving gradient in pressure/ tension, specific permeability (k), and inverse of water viscosity (n –1). Approximately half of the increase in E could be explained by the linear increase in n –1 with increasing tleaf. We propose that increases in k explain the remainder of the increase in E with tleaf. (2) VPD and tleaf appear to have independent effects on gsw. In contrast, RH effects on gsw or E were subtle and could be explained by a combination of effects of tleaf and VPD. (3) An was affected primarily by tleaf, being reduced at low (10°C) and high (40°C) temperatures, and only indirectly by humidity parameters via stomatal conductance, viz. intercellular CO2 concentrations. Our results have implications for the prediction of water fluxes from plants and canopies in areas where plant temperatures vary diurnally or seasonally. Received: 24 September 1998 / Accepted: 20 July 1999  相似文献   

9.
A fluidized-bed reactor (FBR) was used to enrich an aerobic chlorophenol-degrading microbial culture. Long-term continuous-flow operation with low effluent concentrations selected oligotrophic microorganisms producing good-quality effluent for pentachlorophenol(PCP)-contaminated water. PCP biodegradation kinetics was studied using this FBR enrichment culture. The results from FBR batch experiments were modeled using a modified Haldane equation, which resulted in the following kinetic constants: q max = 0.41 mg PCP mg protein−1 day−1, K S = 16 μg l−1, K i = 5.3 mg l−1, and n = 3.5. These results show that the culture has a high affinity for PCP but is also inhibited by relatively low PCP concentrations (above 1.1 mg PCP l−1). This enrichment culture was maintained over 1 year of continuous-flow operation with PCP as the sole source of carbon and energy. During continuous-flow operation, effluent concentrations below 2 μg l−1 were achieved at 268 min hydraulic retention time (t HR) and 2.5 mg PCP l−1 feed concentration. An increase in loading rate by decreasing t HR did not significantly deteriorate the effluent quality until a t HR decrease from 30 min to 21 min resulted in process failure. Recovery from process failure was slow. Decreasing the feed PCP concentration and increasing t HR resulted in an improved process recovery. Received: 10 October 1996 / Received revision: 21 January 1997 / Accepted: 24 January 1997  相似文献   

10.
Photosynthetic induction times and photoinhibition in relation to simulated sunflecks (sudden increase of irradiance from 20 to 1,500 μmol m−2 s−1) were examined in leaves of co-occurring Fagus lucida (a deciduous tree) and Castanopsis lamontii (an evergreen tree) saplings grown either in a beech forest understory or in an adjacent open site during a late rainy season. Two hypotheses were tested: (1) understory leaves would display faster photosynthetic induction times and greater photoinhibition than open-grown leaves; and (2) evergreen species would have slower photosynthetic induction times and lighter photoinhibition than deciduous species. Times to reach 90% of maximal CO2 assimilation rate (t 90%A ) and stomatal conductance did not differ between species, but showed faster by 3–5 min in open-grown leaves than understory leaves due to higher initial stomatal conductance (g s initial) and induction state 1 min into simulated sunflecks (IS1min) in the former. Our analysis across the published data on photosynthetic induction of 48 broad-leaved woody species again revealed the negative correlations between t 90%A and either g s initial or IS1min, and the similarity of t 90%A and between evergreen and deciduous species. Measurements of maximum PSII photochemical efficiency (F v/F m) indicated that photoinhibition occurred in saplings in any of the growth habitats during sunfleck-induced photosynthetic induction. Despite no interspecific differences in the degree of photoinhibition, understory leaves of both species suffered heavier photoinhibition than open-grown leaves, as indicated by a stronger decrease of F v/F m in the former. Dynamic changes in the quantum yields of PSII photochemistry and ΔpH- and xanthophyll-regulated thermal dissipation and adjustments in the partitioning of electron flow between assimilative and non-assimilative processes were functional to resist photoinhibition. However, such photoinhibition, together with stomatal and biochemical limitations, would decrease carbon gain during simulated sunflecks, particularly in understory leaves.  相似文献   

11.
A method for analyzing multiple plant hormone groups in small samples with a complex matrix was developed to initiate a study of the physiology of abnormal vertical growth (AVG) in Macadamia integrifolia (cv. HAES344). Cytokinins (CKs), gibberellins (GAs), abscisic acid (ABA), and auxins were detected in xylem sap and apical and lateral buds using high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (LC-QToF-MS/MS). The extraction method separated compounds with high sensitivity in positive (CKs) and negative (ABA, auxins, GAs) modes of QToF-MS/MS. CK profiles differed in xylem sap and apical and lateral buds irrespective of AVG symptoms. Trans-zeatin riboside (t-ZR) was dominant in sap of normal and AVG trees (∼4 and 6 pmol g−1 FW, respectively). In apical buds isopentenyl adenine (iP) (∼30 pmol g−1 FW) was the most abundant CK, and in lateral buds trans-zeatin (t-Z) (22–24 pmol g−1 FW) and iP (24–30 pmol g−1 FW) were the most abundant. t-Z levels of AVG trees were higher in apical buds (13.88 vs. 6.6 pmol g−1 FW, p < 0.05) and lower in sap (0.16 vs. 0.51 pmol ml−1, p < 0.005) compared to normal trees. ABA in lateral buds was 1.9 times higher (p < 0.001) in AVG. IAA was below quantification, whereas indole-3-butyric acid (IBA) was consistently present. GA7 was the dominant GA in apical and lateral buds of all trees (100–150 pmol g−1 FW). GA3, 4, & 9 were consistently present at low concentrations (<12 pmol g−1 FW) in buds. GAs1, 3, & 9 were detected in xylem sap at low concentrations (<0.5 pmol g−1 FW). Differences in sap amino acids (AA) were also assessed. In sap from AVG trees, asparagine and glutamine increased significantly (p < 0.05) in their contribution to total AA. Potential AVG hormone correlations are discussed.  相似文献   

12.
This paper prsents the results of teh study of rheological behaviour of antibiotic biosynthesis liquids obtained by submerged aerobic cultivation of microorganisms belonging to the actinomycete and fungi classes, in stirred tank bioreactors with turbine impellers. These liquids have a non-Newtonian behaviour which follows the power-law rhcological model with a correlation index of over 0.95. The studied liquids are pseudoplastic, and alter their rheological properties, such as consistency index, (K), flow index, (n), apparent viscosity, (ηa), maximum Newtonian viscosity (η0), with the culture age, microrganism strain and batch conditions. Also, these liquids are time dependent, exhibiting thixotropy. The most viscous liquids are produced by Streptomyces aureofaciens and Streptomyces rimosus cultivation, while that produced by Streptomyces griseus is the least viscous. A higher pseudoplasticity appears after 30 hours culture age. Since all these biosynthesis are aerobic, a careful observation of the rhelogical behaviour dynamics is necessary to avoid the oxygen culture supply limitation and the decrease of the bioreactor performance during biosynthesis.  相似文献   

13.
Rhinocladiella similis biodegraded volatile organic compounds (VOCs) of different polarity in gas-phase biofilters. Elimination capacities, (EC) of 74 ghexane m−3 h−1, 230 gethanol m−3 h−1, 85 gtoluene m−3 h−1 and 30 gphenol m−3 h−1 were obtained. EC values correlated with the solubility of the VOCs. R. similis grown with n-hexane or ethanol in biofilters packed with Perlite showed that the surface hydrophobicity was higher with n-hexane than ethanol. The hydrophobin-like proteins extracted from the mycelium produced with n-hexane (15 kDa) were different from those in the ethanol biofilter (8.5 kDa and 7 kDa).  相似文献   

14.
The gas phase holdup and mass transfer characteristics of carboxymethyl cellulose (CMC) solutions in a bubble column having a radial gas sparger have been determined and a new flow regime map has been proposed. The gas holdup increases with gas velocity in the bubbly flow regime, decreases in the churn-turbulent flow regime, and increases again in the slug flow regime. The volumetric mass transfer coefficient (k La) significantly decreases with increasing liquid viscosity. The gas holdup and k La values in the present bubble column of CMC solutions are found to be much higher than those in bubble columns or external-loop airlift columns with a plate-type sparger. The obtained gas phase holdup ( g) and k La data have been correlated with pertinent dimensionless groups in both the bubbly and the churn-turbulent flow regimes.List of Symbols a m–1 specific gas-liquid interfacial area per total volume - A d m2 cross-sectional area of downcomer - A r m2 cross-sectional area of riser - d b m individual bubble diameter - d vs m Sauter mean bubble diameter - D c m column diameter - D L m2/s oxygen diffusivity in the liquid - Fr Froude number, U g/(g Dc)1/2 - g m/s2 gravitational acceleration - G a Galileo number, gD c 3 2/2 app - H a m aerated liquid height - H c m unaerated liquid height - K Pa · sn fluid consistency index - k L a s–1 volumetric mass transfer coefficient - n flow behavior index - N i number of bubbles having diameter d bi - Sc Schmidt number, app/( D L) - Sh Sherwood number, k L a D c 2 /DL - U sg m/s superficial gas velocity - U gr m/s superficial riser gas velocity - V a m3 aerated liquid volume - V c m3 unaerated liquid volume - N/m surface tension of the liquid phase - g gas holdup - app Pa · s effective viscosity of non-Newtonian liquid - kg/m3 liquid density - ý s–1 shear rate - Pa shear stress  相似文献   

15.
We have analysed the influence of the initial pH of the medium and the quantity of aeration provided during the batch fermentation of solutions of d-xylose by the yeast Hansenula polymorpha (34438 ATCC). The initial pH was altered between 3.5 and 6.5 whilst aeration varied between 0.0 and 0.3 vvm. The temperature was kept at 30 °C during all the experiments. Hansenula polymorpha is known to produce high quantities of xylitol and low quantities of ethanol. The most favourable conditions for the growth of xylitol turned out to be: an initial pH of between 4.5 and 5.5 and the aeration provided by the stirring vortex alone. Thus, at an initial pH of 5.5, the maximum specific production rate (μm) was 0.41 h−1, the overall biomass yield (Y x/s G) was 0.12 g g−1, the specific d-xylose-consumption rate (q s ) was 0.075 g g−1 h−1 (for t = 75 h), the specific xylitol-production rate (q Xy ) was 0.31 g g−1 h−1 (for t = 30 h) and the overall yields of ethanol (Y E/s G) and xylitol (Y Xy/s G) were 0.017 and 0.61 g g−1 respectively. Both q s and q Xy decreased during the course of the experiments once the exponential growth phase had finished. Received: 26 March 1998 / Received revision: 30 June 1998 / Accepted: 2 July 1998  相似文献   

16.
Some reports indicate that mesophyll conductance (g m) to carbon dioxide varies greatly with the substomatal carbon dioxide concentration (C i) during the measurement, while other reports indicate little or no change in g m with C i. I used the oxygen sensitivity of photosynthesis to determine the response of g m to C i over the range of about 100 to 300 μmol mol−1 C i at constant temperature in common bean (Phaseolus vulgaris) and soybean (Glycine max) grown over a range of temperatures and photosynthetic photon flux densities (PPFD). In soybean grown and measured at high PPFD there was only a slight, approximately 15% decrease in g m with C i over the range of 100 to 300 μmol mol−1. With lower PPFD during the measurement of g m, and especially with low PPFD during plant growth, there was a larger decrease in g m with C i in soybean. In common bean, the same range in C i resulted in about a 60% decrease in g m for plants grown and measured at high PPFD, with an even larger decrease for plants at low growth or measurement PPFD. Growth temperatures of 20 to 30°C had little influence on the response of g m to C i or its absolute value in either species. It is concluded that these two species differed substantially in the sensitivity of g m to C i, and that PPFD but not temperature during leaf development strongly affected the response of g m to C i.  相似文献   

17.
Light irradiation had remarkable effects on callus growth of Oldenlandia affinis with an optimum intensity of 35 μmol m−2 s−1. Biosynthesis of kalata B1, the main cyclic peptide in O. affinis, was induced and triggered with rising irradiation intensities. The highest concentration of kalata B1, 0.49 mg g−1 DW characterised by the maximum productivity of 3.88 μg per litre and day was analysed at 120 μmol m−2 s−1, although callus growth was repressed. The light saturation point was established to be 35 μmol m−2 s−1, where kalata B1 productivity was in a similar order (3.41 μg per day) due to the higher growth index. O. affinis suspension cultures were shown to accumulate comparable specific kalata B1 concentrations in a delayed growth associated production pattern. These were dependent on irradiation intensity (0.16 mg g−1 at 2 μmol m−2 s−1; 0.28 mg g−1 at 35 μmol m−2 s−1). The batch cultivation process resulted in a maximum productivity of 27.30 μg per litre and day with culture doubling times of 1.16 d−1. Submers operation represented a 8-fold product enhancement compared to callus cultivation.  相似文献   

18.
The Schmidt number effect on the rheology of finitely extensible nonlinear elastic chains (FENE) in many-body dissipative particle dynamics (MDPD) is investigated in this work. We find that the Schmidt number, ranging from (101) to (103), has limited influence on the polymer properties, such as its radius of gyration (Rg), diffusion coefficient (D) and relaxation time (τ). The simulation results follow Zimm model's predictions well. The hydrodynamic interaction strength parameter h* demonstrates that the full hydrodynamic interaction can be simulated for Schmidt number from (100-106) in MDPD. Next, the rheology of FENE polymers is studied using Lees-Edward boundary condition in shear flow. The shear-thinning and normal stress difference are measured and analysed with MDPD; meanwhile, the volume fraction, solvent quality and chain length are varied to explore their effects on the extent of the Newtonian region. Finally, the non-Newtonian droplet is firstly simulated in MDPD. Its maximum spreading diameter is measured for both Newtonian and non-Newtonian droplet with Weber number (We) ranging from 4.37 to 109.2 on hydrophilic, moderate and hydrophobic surfaces, respectively. The fluid shear-thinning property increases at high shear rate and is further enhanced on more hydrophobic surface, from the maximum spreading diameter results. The non-Newtonian (FENE) droplet can be now well simulated in MDPD and this provides additional insight to further research concerning polymer-solvent-surface interactions, which is crucial in various applications.  相似文献   

19.
In a preceding paper (Bull. Math. Biophysics,27, 175–185) the distribution function ofφ=ɛ 1-ɛ 2,—the difference of excitations in the two mutually inhibiting centers, has been derived in terms of the distribution functionsf 1(ɛ 1) andf 2(ɛ 2) of the two excitations. In the present note some properties of the distribution functionf(ϕ) in terms of the propertiesf 1(ɛ 1) andf 2(ɛ 2) are derived.  相似文献   

20.
A life-table was constructed for a little known aphidiid waspLysiphlebia mirzai, a parasitoid of cereal aphid,Rhopalosiphum maidis. The female parasitoid survived 6.4 ± 1.17 (SD) days and oviposited intensively 4.0 ± 0.47 days. The total fecundity rate, Rt, was 169.2 ± 6.94 mummies/female and net reproductive rate, Ro, was 92.70 female offspring/female. The intrinsic total fecundity rate, rt, and intrinsic rate of natural increase, rm, the finite rate of total fecundity, λt, and finite rate of increase, λm, was 0.27048, 0.24155, 1.31059 and 1.27322 respectively. The mean generation time (18.75 days) and doubling time of the population (2.87 days) was slightly higher than other aphidiids studied so far. The proportion of female progenies decreased significantly on the successive oviposition days.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号