首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Xu Y  Mori T  Johnson CH 《The EMBO journal》2000,19(13):3349-3357
The cyanobacterial gene cluster kaiABC encodes three essential circadian clock proteins: KaiA, KaiB and KaiC. The KaiB and KaiC protein levels are robustly rhythmical, whereas the KaiA protein abundance undergoes little if any circadian oscillation in constant light. The level of the KaiC protein is crucial for correct functioning of the clock because induction of the protein at phases when the protein level is normally low elicits phase resetting. Titration of the effects of the inducer upon phase resetting versus KaiC level shows a direct correlation between induction of the KaiC protein within the physiological range and significant phase shifting. The protein synthesis inhibitor chloramphenicol prevents the induction of KaiC and blocks phase shifting. When the metabolism is repressed by either translational inhibition or constant darkness, the rhythm of KaiC abundance persists; therefore, clock protein expression has a preferred status under a variety of conditions. These data indicate that rhythmic expression of KaiC appears to be a crucial component of clock precession in cyanobacteria.  相似文献   

3.
Physical interactions among clock-related proteins KaiA, KaiB, KaiC, and SasA are proposed to be important for circadian function in the cyanobacterium Synechococcus elongatus PCC 7942. Here we show that the Kai proteins and SasA form heteromultimeric protein complexes dynamically in a circadian fashion. KaiC forms protein complexes of approximately 350 and 400-600 kDa during the subjective day and night, respectively, and serves as a core of the circadian protein complexes. This change in the size of the KaiC-containing complex is accompanied by nighttime-specific interaction of KaiA and KaiB with KaiC. In various arrhythmic mutants that lack each functional Kai protein or SasA, circadian rhythms in formation of the clock protein complex are abolished, and the size of the protein complexes is dramatically affected. Thus, circadian-regulated formation of the clock protein complexes is probably a critical process in the generation of circadian rhythm in cyanobacteria.  相似文献   

4.
By incubating the mixture of three cyanobacterial proteins, KaiA, KaiB, and KaiC, with ATP in vitro, T. Kondo and his colleagues in recent work reconstituted the robust circadian rhythm of the phosphorylation level of KaiC. This finding indicates that protein-protein interactions and the associated hydrolysis of ATP suffice to generate the circadian rhythm. Several theoretical models have been proposed to explain the rhythm generated in this “protein-only” system, but the clear criterion to discern different possible mechanisms was not known. In this article, we discuss a model based on two basic assumptions: the assumption of the allosteric transition of a KaiC hexamer and the assumption of the monomer exchange between KaiC hexamers. The model shows a stable rhythmic oscillation of the phosphorylation level of KaiC, which is robust against changes in concentration of Kai proteins. We show that this robustness gives a clue to distinguish different possible mechanisms. We also discuss the robustness of oscillation against the change in the system size. Behaviors of the system with the cellular or subcellular size should shed light on the role of the protein-protein interactions in in vivo circadian oscillation.  相似文献   

5.
In recent experimental reports, robust circadian oscillation of the phosphorylation level of KaiC has been reconstituted by incubating three cyanobacterial proteins, KaiA, KaiB, and KaiC, with ATP in vitro. This reconstitution indicates that protein-protein interactions and the associated ATP hydrolysis suffice to generate the oscillation, and suggests that the rhythm arising from this protein-based system is the circadian clock pacemaker in cyanobacteria. The mechanism of this reconstituted oscillation, however, remains elusive. In this study, we extend our previous model of oscillation by explicitly taking two phosphorylation sites of KaiC into account and we apply the extended model to the problem of synchrony of two oscillatory samples mixed at different phases. The agreement between the simulated and observed data suggests that the combined mechanism of the allosteric transition of KaiC hexamers and the monomer shuffling between them plays a key role in synchronization among KaiC hexamers and hence underlies the population-level oscillation of the ensemble of Kai proteins. The predicted synchronization patterns in mixtures of unequal amounts of two samples provide further opportunities to experimentally check the validity of the proposed mechanism. This mechanism of synchronization should be important in vivo for the persistent oscillation when Kai proteins are synthesized at random timing in cyanobacterial cells.  相似文献   

6.
7.
Light is the most important factor controlling circadian systems in response to day-night cycles. In order to better understand the regulation of circadian rhythms by light in Synechococcus elongatus PCC 7942, we screened for mutants with defective phase shifting in response to dark pulses. Using a 5-h dark-pulse protocol, we identified a mutation in kaiC that we termed pr1, for phase response 1. In the pr1 mutant, a 5-h dark pulse failed to shift the phase of the circadian rhythm, while the same pulse caused a 10-h phase shift in wild-type cells. The rhythm in accumulation of KaiC was abolished in the pr1 mutant, and the rhythmicity of KaiC phosphorylation was reduced. Additionally, the pr1 mutant was defective in mediating the feedback inhibition of kaiBC. Finally, overexpression of mutant KaiC led to a reduced phase shift compared to that for wild-type KaiC. Thus, KaiC appears to play a role in resetting the cellular clock in addition to its documented role in the feedback regulation of circadian rhythms.  相似文献   

8.
9.
10.
Biochemical circadian oscillation of KaiC phosphorylation, by mixing three Kai proteins and ATP, has been proven to be the central oscillator of the cyanobacterial circadian clock. In vivo, the intracellular levels of KaiB and KaiC oscillate in a circadian fashion. By scrutinizing KaiC phosphorylation rhythm in a wide range of Kai protein concentrations, KaiA and KaiB were found to be “parameter-tuning” and “state-switching” regulators of KaiC phosphorylation rhythm, respectively. Our results also suggest a possible entrainment mechanism of the cellular circadian clock with the circadian variation of intracellular levels of Kai proteins.  相似文献   

11.
Both regulated expression of the clock genes kaiA, kaiB, and kaiC and interactions among the Kai proteins are proposed to be important for circadian function in the cyanobacterium Synechococcus sp. strain PCC 7942. We have identified the histidine kinase SasA as a KaiC-interacting protein. SasA contains a KaiB-like sensory domain, which appears sufficient for interaction with KaiC. Disruption of the sasA gene lowered kaiBC expression and dramatically reduced amplitude of the kai expression rhythms while shortening the period. Accordingly, sasA disruption attenuated circadian expression patterns of all tested genes, some of which became arrhythmic. Continuous sasA overexpression eliminated circadian rhythms, whereas temporal overexpression changed the phase of kaiBC expression rhythm. Thus, SasA is a close associate of the cyanobacterial clock that is necessary to sustain robust circadian rhythms.  相似文献   

12.
Cyanobacteria are photosynthetic prokaryotes that possess circadian oscillators. Clock proteins, KaiA, KaiB, KaiC compose the central circadian oscillator, which can be reconstituted in vitro in the presence of ATP. KaiC has ATPase, autokinase, and autophosphatase enzymatic activities. These activities are modulated by protein–protein interactions among the Kai proteins. The interaction of KaiB with the KaiC complex shows a circadian rhythm in the reconstituted system. We previously developed a quantitative, real-time monitoring system for the dynamic behavior of the complex using fluorescence correlation spectroscopy. Here, we examined the effects of ATP and ADP on the rhythmic interaction of KaiB. We show that increased concentration of ATP or ADP shortened period length. Adding ADP to the Kai protein oscillation shifted its phase in a phase-dependent manner. These results provide insight into how circadian oscillation entrainment mechanism is linked to cellular metabolism.  相似文献   

13.
蓝藻是具有内源性生物钟的简单生物.虽然蓝藻生物钟具有跟真核生物同样的基础特征,但其相关基因和蛋白质与真核生物没有同源性.蓝藻生物钟的核心是kai基因簇及其编码的蛋白KaiA,KaiB和KaiC.这三种Kai蛋白相互作用调节KaiC的磷酸化状态,从而产生昼夜节律信息.KaiC的磷酸化循环是昼夜节律的起博器,调控包括kai基因在内的相关基因的节律性表达.组氨酸蛋白激酶的磷酸化传递可将环境信息输入和将节律信息输出生物钟核心.  相似文献   

14.
KaiA, KaiB, and KaiC are essential proteins of the circadian clock in the cyanobacterium Synechococcus elongatus PCC 7942. The phosphorylation cycle of KaiC that occurs in vitro after mixing the three proteins and ATP is thought to be the master oscillation governing the circadian system. We analyzed the temporal profile of complexes formed between the three Kai proteins. In the phosphorylation phase, KaiA actively and repeatedly associated with KaiC to promote KaiC phosphorylation. High levels of phosphorylation of KaiC induced the association of the KaiC hexamer with KaiB and inactivate KaiA to begin the dephosphorylation phase, which is closely linked to shuffling of the monomeric KaiC subunits among the hexamer. By reducing KaiC phosphorylation, KaiB dissociated from KaiC, reactivating KaiA. We also confirmed that a similar model can be applied in cyanobacterial cells. The molecular model proposed here provides mechanisms for circadian timing systems.  相似文献   

15.
Control of nitrate reductase by circadian and diurnal rhythms in tomato   总被引:1,自引:0,他引:1  
Tucker DE  Allen DJ  Ort DR 《Planta》2004,219(2):277-285
  相似文献   

16.
Phosphoenolypyruvate carboxykinase [EC 4.1.1.21] activity in rat kidney shows a circadian rhythm with the highest activity between 0200 h and 0800 h and the lowest activity between 1400 h and 2000 h. The rhythm was observed in both sexes and throughout the year. Actinomycin D and cycloheximide effectively blocked the circadian increase in enzyme activity. These findings suggest that the circadian increase in phosphoenolypyruvate carboxykinase activity is due to net synthesis of enzyme protein through newly synthesized mRNA. In experiments with kidney cortex slices, gluconeogenesis from the radioactive precursor, [14C]malic acid, was considerably higher at 0200 h than at 1400 h, varying in parallel with the change in the enzyme activity.  相似文献   

17.

Background

KaiC, a central clock protein in cyanobacteria, undergoes circadian oscillations between hypophosphorylated and hyperphosphorylated forms in vivo and in vitro. Structural analyses of KaiC crystals have identified threonine and serine residues in KaiC at three residues (T426, S431, and T432) as potential sites at which KaiC is phosphorylated; mutation of any of these three sites to alanine abolishes rhythmicity, revealing an essential clock role for each residue separately and for KaiC phosphorylation in general. Mass spectrometry studies confirmed that the S431 and T432 residues are key phosphorylation sites, however, the role of the threonine residue at position 426 was not clear from the mass spectrometry measurements.

Methodology and Principal Findings

Mutational approaches and biochemical analyses of KaiC support a key role for T426 in control of the KaiC phosphorylation status in vivo and in vitro and demonstrates that alternative amino acids at residue 426 dramatically affect KaiC''s properties in vivo and in vitro, especially genetic dominance/recessive relationships, KaiC dephosphorylation, and the formation of complexes of KaiC with KaiA and KaiB. These mutations alter key circadian properties, including period, amplitude, robustness, and temperature compensation. Crystallographic analyses indicate that the T426 site is phosphorylatible under some conditions, and in vitro phosphorylation assays of KaiC demonstrate labile phosphorylation of KaiC when the primary S431 and T432 sites are blocked.

Conclusions and Significance

T426 is a crucial site that regulates KaiC phosphorylation status in vivo and in vitro and these studies underscore the importance of KaiC phosphorylation status in the essential cyanobacterial circadian functions. The regulatory roles of these phosphorylation sites–including T426–within KaiC enhance our understanding of the molecular mechanism underlying circadian rhythm generation in cyanobacteria.  相似文献   

18.
The circadian phosphorylation cycle of the cyanobacterial clock protein KaiC has been reconstituted in vitro. The phosphorylation profiles of two phosphorylation sites in KaiC, serine 431 (S431) and threonine 432 (T432), revealed that the phosphorylation cycle contained four steps: (i) T432 phosphorylation; (ii) S431 phosphorylation to generate the double-phosphorylated form of KaiC; (iii) T432 dephosphorylation; and (iv) S431 dephosphorylation. We then examined the effects of mutations introduced at one KaiC phosphorylation site on the intact phosphorylation site. We found that the product of each step in the phosphorylation cycle regulated the reaction in the next step, and that double phosphorylation converted KaiC from an autokinase to an autophosphatase, whereas complete dephosphorylation had the opposite effect. These mechanisms serve as the basis for cyanobacterial circadian rhythm generation. We also found that associations among KaiA, KaiB, and KaiC result from S431 phosphorylation, and these interactions would maintain the amplitude of the rhythm.  相似文献   

19.
Cyanobacterial clock protein KaiC has a hexagonal, pot-shaped structure composed of six identical dumbbell-shaped subunits. Each subunit has duplicated domains, and each domain has a set of ATPase motifs. The two spherical regions of the dumbbell are likely to correspond to two domains. We examined the role of the two sets of ATPase motifs by analyzing the in vitro activity of ATPgammaS binding, AMPPNP-induced hexamerization, thermostability, and phosphorylation of KaiC and by in vivo rhythm assays both in wild type KaiC (KaiCWT) and KaiCs carrying mutations in either Walker motif A or deduced catalytic Glu residues. We demonstrated that 1) the KaiC subunit had two types of ATP-binding sites, a high affinity site in N-terminal ATPase motifs and a low affinity site in C-terminal ATPase motifs, 2) the N-terminal motifs were responsible for hexamerization, and 3) the C-terminal motifs were responsible for both stabilization and phosphorylation of the KaiC hexamer. We proposed the following reaction mechanism. ATP preferentially binds to the N-terminal high affinity site, inducing the hexamerization of KaiC. Additional ATP then binds to the C-terminal low affinity site, stabilizing and phosphorylating the hexamer. We discussed the effect of these KaiC mutations on circadian bioluminescence rhythm in cells of cyanobacteria.  相似文献   

20.
The circadian control of cellular processes in cyanobacteria is regulated by a posttranslational oscillator formed by three Kai proteins. During the oscillator cycle, KaiA serves to promote autophosphorylation of KaiC while KaiB counteracts this effect. Here, we present a crystallographic structure of the wild-type Synechococcus elongatus KaiB and a cryo-electron microscopy (cryoEM) structure of a KaiBC complex. The crystal structure shows the expected dimer core structure and significant conformational variations of the KaiB C-terminal region, which is functionally important in maintaining rhythmicity. The KaiBC sample was formed with a C-terminally truncated form of KaiC, KaiC-Δ489, which is persistently phosphorylated. The KaiB–KaiC-Δ489 structure reveals that the KaiC hexamer can bind six monomers of KaiB, which form a continuous ring of density in the KaiBC complex. We performed cryoEM-guided molecular dynamics flexible fitting simulations with crystal structures of KaiB and KaiC to probe the KaiBC protein–protein interface. This analysis indicated a favorable binding mode for the KaiB monomer on the CII end of KaiC, involving two adjacent KaiC subunits and spanning an ATP binding cleft. A KaiC mutation, R468C, which has been shown to affect the affinity of KaiB for KaiC and lengthen the period in a bioluminescence rhythm assay, is found within the middle of the predicted KaiBC interface. The proposed KaiB binding mode blocks access to the ATP binding cleft in the CII ring of KaiC, which provides insight into how KaiB might influence the phosphorylation status of KaiC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号