首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research on the aflatoxin problem in groundnut at ICRISAT   总被引:3,自引:0,他引:3  
Summary Aflatoxin contamination of groundnut is a serious problem in most groundnut producing countries and as such is given high research priority by the Groundnut Improvement Program of ICRISAT. Since 1979 we have concentrated on selecting cultivars resistant to seed invasion and colonization by toxigenicAspergillus flavus, and/or to aflatoxin production following invasion by the fungus. Resistance to invasion and colonization byA. flavus of rehydrated, mature seed has been found, and confirmed, in some cultivars. We have also screened several groundnut cultivars for seed resistance in the field, both under natural conditions and with the inoculum of the fungus added to the soil in the pod zone. Some cultivars with resistance to seed colonization also showed resistance to seed invasion byA. flavus. None of the cultivars tested has shown complete resistance to aflatoxin production but significant cultivar differences occurred in the amounts of aflatoxin produced in seeds inoculated with a toxigenic strain ofA. flavus.ICRISAT Journal Article No. JA-316  相似文献   

2.
Different cultivars of cow pea and garden pea seeds were surveyed for susceptibility or resistance towards the toxigenic and aflatoxin-producing mould (Aspergillus flavus IMI 102135). The results show that aflatoxin production varied among the different cultivars of both cow pea and garden pea. Morphological and histological characters of the different cultivars tested did not show any relation between colour, shape and size of seeds and the amount of aflatoxin produced. The chemical analysis of the different constituents obtained from both seed coats and seed kernels with susceptible, partially resistant and resistant cow pea and garden pea cultivars revealed that the resistant cultivars of cow pea (namely: Balady cultivar) and garden pea (namely: Melting Sugar cultivar) contained lower levels of sodium and higher levels of phosphate and potassium.  相似文献   

3.
A two-year factorial experiment was utilized to test plants field-inoculated singly and in combination withAspergillus flavus andFusarium moniliforme. Pinbar inoculations were made through the husks with conidial suspensions, and 10-ear maize samples were harvested at 60 days post-silking for aflatoxin determinations. When ears were inoculated with both fungi simultaneously,F. moniliforme reduced aflatoxin formation byA. flavus isolate NRRL 3357 by approximately two-thirds.F. moniliforme had no significant effect on naturally occurring aflatoxin contamination byA. flavus. This may be due to the timing of infection by both fungi in the field. In nature,A. flavus andF. moniliforme respond differently to the environment, offering one explanation of whyF. moniliforme did not measurably affect the other fungus.  相似文献   

4.
5.
Aspergillus flavus and Aspergillus parasiticus cause perennial infection of agriculturally important crops in tropical and subtropical areas. Invasion of crops by these fungi may result in contamination of food and feed by potent carcinogenic aflatoxins. Consumption of aflatoxin contaminated foods is a recognised risk factor for human hepatocellular carcinoma (HCC) and may contribute to the high incidence of HCC in Southeast Asia. This study conducted a survey of Vietnamese crops (peanuts and corn) and soil for the presence of aflatoxigenic fungi and used microsatellite markers to investigate the genetic diversity of Vietnamese Aspergillus strains. From a total of 85 samples comprising peanut (25), corn (45) and soil (15), 106 strains were isolated. Identification of strains by colony morphology and aflatoxin production found all Vietnamese strains to be A. flavus with no A. parasiticus isolated. A. flavus was present in 36.0% of peanut samples, 31.1% of corn samples, 27.3% of farmed soil samples and was not found in virgin soil samples. Twenty-five per cent of the strains produced aflatoxins. Microsatellite analysis revealed a high level of genetic diversity in the Vietnamese A. flavus population. Clustering, based on microsatellite genotype, was unrelated to aflatoxin production, geographic origin or substrate origin.  相似文献   

6.
Preharvest seed infection byAspergillus flavus and aflatoxin contamination in selected groundnut genotypes (fourA. flavus-resistant and fourA. flavus-susceptible) were examined in different soil types at several locations in India in 1985–1990. Undamaged mature pods were sampled at harvest and seed examined forA. flavus infection and aflatoxin content in two or more trials at ICRISAT Center on light sandy soils and red sandy loam soils (Alfisols), and on Vertisols, at Anantapur on light sandy soils, and at Dharwad and Parbhani on Vertisols. Rainy season trials (1985–1989) were all rainfed. Post-rainy season trials were irrigated; late-season drought stress (90 days after sowing (DAS) until harvest at 125 DAS) was imposed in the 1987/88 and 1989/90 seasons.A. flavus infection and aflatoxin contamination levels were much lower in seed of all genotypes from Vertisols than in seed from Alfisols across locations and seasons. Vertisols also had significantly lower populations ofA. flavus than Alfisols. There were no marked differences between light sandy soils and red sandy loam soils (Alfisols) in respect of seed infection byA. flavus and aflatoxin contamination. Significant interactions between genotypes and soil types were evident, especially in theA. flavus-susceptible genotypes. Irrespective of soil types,A. flavus-resistant genotypes showed lower levels of seed infection byA. flavus and other fungi than didA. flavus-susceptible genotypes. The significance of the low preharvest aflatoxin risk in groundnuts grown on Vertisols is highlighted.ICRISAT Journal Article No. JA 1122  相似文献   

7.
Aspergillus flavus Link ex Fries and A. parasiticus Speare can invade peanut kernels and under certain environmental conditions produce unacceptable levels of the mycotoxin aflatoxin. A concerted effort is underway to reduce aflatoxin contamination in peanut and peanut products. A potentially effective method of control in peanut is the discovery and use of genes for resistance to either fungal invasion or aflatoxin formation. The objective of the present experimental study was to develop an effective and efficient procedure for screening individual plants or pods of single plants for resistance to invasion by the aflatoxigenic fungi and subsequent aflatoxin production. Methods of obtaining adequate drought-stress and fungal infection were developed through this series of experiments. By completely isolating the pods from the root zone and imposing drought-stress only on pegs and pods, high levels of fungal infection were observed. High amounts of preharvest aflatoxin accumulation were also produced by completely isolating the pods from the root zone. Mid-bloom inoculation with A. parasiticus-contaminated cracked corn and drought-stress periods of 40 to 60 days were the most effective procedures. This technique was used to assess peanut genotypes previously identified as being partially resistant to A. parasiticus infection or aflatoxin contamination, and segregating populations from four crosses. Variability in aflatoxin contamination was found among the 11 genotypes evaluated, however, none were significantly lower than the standard cultivars. Broad-sense heritability of four crosses was estimated through evaluation of seed from individual plants in the F2 generation. The heritability estimates of crosses GFA-2 × NC-V11 and Tifton-8 × NC-V11 were 0.46 and 0.29, respectively, but mean aflatoxin contamination levels were high (73,295 and 27,305 ppb). This greenhouse screening method could be an effective tool when genes for superior aflatoxin resistance are identified.Cooperative investigation of the USDA-ARS and the University of Georgia, College of Agriculture.  相似文献   

8.
Aflatoxins are toxic and carcinogenic secondary metabolites produced by the fungi Aspergillus flavus and Aspergillus parasiticus. To better understand the molecular mechanisms that regulate aflatoxin production, the biosynthesis of the toxin in A. flavus and A. parasticus grown in yeast extract sucrose media supplemented with 50 mM tryptophan (Trp) were examined. Aspergillus flavus grown in the presence of 50 mM tryptophan was found to have significantly reduced aflatoxin B1 and B2 biosynthesis, while A. parasiticus cultures had significantly increased B1 and G1 biosynthesis. Microarray analysis of RNA extracted from fungi grown under these conditions revealed 77 genes that are expressed significantly different between A. flavus and A. parasiticus, including the aflatoxin biosynthetic genes aflD (nor-1), aflE (norA), and aflO (omtB). It is clear that the regulatory mechanisms of aflatoxin biosynthesis in response to Trp in A. flavus and A. parasiticus are different. These candidate genes may serve as regulatory factors of aflatoxin biosynthesis.  相似文献   

9.
Cotton bolls were inoculated with a green fluorescent protein (GFP)-expressing Aspergillus flavus (strain 70) to monitor fungal growth, mode of entry, colonization of cottonseeds, and production of aflatoxins. The GFP strain and the wild-type did not differ significantly in pathogen aggressiveness as indicated by similar reductions in inoculated locule weight. GFP fluorescence was at least 10 times higher than the blue green yellow fluorescence (BGYF) produced in response to infection by A. flavus. The GFP produced by the strain made it possible to identify and monitor specific plant tissues colonized by the fungus. For example, the inner seed coat and cotyledon were colonized by the fungus within 72 h of inoculation and the mode of entry was invariably through the porous chalazal cap in intact seeds. The amount of GFP fluorescence was shown to be an indicator of fungal growth, colonization and, to some extent, aflatoxin production. The A. flavus strain expressing GFP should be very useful for rapidly identifying cotton lines with enhanced resistance to A. flavus colonization developed through genetic engineering or traditional plant breeding. In addition, development of GFP expressing A. flavus strain provides an easy and rapid assay procedure for studying the ecology, etiology, and epidemiology of cotton boll rot caused by A. flavus resulting in aflatoxin contamination. The U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

10.
Aflatoxin contamination of maize by Aspergillus flavus poses serious potential economic losses in the US and health hazards to humans, particularly in West Africa. The Southern Regional Research Center of the United States Department of Agriculture, Agricultural Research Service (USDA-ARS-SRRC) and the International Institute of Tropical Agriculture (IITA) initiated a collaborative breeding project to develop maize germplasm with resistance to aflatoxin accumulation. Resistant genotypes from the US and selected inbred lines from IITA were used to generate backcrosses with 75% US germplasm and F1 crosses with 50% IITA and 50% US germplasm. A total of 65 S4 lines were developed from the backcross populations and 144 S4 lines were derived from the F1 crosses. These lines were separated into groups and screened in SRRC laboratory using a kernel-screening assay. Significant differences in aflatoxin production were detected among the lines within each group. Several promising S4 lines with aflatoxin values significantly lower than their respective US resistant recurrent parent or their elite tropical inbred parent were selected for resistance-confirmation tests. We found pairs of S4 lines with 75–94% common genetic backgrounds differing significantly in aflatoxin accumulation. These pairs of lines are currently being used for proteome analysis to identify resistance-associated proteins and the corresponding genes underlying resistance to aflatoxin accumulation. Following confirmation tests in the laboratory, lines with consistently low aflatoxin levels will be inoculated with A. flavus in the field in Nigeria to identify lines resistant to strains specific to both US and West Africa. Maize inbred lines with desirable agronomic traits and low levels of aflatoxin in the field would be released as sources of genes for resistance to aflatoxin production.  相似文献   

11.
Aspergillus flavus (Link:Fr.) infection and aflatoxin contamination of maize (Zea mays L.) grain are an extremely serious problem. Maize genotypes resistant to A. flavus attack are needed. Maize breeders and plant pathologists must identify resistance sources and incorporate resistance into adapted breeding material. Maize population GT-MAS:gk has been released for use as a resistance source. In this study, we surveyed the genetic variation in this population and made the breeders/plant pathologists aware of the heterogeneous nature in this maize population by using RAPD analysis and correlated the RAPD marker association with the resistance to A. flavus and aflatoxin production. Of 40 RAPD primers, only 15 gave sufficient numbers of reproducible and readily scored polymorphic bands suggesting that this population was highly homogeneous. However, genetic distances, ranging from 0.08 to 0.28 and averaging 0.17, suggest that there is variation within the population. Cluster analysis distinguished three major polymorphic groups. Laboratory bioassay revealed that group I contained the most resistant individuals, i.e., those with less aflatoxin production. Group II had the least resistance, and group III was intermediate. This study showed that the maize population GT-MAS:gk is heterogeneous and individuals are different in resistance to A. flavus and aflatoxin production. Resistance should be confirmed through progeny testing before further development. The RAPD marker OPX-04, which may be associated with the resistance trait, has been cloned and further characterization will be pursued. Received: 10 May 2000 / Accepted: 12 January 2001  相似文献   

12.
Aspergillus flavus produces potent mutagenic and carcinogenic polyketide‐derived secondary metabolites known as aflatoxins. Development of host plant resistance in peanut and other crops is the most environmentally friendly and cost‐effective method to eliminate the serious problem of aflatoxin contamination in grains. To confirm that putative peanut genes identified in a previous microarray study were involved in peanut resistance to A. flavus infection, 14 genes were selected for further investigation through real‐time PCR. The results revealed diverse patterns of gene expression during seed germination after A. flavus inoculation. Based on the expression levels and the relative‐expression patterns over a 7‐day period, the 14 host genes could be classified into six different groups belonging to three main biochemical and genetic defence processes of lipid metabolism, oxidative signalling and cell‐wall synthesis during counter‐attack. A network of gene expression patterns was activated in sequential order in response to A. flavus invasion in both resistant and susceptible peanut lines during seed germination. Understanding gene expression patterns in peanut will be useful to breeders and other scientists interested in incorporating genetic resources of resistance against A. flavus into peanut germplasm and/or commercial cultivars via conventional and/or molecular methods.  相似文献   

13.
14.
In order to establish the current scenario of aflatoxigenic fungal infection and aflatoxin contamination in sorghum seeds across India, 58 seed samples were collected from different agro-climatic regions. Among these, 67.2% samples were infected with Aspergillus spp. and 28% were found contaminated with aflatoxins ranging from 0.0 to 130?μg?kg?1. Greenhouse studies revealed no correlation between incidence of Aspergillus flavus and aflatoxin content, and its effect on seed quality parameters. Among the 37 A. flavus strains isolated, six were non-aflatoxigenic when analysed through cultural, TLC and ic-ELISA. Seed treatment with biocontrol agents (antagonistic Rhizobacteria and Trichoderma) suppressed the growth of A. flavus under laboratory and significantly enhanced seed quality variables under greenhouse conditions to a various extent. Field trials with selected biocontrol agents showed that talcum powder formulations of Pseudomonas putida Has-1/c, Bacillus spp. 3/a, Trichoderma asperellum M5 and T. asperellum T2 improved seedling emergence, % nutrient accumulation in plants, increased plant biomass and 1000 seed weight. Seeds harvested from treated plants showed significant increase in seed quality variables under laboratory and greenhouse conditions in comparison with control, but there was no significant difference in A. flavus infection and aflatoxin was completely absent in all treatments.  相似文献   

15.
Four corn (Zea mays L.) hybrids were grown in 1977 and 1978 and inoculated with Aspergillus flavus Link 20 or 40 days after silking. Inoculation methods included needle, knife, and multiple-puncture injury to the kernels. The level of aflatoxin contamination, insect damage to the ear, and the percentage of ears having visible greenish A. flavus Link-type mold were determined. Differences among hybrids were not significant for any of the three characteristics measured, although aflatoxin levels of the early-maturing, loose-husked hybrids were approximately twice as high as those of two later-maturing, tight-husked types. Differences among treatments for insect damage rating were not statistically significant. Delaying inoculation until 40 days after silking significantly reduced the aflatoxin contamination level of samples harvested at maturity. Fewer than one-half the ears inoculated at 40 days after silking (35.3%) exhibited visible signs of infection compared with ears inoculated 20 days after silking (82.9%). The needle inoculations were less effective in eliciting aflatoxin production (163 μg/kg and 45.1% visibly infected ears) than were knife (202 μg/kg and 61.8% visibly infected ears) and multiple puncture (305 μg/kg and 70.4% visibly infected ears) methods of inoculation.  相似文献   

16.
Twenty-seven mature cotton bolls with Aspergillus flavus Link colonies naturally occurring on the surface of the boll or lint were collected in the field in Arizona along with their subtending stems and peduncles. Bolls inoculated through the carpel wall 30 days after anthesis were allowed to mature in the field and were collected in the same manner. The seed and stem and peduncle sections of each boll were surface-sterilized, plated on agar media and observed for A. flavus. Seventy-eight percent of the naturally contaminated bolls with A. flavus in the seed also had the fungus in the stem and peduncle, whereas only 31% of the naturally contaminated bolls with no A. flavus in the seed had the fungus in the stem or peduncle. This difference was significant (P=0.0125), indicating a positive relationship between seed infection and stem and peduncle infection. All of the bolls inoculated through the carpel wall had A. flavus in the seed, but only 11% of the stem and peduncle sections were infected, indicating that the fungus does not readily grow downward from the boll into the supporting stem or peduncle.This unidirectional pattern of movement (upward) was further substantiated in greenhouse experiments where cotton seedlings were inoculated at the cotyledonary leaf scar with A. flavus and plants were sequentially harvested, surface sterilized and plated. Aspergillus flavus was isolated from the cotyledonary leaf scar, flower buds, developing bolls, and stem sections in the upper portion of the plant. It was never isolated from roots or stem sections below the cotyledonary node, again indicating that the fungus does not readily move downward through the plant.  相似文献   

17.
Various cultivars of red chilli were collected from a small town named Kunri, located in the province Sindh, Pakistan. This town is a hub of red chilli production in Asia. A total of 69 samples belonging to 6 cultivars were obtained and analysed for the occurrence of aflatoxins and Aspergillus flavus, to explore the potential of resistant and susceptible germplasm. Aflatoxins were detected by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC), while A. flavus was isolated and identified using agar plate, blotter paper, deep freezing and dilution techniques. Molecular characterization using internal transcribed spacer (ITS) 1/4 and A. flavus specific FL1-F/R primers confirmed the identity of A. flavus. The data revealed that 67 and 75% samples contaminated with aflatoxin B1 (AFB1) and with A. flavus, respectively. A highly susceptible chilli cultivar was ‘Nagina’, showing 78.8% frequency of total aflatoxins (1.2–600 μg/kg) and a mean of 87.7 μg/kg for AFB1 and 121.9 μg/kg for total aflatoxins. A. flavus was detected with 93% frequency and 2.14 × 104 colony forming units. In contrast, cultivars ‘Kunri’ and ‘Drooping Type’ were found to be resistant, with low levels of aflatoxins and fungal counts. The study was conducted for the first time to explore two potential cultivars that were less susceptible towards A. flavus and aflatoxin contamination. These cultivars could be preferably cultivated and thereby boost Pakistan’s chilli production.  相似文献   

18.
Essential oils extracted from Citrus reticulata and Cymbopogon citratus were tested in vitro against the toxigenic strain of Aspergillus flavus, isolated from the tuberous roots of Asparagus racemosus, used in preparation of herbal drugs. The essential oils completely inhibited the growth of A. flavus at 750 ppm and also exhibited a broad fungitoxic spectrum against nine additional fungi isolated from the roots. Citrus reticulata and Cymbopogon citratus essential oils completely inhibited aflatoxin B1 production at 750 and 500 ppm, respectively. During in vivo investigation, the incidence of fungi and aflatoxin B1 production decreased considerably in essential oil-treated root samples. The findings thus indicate possible exploitation of the essential oils as effective inhibitor of aflatoxin B1 production and as post-harvest fungitoxicant of traditionally used plant origin for the control of storage fungi. These essential oils may be recommended as plant-based antifungals as well as aflatoxin B1 suppressors in post-harvest processing of herbal samples.  相似文献   

19.
Trials were performed with three aflatoxin-forming isolates of Aspergillus flavus from formic acid-treated materials containing aflatoxin, one A. flavus strain isolated from mouldy barley kept for two months in an anaerobic jar and one non-toxic A. flavus strain from the culture collection at our Department. The nontoxic strain and one aflatoxin producer were cultured in salts-sugar-asparagine substrate (SLM) for aflatoxin production and in a specially prepared grass substrate (GS). Formic acid and ammonium formate were added to both substrates, and sucrose in a low amount was added to the grass substrate. The aflatoxin-forming isolate segregated on the grass substrate into two different lines, one with high aflatoxin production and one with very low aflatoxin-forming ability, higher growth rate and reduced sporulation, on the SLM substrate. When exposed to sucrose in grass substrate and ammonium formate in SLM, one toxic and one non-toxic strain were provoked to increased aflatoxin formation. The A. flavus isolate from the anaerobic jar also segregated on the grass substrate, and these segregants were more sensitive to a high dose of formic acid. In these A. flavus strains there seems to be a continuous variation between different lines, depending on cultivation conditions. In the two aflatoxin-forming isolates left, such segregation tendencies were not very marked on any substrate.  相似文献   

20.
Sixteen samples of some Nigerian indigenous beverages and foodstuffs were analyzed for their aflatoxin content. All the eight samples of beverages tested were found to be contaminated with aflatoxin.Of the eight samples of foodstuffs tested, all contained aflatoxin except ewedu, dawadawa and shoko yokoto.All the beverages used as culture media for Aspergillus flavus (UBMI) supported the growth of the fungus and aflatoxin elaboration. A. flavus was found to grow luxuriantly on all samples of foodstuffs, except dawadawa. However, growth of the fungus on foodstuffs was not synonymous with aflatoxin production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号