首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Seed coating treatments of sunflower by the systemic insecticide imidacloprid was suspected of affecting honey bees and bumblebees. The hypothesis raised was whether imidacloprid could migrate into nectar and pollen, then modify flower attractiveness, homing behavior, and colony development. Our greenhouse and field experiments with Bombus terrestris L. were aimed at the following: the behavior of workers foraging on treated and control plants blooming in a greenhouse, the homing rate of colonies placed for 9 d in a treated field compared with colonies in a control field, and the development of these 20 colonies under laboratory conditions when removed from the fields. In the greenhouse, workers visited blooming heads of treated and control plants at the same rate and the mean duration of their visits was similar. In field colonies, analysis of pollen in hairs and pellets of workers showed that in both fields 98% of nectar foragers visited exclusively sunflowers, whereas only 25% of pollen gatherers collected sunflower pollen. After 9 d, in the control and treated field, 23 and 33% of the marked foragers, respectively, did not return to hives. In both fields, workers significantly drifted from the center to the sides of colony rows. During the 26-d period under field and laboratory conditions, the population increase rate of the 20 colonies was 3.3 and 3.0 workers/d in hives of the control and treated field, respectively. This difference was not significant. New queens were produced in eight colonies in either field. The mean number of new queens per hive was 17 and 24 in the control and treated field, respectively. Their mating rate was the same. It was concluded that applying imidacloprid at the registered dose, as a seed coating of sunflowers cultivated in greenhouse or in field, did not significantly affect the foraging and homing behavior of B. terestris and its colony development.  相似文献   

2.
In the last decade, an increase in honey bee (Apis mellifera L.) colony losses has been reported in several countries. The causes of this decline are still not clear. This study was set out to evaluate the pesticide residues in stored pollen from honey bee colonies and their possible impact on honey bee losses in Spain. In total, 1,021 professional apiaries were randomly selected. All pollen samples were subjected to multiresidue analysis by gas chromatography-mass spectrometry (MS) and liquid chromatography-MS; moreover, specific methods were applied for neonicotinoids and fipronil. A palynological analysis also was carried out to confirm the type of foraging crop. Pesticide residues were detected in 42% of samples collected in spring, and only in 31% of samples collected in autumn. Fluvalinate and chlorfenvinphos were the most frequently detected pesticides in the analyzed samples. Fipronil was detected in 3.7% of all the spring samples but never in autumn samples, and neonicotinoid residues were not detected. More than 47.8% of stored pollen samples belonged to wild vegetation, and sunflower (Heliantus spp.) pollen was only detected in 10.4% of the samples. A direct relation between pesticide residues found in stored pollen samples and colony losses was not evident accordingly to the obtained results. Further studies are necessary to determine the possible role of the most frequent and abundant pesticides (such as acaricides) and the synergism among them and with other pathogens more prevalent in Spain.  相似文献   

3.

Background

Respiratory allergy triggered by pollen allergens is increasing at an alarming rate worldwide. Sunflower pollen is thought to be an important source of inhalant allergens. Present study aims to identify the prevalence of sunflower pollinosis among the Indian allergic population and characterizes the pollen allergens using immuno-proteomic tools.

Methodology

Clinico-immunological tests were performed to understand the prevalence of sensitivity towards sunflower pollen among the atopic population. Sera from selected sunflower positive patients were used as probe to detect the IgE-reactive proteins from the one and two dimensional electrophoretic separated proteome of sunflower pollen. The antigenic nature of the sugar moiety of the glycoallergens was studied by meta-periodate modification of IgE-immunoblot. Finally, these allergens were identified by mass-spectrometry.

Results

Prevalence of sunflower pollen sensitization was observed among 21% of the pollen allergic population and associated with elevated level of specific IgE and histamine in the sera of these patients. Immunoscreening of sunflower pollen proteome with patient sera detected seven IgE-reactive proteins with varying molecular weight and pI. Hierarchical clustering of 2D-immunoblot data highlighted three allergens characterized by a more frequent immuno-reactivity and increased levels of IgE antibodies in the sera of susceptible patients. These allergens were considered as the major allergens of sunflower pollen and were found to have their glycan moiety critical for inducing IgE response. Homology driven search of MS/MS data of these IgE-reactive proteins identified seven previously unreported allergens from sunflower pollen. Three major allergenic proteins were identified as two pectate lyases and a cysteine protease.

Conclusion

Novelty of the present report is the identification of a panel of seven sunflower pollen allergens for the first time at immuno-biochemical and proteomic level, which substantiated the clinical evidence of sunflower allergy. Further purification and recombinant expression of these allergens will improve component-resolved diagnosis and therapy of pollen allergy.  相似文献   

4.
Seven genotypes of sunflower, including populations and hybrids, showing differential susceptibility to Alternaria leaf and stem blight were crossed to CMS 234A with pollen selection and without pollen selection. The pathogen culture filtrate was used as selective pressure at stylar tissue by applying it 1 h before pollination. Distilled water applied to stigmas and styles served as control. Two sets of seven hybrids, one set from selective and the other from non-selective fertilization, were evaluated for reaction to Alternaria leaf and stem blight during the rainy season under natural epiphytotic conditions. Selection for resistant pollen on the stigmatic surface resulted in a corresponding increase in progeny resistance. The study demonstrates the transmission of the selected trait from the pollen generation to progeny. Further, it was observed that the effect of pollen selection was high in the progenies of moderately resistant parents compared to progenies of highly susceptible parents. The effect of successive pollen selection was studied by backcrossing the progeny derived through selective fertilization to the fertile parent using selective fertilization. Successive pollen selection further improved disease resistance of progeny. However, the improvement was not very great. Hence, repeated cycles of selection are required to achieve a useful level of resistance in the case of sunflower, since resistance is polygenetically controlled. Received: 17 May 1999 / Revision accepted: 13 September 1999  相似文献   

5.
Analysing the pollen stored by stingless bees allows identification of the diversity of flowering plants visited by these bees while collecting resources during a given period. However, few studies have focused on investigating the sharing of resources between species of native bees that coexist in transitional plant formations, which support conservation efforts and increase colony productivity. This study aims to describe the partitioning of pollen resources among colonies of two species of stingless bees in the state of the Bahia (Brazil) through the analysis of stored pollen. The study was conducted in neighbouring vegetation zones of the relevant species Melipona quadrifasciata anthidioides and Melipona scutellaris by collecting monthly pollen samples stored by three colonies of each species over one year. The collected samples were treated using the acetolysis technique, and the partitioning of pollen resources between the two species was investigated through quali-quantitative analysis of the treated pollen. The results show that among the 16 pollen types belonging to a particular species or group identified in the Melipona quadrifasciata anthidioides samples and the 18 identified in the Melipona scutellaris samples, 13 were shared by both species. The two most common pollen types stored by both species were from Mimosa arenosa (Fabaceae, Mimosoidae) and Eucalyptus sp. (Myrtaceae). These results demonstrate the niche similarity of pollen pasture between these two species and suggest that conservation efforts for these bee species should focus on the plant families most visited by bees.  相似文献   

6.
Central-place foragers, such as bumble bees, are often constrained by their location when collecting resources to provide their young. We compared the resource use (pollen diets) among seven feral colonies of Bombus ardens located in an area of 2.5 × 2.5 km2. Because this area was likely to be within their maximum foraging distance, most floral resources could have been accessible to all colonies alike. Similarities in pollen diets among these colonies may suggest that the surrounding resources determine resources use, while deviations from this could reveal other factors that affect resources use among colonies. We examined if colonies showed similarities in pollen diets and if colonies do differ in pollen diets, we investigated whether factors, such as establishment year, colony size, and location, affected the colony pollen diets. We found that while the choices of floral resources were similar, the proportional use of the floral resources were significantly different, suggesting that the surrounding resources do not solely determine resource use among colonies. Further analyses showed that the dissimilarity of pollen diets between two colonies increased as spatial distance decreased, as the temporal distances increased, and as the difference in colony size increased. We found that other than differences in annual variances of resources distribution, colony size was the prominent factor that affected the resource use of our seven colonies. We propose that colony-size-dependent work-force differences and other unidentified colony-size-related factors could have significant effects on floral use among colonies overlapping spatially and temporally.  相似文献   

7.
1. Genetic polymorphisms of flowering plants can influence pollinator foraging but it is not known whether heritable foraging polymorphisms of pollinators influence their pollination efficacies. Honey bees Apis mellifera L. visit cranberry flowers for nectar but rarely for pollen when alternative preferred flowers grow nearby. 2. Cranberry flowers visited once by pollen‐foraging honey bees received four‐fold more stigmatic pollen than flowers visited by mere nectar‐foragers (excluding nectar thieves). Manual greenhouse pollinations with fixed numbers of pollen tetrads (0, 2, 4, 8, 16, 32) achieved maximal fruit set with just eight pollen tetrads. Pollen‐foraging honey bees yielded a calculated 63% more berries than equal numbers of non‐thieving nectar‐foragers, even though both classes of forager made stigmatic contact. 3. Colonies headed by queens of a pollen‐hoarding genotype fielded significantly more pollen‐foraging trips than standard commercial genotypes, as did hives fitted with permanently engaged pollen traps or colonies containing more larvae. Pollen‐hoarding colonies together brought back twice as many cranberry pollen loads as control colonies, which was marginally significant despite marked daily variation in the proportion of collected pollen that was cranberry. 4. Caloric supplementation of matched, paired colonies failed to enhance pollen foraging despite the meagre nectar yields of individual cranberry flowers. 5. Heritable behavioural polymorphisms of the honey bee, such as pollen‐hoarding, can enhance fruit and seed set by a floral host (e.g. cranberry), but only if more preferred pollen hosts are absent or rare. Otherwise, honey bees' broad polylecty, flight range, and daily idiosyncrasies in floral fidelity will obscure specific pollen‐foraging differences at a given floral host, even among paired colonies in a seemingly uniform agricultural setting.  相似文献   

8.
Brood pheromone modulated the foraging behavior of commercial honey bee, Apis mellifera L., colonies pollinating a 10-ha market garden of cucumber, Cucurbita pepo L., and zucchini, Cucumis saticus L., in Texas in late autumn. Six colonies were randomly selected to receive 2000 larval equivalents of brood pheromone and six received a blank control. The ratio of pollen to nonpollen foragers entering colonies was significantly greater in pheromone-treated colonies 1 h after treatment. Pheromone-treated foragers returned with pollen load weights that were significantly heavier than controls. Pollen returned by pheromone-treated foragers was 43% more likely to originate from the target crop. Number of pollen grains washed from the bodies of nonpollen foragers from pheromone-treated colonies was significantly greater than controls and the pollen was 54% more likely to originate from the target crop. Increasing the foraging stimulus environment with brood pheromone increased colony-level foraging and individual forager efforts. Brood pheromone is a promising technology for increasing the pollination activity and efficiency of commercial honey bee colonies.  相似文献   

9.
Foraging behavior is a critical adaptation by insects to obtain appropriate nutrients from the environment for development and fitness. Bumble bees (Bombus spp.) form annual colonies which must rapidly increase their worker populations to support rearing reproductive individuals before the end of the season. Therefore, colony growth and reproduction should be dependent on the quality and quantity of pollen resources in the surrounding landscape. Our previous research found that B. impatiens foraging preferences to different plant species were shaped by pollen protein:lipid nutritional ratios (P:L), with foragers preferring pollen species with a ~5:1 P:L ratio. In this study, we placed B. impatiens colonies in three different habitats (forest, forest edge, and valley) to determine whether pollen nutritional quality collected by the colonies differed between areas that may differ in resource abundance and diversity. We found that habitat did not influence the collected pollen nutritional quality, with colonies in all three habitats collecting pollen averaging a 4:1 P:L ratio. Furthermore, there was no difference in the nutritional quality of the pollen collected by colonies that successfully reared reproductives and those that did not. We found however, that “nutritional intake,” calculated as the colony‐level intake rate of nutrient quantities (protein, lipid, and sugar), was strongly related to colony growth and reproductive output. Therefore, we conclude that B. impatiens colony performance is a function of the abundance of nutritionally appropriate floral resources in the surrounding landscape. Because we did not comprehensively evaluate the nutrition provided by the plant communities in each habitat, it remains to be determined how B. impatiens polylectic foraging strategies helps them select among the available pollen nutritional landscape in a variety of plant communities to obtain a balance of key macronutrients.  相似文献   

10.
The production of male sexual offspring by social insect colonies is often strongly seasonal or resource-dependent. In stingless bees, males are produced in smaller numbers under conditions of low colony food reserves; whether such males are negatively affected in traits related to reproductive success is not known. We compared body size, sperm production and sexual maturity in Melipona beecheii males reared with experimentally supplemented or reduced pollen reserves, but with otherwise equal numbers of workers and equal quantities of honey reserves. We also studied the same traits in males collected from non-manipulated colonies with pollen reserves intermediate between the supplemented or reduced groups but with more workers and honey reserves. Males reared under experimentally reduced pollen reserves had significantly smaller bodies and lower sperm counts compared to those reared in colonies with experimentally supplemented pollen reserves. There was also a significantly positive relationship between the number of sperm and body size in males across all colony treatments. The maximum number of sperm in seminal vesicles was recorded 2 days later in males from colonies with reduced pollen compared to males from colonies with supplementary pollen. Males from non-manipulated colonies were intermediate in size, sperm count and speed of maturation. Our study documents for the first time the existence of large size variation in males of stingless bees that is related with the amount of pollen reserves in their natal colony. We conclude that a colony’s pollen reserves have a major impact on male body size, sperm production and speed of sexual maturity in this stingless bee, which may be the case in other social insects. Stingless bees are a good model system to study the balance between colony-level selection and individual-level selection on male sexually selected traits such as body size.  相似文献   

11.
1. Several bee species are declining due to multiple factors, including pathogens. Ingestion of sunflower (Helianthus annuus) pollen can dramatically reduce the bumble bee gut pathogen Crithidia bombi, but little is known about how timing and exposure to sunflower pollen consumption affects pathogen load. 2. Two experiments were carried out to investigate how exposure to sunflower pollen relative to pathogen exposure affects Crithidia bombi in Bombus impatiens. Foraging trials with pollen‐producing and male‐sterile (pollen absent) sunflower lines were performed to investigate whether sunflower pollen affected pathogen transmission in a single foraging bout, and 7‐day laboratory trials were done to investigate whether timing and duration of exposure to sunflower pollen after infection affected C. bombi. 3. In foraging trials, pollen presence on inflorescences inoculated with C. bombi did not affect transmission (pathogen cell counts of foraging workers) 1 week later, suggesting that a brief experience with sunflower pollen concurrent with pathogen exposure is insufficient to reduce infection. In laboratory trials, consuming sunflower pollen for the first 3.5 days or all 7 days after infection reduced cell counts compared with a negative control pollen, but consuming sunflower pollen starting 3.5 days after infection did not. Consuming sunflower pollen for 7 days was significantly and substantially more effective than any other treatment. Thus, both duration and timing of exposure to sunflower pollen may affect pathogen load. 4. These results are important for understanding ecological disease dynamics in natural settings with free‐flying bumble bees, and may inform decisions about using medicinal diets to manage bumble bee health commercially.  相似文献   

12.
We sampled four wild populations of the highly autogamous Spergularia marina (Caryophyllaceae) in California to detect and to measure the magnitude of within- and among-population sources of phenotypic variation in gender and floral traits. From flowers and fruits collected from field and greenhouse-raised plants, we measured ovule number, seed number, mean seed mass, pollen production (greenhouse families only), mean pollen grain volume (greenhouse families only), anther number, anther/ovule ratio, pollen/ovule ratio (estimated using different flowers for pollen than for ovules; greenhouse families only), petal number, and petal size. Using greenhouse-raised genotypes, variation among maternal families nested within populations was evaluated for each trait to determine whether populations differ in the degree of maternally transmitted phenotypic variation. For each population, we used 15 greenhouse-raised maternal families to estimate the broad-sense heritability and genetic coefficient of variation of each floral trait. The magnitude and statistical significance of broad-sense heritability estimates were trait- and population-specific. Each population was characterized by a different combination of floral traits that expressed significant maternally transmitted (presumably genetic) variation under greenhouse conditions. Flowers representing two populations expressed low levels of maternally transmitted variation (three or fewer of nine measured traits exhibited significant maternal family effects on phenotype), while flowers representing the other two populations exhibited significant maternal family effects on phenotype for five or more traits. Our ability to detect statistically significant differences among the four populations depended upon the conditions under which plants were grown (field vs. greenhouse) and on the floral trait observed. Field-collected flowers exhibited significant differences among population means for all traits except anther number. Flowers sampled from greenhouse-raised maternal families differed among populations for all traits except ovule number, seed number, and petal size. We detected negligible evidence that genetic correlations constrain selection on floral traits in Spergularia marina.  相似文献   

13.
A study of sunflower, Helianthus annuus L., pollen collection by Africanized and European honey bees, Apis mellifera L., was conducted in a hybrid seed production field in Argentina. Africanized honey bees collected significantly larger proportions of sunflower pollen than did European honey bees. The result suggests that Africanized bees would be more efficient for commercial sunflower seed production.  相似文献   

14.
Honey bees, Apis mellifera, forage readily on flowers of upland cotton, Gossypium hirsutum, to harvest nectar. The abundant pollen gets caught in the haircoat of the bees, but cotton pollen is nevertheless rarely collected. Honey bee pollen collection effectiveness was therefore investigated in a flight room using cotton and five other spheroidal pollen taxa presented in sequence. Honey bees visited all pollen dishes, but okra pollen (Abelmoschus esculentus) was never packed successfully by the bees landing in the pollen dish. Cotton pollen was collected by 16% of the landing foragers, pumpkin pollen (Cucurbita pepo) by 71%, and pollen of corn (Zea mays), pigweed (Amaranthus palmeri), and sunflower (Helianthus annuus) were readily collected by nearly all foragers. The amount of time spent in the pollen dish was always short (1 to 9 seconds) and homogeneous among all pollen taxa, indicating that none of them was strongly repellent to the bees. The reduced effectiveness with which honey bees collected cotton pollen was demonstrated by the longer amount of time needed for pollen grooming and packing between two consecutive landings in the pollen dish and the small size of cotton pollen pellets (averages of 0.42 mg and 8.23 mg per pellet for cotton and corn pollen, respectively). This reduced efficiency in cotton pollen collection was associated primarily with the length of the spines on cotton pollen which physically interfered with the pollen aggregating process used by honey bees.  相似文献   

15.
Competition among many microgametophytes for a limited number of ovules can lead to both nonrandom fertilization by pollen genotypes and selection for greater sporophytic vigor. The evolutionary implications of this process depend on the extent of heritable genetic variation for pollen competitive ability. Using flower color in wild radish as a genetic marker, we demonstrate differences among pollen donors in competitive ability. Significant differences were found in four out of five pairs of donors. For three pairs of donors, competitive differences were observed in certain maternal plants but not others. To test for heritability of pollen performance, we conducted a selection experiment. We manipulated the intensity of pollen competition for two generations and then tested for differences in the performance of pollen from two selected lines. Competitive ability of pollen derived from each line was assessed relative to a standard unrelated pollen donor, using pollen mixtures on six wild maternal plants. The intensity of previous pollen competition had no overall effect on the proportion of seeds sired by each selected line. In two maternal plants, pollen from intense previous competition was actually inferior, contrary to expectation. Thus, we found no evidence for heritable variation in this trait. Other factors, such as male-female interactions, may influence the outcome of pollen competition. Prevailing theory on the genetic basis of effects of pollen competition on subsequent generations is not supported by our results. Improved protocols for future experiments are discussed.  相似文献   

16.
Generalist foraging behavior among stingless bees is accepted but untested, as well as the subsidiary hypothesis of floral preferences in the genus Melipona. Here we analyzed those hypotheses comparing the use of floral sources of pollen, through paired analyses of pollen samples from different colonies of Melipona scutellaris Latreille, in three areas of the Atlantic Forest Domain, in Northern Brazil. From August, 2004 to January, 2005, monthly samples of pollen were collected at the entrance of twelve colonies of M. scutellaris. In two places, four colonies of M. scutellaris were compared with four colonies of africanized Apis mellifera L. The main pollen sources chosen by the colonies of M. scutellaris were flowers of the following plant families, in decreasing order of importance: Myrtaceae, Mimosaceae, Anacardiaceae, Sapindaceae, Caesalpiniaceae and Fabaceae. Productive pollen sources of Asteraceae, Arecaceae e Rubiaceae were heavily exploited by the colonies of A. mellifera and discharged by the colonies of M.scutellaris. Often, both species shared the main productive pollen sources, as the flowers of Myrtaceae and Mimosaceae. On the other hand, no pollen sources were heavily exploited altogether by both of them, as a rule. In different places and periods, the colonies of M. scutellaris presented high intra-specific similarity and they formed distinct clusters apart from A. mellifera. Therefore, the selection of pollen sources by colonies was species dependent. The paired comparisons refute the hypothesis of random flower exploitation by colonies and give support to the subsidiary hypothesis of selectivity or floral preferences by M.scutellaris.  相似文献   

17.
The effects of changes in spring pollen diet on the development of honey bee, Apis mellifera L. (Hymenoptera: Apidae), colonies were examined in a 3-yr study (2002-2004). Pollen-supplemented and pollen-limited conditions were created in colonies every spring, and brood rearing and honey yields were subsequently monitored throughout the summer. In all 3 yr, colonies that were supplemented with pollen or a pollen substitute in the spring started rearing brood earlier than colonies in other treatment groups and produced the most workers by late April or early May. In 2002, these initial differences were reflected by a two-fold increase in annual honey yields by September for colonies that were pollen-supplemented during the spring compared with pollen-limited colonies. In 2003 and 2004, differences between treatment groups in the cumulative number of workers produced by colonies disappeared by midsummer, and all colonies had similar annual honey yields (exception: in one year, productivity was low for colonies supplemented with pollen before wintering). Discrepancies between years coincided with differences in spring weather conditions. Colonies supplemented with pollen or a substitute during the spring performed similarly in all respects. These results indicate that an investment in supplementing the pollen diet of colonies would be returned for situations in which large spring populations are important, but long-term improvement in honey yields may only result when spring foraging is severely reduced by inclement weather. Beekeepers should weigh this information against the nutritional deficiencies that are frequently generated in colonies by the stresses of commercial management.  相似文献   

18.
19.
Honey bees are among the most effective pollinators that promote plant reproduction. Bees are highly active in the pollen collection season, which can lead to the transmission of selected pathogens between colonies. The clade Starmerella comprises yeasts that are isolated mainly from bees and their environment. When visiting plants, bees can come into contact with Starmerella spp. The aim of this study was to determine the prevalence and phylogenetic position of S. apis in bee colonies. Bee colonies were collected from nine apiaries in three regions. Ten colonies were sampled randomly from each apiary, and pooled samples were collected from the central part of the hive in each colony. A total of 90 (100%) bee colonies from nine apiaries were examined. Starmerella apis was detected in 31 (34.44%) samples, but related species were not identified. The 18S rRNA amplicon sequences of S. apis were compatible with the GenBank sequences of Starmerella spp. from India, Japan, Syria, Thailand, and the USA. The amplicon sequences of S. apis were also 99.06% homologous with the sequences deposited in GenBank under accession numbers JX515988 and NG067631 .This is the first study to perform a phylogenetic analysis of S. apis in Polish honey bees.  相似文献   

20.
Neonicotinoid residues in nectar and pollen from crop plants have been implicated as one of the potential factors causing the declines of honey bee populations. Median residues of thiamethoxam in pollen collected from honey bees after foraging on flowering seed treated maize were found to be between 1 and 7 µg/kg, median residues of the metabolite CGA322704 (clothianidin) in the pollen were between 1 and 4 µg/kg. In oilseed rape, median residues of thiamethoxam found in pollen collected from bees were between <1 and 3.5 µg/kg and in nectar from foraging bees were between 0.65 and 2.4 µg/kg. Median residues of CGA322704 in pollen and nectar in the oilseed rape trials were all below the limit of quantification (1 µg/kg). Residues in the hive were even lower in both the maize and oilseed rape trials, being at or below the level of detection of 1 µg/kg for bee bread in the hive and at or below the level of detection of 0.5 µg/kg for hive nectar, honey and royal jelly samples. The long-term risk to honey bee colonies in the field was also investigated, including the sensitive overwintering stage, from four years consecutive single treatment crop exposures to flowering maize and oilseed rape grown from thiamethoxam treated seeds at rates recommended for insect control. Throughout the study, mortality, foraging behavior, colony strength, colony weight, brood development and food storage levels were similar between treatment and control colonies. Detailed examination of brood development throughout the year demonstrated that colonies exposed to the treated crop were able to successfully overwinter and had a similar health status to the control colonies in the following spring. We conclude that these data demonstrate there is a low risk to honey bees from systemic residues in nectar and pollen following the use of thiamethoxam as a seed treatment on oilseed rape and maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号