首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Arsenic is one of the most hazardous pollutants found in aqueous environments and has been shown to be a carcinogen. Phytochelatins (PCs), which are cysteine-rich and thio-reactive peptides, have high binding affinities for various metals including arsenic. Previously, we demonstrated that genetically engineered Saccharomyces cerevisiae strains expressing phytochelatin synthase (AtPCS) produced PCs and accumulated arsenic. In an effort to further improve the overall accumulation of arsenic, cysteine desulfhydrase, an aminotransferase that converts cysteine into hydrogen sulfide under aerobic condition, was co-expressed in order to promote the formation of larger AsS complexes. Yeast cells producing both AtPCS and cysteine desulfhydrase showed a higher level of arsenic accumulation than a simple cumulative effect of expressing both enzymes, confirming the coordinated action of hydrogen sulfide and PCs in the overall bioaccumulation of arsenic.  相似文献   

2.
Phytochelatins (PCs) are metal-binding cysteine-rich peptides, enzymatically synthesized in plants and yeasts from glutathione in response to heavy metal stress by PC synthase (EC 2.3.2.15). In an attempt to increase the ability of bacterial cells to accumulate heavy metals, the Arabidopsis thaliana gene encoding PC synthase (AtPCS) was expressed in Escherichia coli. A marked accumulation of PCs was observed in vivo together with a decrease in the glutathione cellular content. When bacterial cells expressing AtPCS were placed in the presence of heavy metals such as cadmium or the metalloid arsenic, cellular metal contents were increased 20- and 50-fold, respectively. We discuss the possibility of using genes of the PC biosynthetic pathway to design bacterial strains or higher plants with increased abilities to accumulate toxic metals, and also arsenic, for use in bioremediation and/or phytoremediation processes.  相似文献   

3.
Phytochelatin synthase (PCS) catalyzes the final step in the biosynthesis of phytochelatins, which are a family of cysteine-rich thiol-reactive peptides believed to play important roles in processing many thiol-reactive toxicants. A modified Arabidopsis thaliana PCS sequence (AtPCS1) was active in Escherichia coli. When AtPCS1 was overexpressed in Arabidopsis from a strong constitutive Arabidopsis actin regulatory sequence (A2), the A2::AtPCS1 plants were highly resistant to arsenic, accumulating 20-100 times more biomass on 250 and 300 microM arsenate than wild type (WT); however, they were hypersensitive to Cd(II). After exposure to cadmium and arsenic, the overall accumulation of thiol-peptides increased to 10-fold higher levels in the A2::AtPCS1 plants compared with WT, as determined by fluorescent HPLC. Whereas cadmium induced greater increases in traditional PCs (PC2, PC3, PC4), arsenic exposure resulted in the expression of many unknown thiol products. Unexpectedly, after arsenate or cadmium exposure, levels of the dipeptide substrate for PC synthesis, gamma-glutamyl cysteine (gamma-EC), were also dramatically increased. Despite these high thiol-peptide concentrations, there were no significant increases in concentrations of arsenic and cadmium in above-ground tissues in the AtPCS1 plants relative to WT plants. The potential for AtPCS1 overexpression to be useful in strategies for phytoremediating arsenic and to compound the negative effects of cadmium are discussed.  相似文献   

4.
The enzymatically synthesized thiol peptide phytochelatin (PC) plays a central role in heavy metal tolerance and detoxification in plants. In response to heavy metal exposure, the constitutively expressed phytochelatin synthase enzyme (PCS) is activated leading to synthesis of PCs in the cytosol. Recent attempts to increase plant metal accumulation and tolerance reported that PCS over-expression in transgenic plants paradoxically induced cadmium hypersensitivity. In the present paper, we investigate the possibility of synthesizing PCs in plastids by over-expressing a plastid targeted phytochelatin synthase (PCS). Plastids represent a relatively important cellular volume and offer the advantage of containing glutathione, the precursor of PC synthesis. Using a constitutive CaMV 35S promoter and a RbcS transit peptide, we successfully addressed AtPCS1 to chloroplasts, significant PCS activity being measured in this compartment in two independent transgenic lines. A substantial increase in the PC content and a decrease in the glutathione pool were observed in response to cadmium exposure, when compared to wild-type plants. While over-expressing AtPCS1 in the cytosol importantly decreased cadmium tolerance, both cadmium tolerance and accumulation of plants expressing plastidial AtPCS1 were not significantly affected compared to wild-type. Interestingly, targeting AtPCS1 to chloroplasts induced a marked sensitivity to arsenic while plants over-expressing AtPCS1 in the cytoplasm were more tolerant to this metalloid. These results are discussed in relation to heavy metal trafficking pathways in higher plants and to the interest of using plastid expression of PCS for biotechnological applications.  相似文献   

5.
Phytochelatins (PCs) are metal-binding cysteine-rich peptides, enzymatically synthesized in plants and yeasts from glutathione in response to heavy metal stress by PC synthase (EC 2.3.2.15). In an attempt to increase the ability of bacterial cells to accumulate heavy metals, the Arabidopsis thaliana gene encoding PC synthase (AtPCS) was expressed in Escherichia coli. A marked accumulation of PCs was observed in vivo together with a decrease in the glutathione cellular content. When bacterial cells expressing AtPCS were placed in the presence of heavy metals such as cadmium or the metalloid arsenic, cellular metal contents were increased 20- and 50-fold, respectively. We discuss the possibility of using genes of the PC biosynthetic pathway to design bacterial strains or higher plants with increased abilities to accumulate toxic metals, and also arsenic, for use in bioremediation and/or phytoremediation processes.  相似文献   

6.
Phytochelatin (PC) is a naturally occurring peptide with high affinity towards arsenic (As). In this article, we demonstrated the systematic engineering of PC‐producing E. coli for As accumulation by addressing different bottlenecks in PC synthesis as well as As transport. Phytochelatin synthase from Schizosaccharomyces pombe (SpPCS) was expressed in E. coli resulting in 18 times higher As accumulation. PC production was further increased by co‐expressing a feedback desensitized γ‐glutamylcysteine synthetase (GshI*), resulting in 30‐fold higher PC levels and additional 2‐fold higher As accumulation. The significantly increased PC levels were exploited further by co‐expressing an arsenic transporter GlpF, leading to an additional 1.5‐fold higher As accumulation. These engineering steps were finally combined in an arsenic efflux deletion E. coli strain to achieve an arsenic accumulation level of 16.8 µmol/g DCW, a 80‐fold improvement when compared to a control strain not producing phytochelatins. Biotechnol. Bioeng. 2010. 105: 780–785. © 2009 Wiley Periodicals, Inc.  相似文献   

7.
采用固定滴灌(根区一侧固定供水)、控制性分根区交替滴灌(根区两侧交替供水)和常规滴灌(紧贴幼树基部供水)3种灌水方式和3种灌水定额(固定滴灌和交替滴灌均为10、20和30 mm,常规滴灌为20、30和40 mm),对比研究了控制性分根区交替滴灌对苹果幼树形态特征与根系水分传导的影响.结果表明: 交替滴灌的根区两侧土壤出现反复干湿交替过程,常规滴灌的根区两侧土壤含水率差异不显著.在灌水定额相同时,灌水侧的土壤含水率在3种灌水方式间差异不显著.与常规滴灌和固定滴灌相比,交替滴灌显著增加了苹果幼树的根冠比、壮苗指数和根系水分传导,在30 mm灌水定额处理下,交替滴灌的根冠比分别增加31.6%和47.1%,壮苗指数增加34.2%和53.6%,根系水分传导增加9.0%和11.0%.3种灌水方式下,根干质量和叶面积均与根系水分传导呈显著线性正相关.控制性分根区交替滴灌增强了苹果幼树根系水分传导的补偿效应,促进了根系对水分的吸收利用,有利于干物质向各个器官均衡分配,显著提高了根冠比和壮苗指数.  相似文献   

8.
Phytochelatins (PCs) are post-translationally synthesized thiol reactive peptides that play important roles in detoxification of heavy metal and metalloids in plants and other living organisms. The overall goal of this study is to develop transgenic plants with increased tolerance for and accumulation of heavy metals and metalloids from soil by expressing an Arabidopsis thaliana AtPCS1 gene, encoding phytochelatin synthase (PCS), in Indian mustard (Brassica juncea L.). A FLAG-tagged AtPCS1 gDNA, under its native promoter, is expressed in Indian mustard, and transgenic pcs lines have been compared with wild-type plants for tolerance to and accumulation of cadmium (Cd) and arsenic (As). Compared to wild type plants, transgenic plants exhibit significantly higher tolerance to Cd and As. Shoots of Cd-treated pcs plants have significantly higher concentrations of PCs and thiols than those of wild-type plants. Shoots of wild-type plants accumulated significantly more Cd than those of transgenic plants, while accumulation of As in transgenic plants was similar to that in wild type plants. Although phytochelatin synthase improves the ability of Indian mustard to tolerate higher levels of the heavy metal Cd and the metalloid As, it does not increase the accumulation potential of these metals in the above ground tissues of Indian mustard plants.  相似文献   

9.
Phytochelatins (PCs) with good binding affinities for a wide range of heavy metals were exploited to develop microbial sorbents for cadmium removal. PC synthase from Schizosaccharomyces pombe (SpPCS) was overexpressed in Escherichia coli, resulting in PC synthesis and 7.5-times-higher Cd accumulation. The coexpression of a variant gamma-glutamylcysteine synthetase desensitized to feedback inhibition (GshI) increased the supply of the PC precursor glutathione, resulting in further increases of 10- and 2-fold in PC production and Cd accumulation, respectively. A Cd transporter, MntA, was expressed with SpPCS and GshI to improve Cd uptake, resulting in a further 1.5-fold increase in Cd accumulation. The level of Cd accumulation in this recombinant E. coli strain (31.6 micromol/g [dry weight] of cells) was more than 25-fold higher than that in the control strain.  相似文献   

10.
11.
Phytochelatin (PC) plays an important role in heavy metal detoxification in plants and other living organisms. Therefore, we overexpressed an Arabidopsis PC synthase (AtPCS1) in transgenic Arabidopsis with the goal of increasing PC synthesis, metal accumulation, and metal tolerance in these plants. Transgenic Arabidopsis plants were selected, designated pcs lines, and analyzed for tolerance to cadmium (Cd). Transgenic pcs lines showed 12- to 25-fold higher accumulation of AtPCS1 mRNA, and production of PCs increased by 1.3- to 2.1-fold under 85 microM CdCl(2) stress for 3 d when compared with wild-type plants. Cd tolerance was assessed by measuring root length of plants grown on agar medium containing 50 or 85 microM CdCl(2). Pcs lines paradoxically showed hypersensitivity to Cd stress. This hypersensitivity was also observed for zinc (Zn) but not for copper (Cu). The overexpressed AtPCS1 protein itself was not responsible for Cd hypersensitivity as transgenic cad1-3 mutants overexpressing AtPCS1 to similar levels as those of pcs lines were not hypersensitive to Cd. Pcs lines were more sensitive to Cd than a PC-deficient Arabidopsis mutant, cad1-3, grown under low glutathione (GSH) levels. Cd hypersensitivity of pcs lines disappeared under increased GSH levels supplemented in the medium. Therefore, Cd hypersensitivity in pcs lines seems due to the toxicity of PCs as they existed at supraoptimal levels when compared with GSH levels.  相似文献   

12.
Phytochelatin synthase (PC synthase) catalyzes a biosynthesis of phytochelatins (PCs), which are small molecules and glutathione (GSH)-derived metal-binding peptides that are essential for the detoxification of heavy metal ions in plants, fungi and worms. In order to enhance tolerance to heavy metal cytotoxicity, mRNA coding for PC synthase from Arabidopsis thaliana (AtPCS1) was introduced into the early embryos of zebrafish. As a result, the heterogeneous expression of PC synthase and the synthesis of PCs from GSH in embryos could be detected. The developing embryos expressing PC synthase (PC-embryos) became more tolerant to Cd toxicity (500 microM exposure). PC-embryos had significantly longer apparent lethal times for 50% of the population (LT50) of 8.17+/-1.08 days, although control embryos had apparent LT50 of 5.43+/-0.66 days. These data suggest that PC synthase can function in developmental zebrafish, and that PCs are highly effective in detoxifying Cd toxicity even in the whole body of a vertebrate species.  相似文献   

13.
Cadmium (Cd) and arsenic (As) are toxic to all living organisms, including plants and humans. In plants, Cd and As are detoxified by phytochelatins (PCs) and metal(loid)‐chelating peptides and by sequestering PC–metal(loid) complexes in vacuoles. Consistent differences have been observed between As and Cd detoxification. Whereas chelation of Cd by PCs is largely sufficient to detoxify Cd, As–PC complexes must be sequestered into vacuoles to be fully detoxified. It is not clear whether this difference in detoxification pathways is ubiquitous among plants or varies across species. Here, we have conducted a PC transport study using vacuoles isolated from Arabidopsis and barley. Arabidopsis vacuoles accumulated low levels of PC2–Cd, and vesicles from yeast cells expressing either AtABCC1 or AtABCC2 exhibited negligible PC2–Cd transport activity compared with PC2–As. In contrast, barley vacuoles readily accumulated comparable levels of PC2–Cd and PC2–As. PC transport in barley vacuoles was inhibited by vanadate, but not by ammonium, suggesting the involvement of ABC‐type transporters. Interestingly, barley vacuoles exhibited enhanced PC2 transport activity when essential metal ions, such as Zn(II), Cu(II) and Mn(II), were added to the transport assay, suggesting that PCs might contribute to the homeostasis of essential metals and detoxification of non‐essential toxic metal(loid)s.  相似文献   

14.
Phytochelatins (PCs) with good binding affinities for a wide range of heavy metals were exploited to develop microbial sorbents for cadmium removal. PC synthase from Schizosaccharomyces pombe (SpPCS) was overexpressed in Escherichia coli, resulting in PC synthesis and 7.5-times-higher Cd accumulation. The coexpression of a variant γ-glutamylcysteine synthetase desensitized to feedback inhibition (GshI*) increased the supply of the PC precursor glutathione, resulting in further increases of 10- and 2-fold in PC production and Cd accumulation, respectively. A Cd transporter, MntA, was expressed with SpPCS and GshI* to improve Cd uptake, resulting in a further 1.5-fold increase in Cd accumulation. The level of Cd accumulation in this recombinant E. coli strain (31.6 μmol/g [dry weight] of cells) was more than 25-fold higher than that in the control strain.  相似文献   

15.
Phytochelatins (PCs) play a crucial role in detoxifying cellular arsenic (As) through complexation of arsenite. Here, we investigated whether PCs influence As accumulation in rice grain by using six rice cultivars varying in grain As accumulation. The cultivars with low grain As had significantly higher PCs concentration in the shoots than the cultivars with high grain As, but lower glutathione concentration. Shoot PCs concentration correlated negatively with grain As accumulation. Foliar sprays with 0.5 mM l-buthionine-sulphoxime (BSO) on rice leaves at grain filling stage decreased GSH and PC accumulation in rice shoots by 40-63% and 20-55%, respectively, but did not significantly affect plant growth. Foliar sprays with BSO decreased shoot As concentration, while increased As concentrations in husk and brown rice significantly. These results suggest that PC complexation of arsenite in rice leaves reduces As translocation from leaves to grains, and implicate that manipulation of PC synthesis might mitigate As accumulation in rice grain.  相似文献   

16.
Leaf-targeted phytochelatin synthase in Arabidopsis thaliana   总被引:3,自引:0,他引:3  
One of the key steps in developing transgenic plants for the phytoremediation of metal containing soils is to develop plants that accumulate metals in the aerial tissues. With the goal of changing the distribution of phytochelatin (PC)-dependent cadmium accumulation from roots to the leaves, the phytochelatin synthase (PCS) deficient cad1-3 mutant and wild type (Col-0) Arabidopsis plants were transformed with an Arabidopsis phytochelatin synthase (AtPCS1) under the control of a leaf-specific promoter. Three independent transformant lines from each genetic background were chosen for further analysis and designated cad-PCS and WT-PCS. PCS activity in the cadPCS lines was restored in the leaves, but not in the roots. Additionally, when whole plants were treated with cadmium, PCs were found only in the leaves of cad-PCS plants. Although the inserted AtPCS1 gene was leaf-specific, cad-PCS lines showed an overall decrease in cadmium toxicity evidenced by a partial amelioration of the "brown-root" phenotype and root growth was restored to wild type levels when treated with cadmium and arsenate. WT-PCS lines showed an increase in leaf PCS activity but had only wild type PC levels. In addition, cadmium uptake studies indicated that there was no difference in cadmium accumulation among all types tested. So, while we were able to protect the plants against cadmium by expressing PC synthase only in the leaves, we were not able to limit cadmium accumulation to aerial tissues.  相似文献   

17.
Phytochelatin (PC) synthases are gamma-glutamylcysteine (gamma-Glu-Cys) dipeptidyl transpeptidases that catalyze the synthesis of heavy metal-binding PCs, (gamma-Glu-Cys)nGly polymers, from glutathione (GSH) and/or shorter chain PCs. Here it is shown through investigations of the enzyme from Arabidopsis (Arabidopsis thaliana; AtPCS1) that, although the N-terminal half of the protein, alone, is sufficient for core catalysis through the formation of a single-site enzyme acyl intermediate, it is not sufficient for acylation at a second site and augmentative stimulation by free Cd2+. A purified N-terminally hexahistidinyl-tagged AtPCS1 truncate containing only the first 221 N-terminal amino acid residues of the enzyme (HIS-AtPCS1_221tr) is competent in the synthesis of PCs from GSH in media containing Cd2+ or the synthesis of S-methyl-PCs from S-methylglutathione in media devoid of heavy metal ions. However, whereas its full-length hexahistidinyl-tagged equivalent, HIS-AtPCS1, undergoes gamma-Glu-Cys acylation at two sites during the Cd2+-dependent synthesis of PCs from GSH and is stimulated by free Cd2+ when synthesizing S-methyl-PCs from S-methylglutathione, HIS-AtPCS1_221tr undergoes gamma-Glu-Cys acylation at only one site when GSH is the substrate and is not directly stimulated, but instead inhibited, by free Cd2+ when S-methylglutathione is the substrate. Through the application of sequence search algorithms capable of detecting distant homologies, work we reported briefly before but not in its entirety, it has been determined that the N-terminal half of AtPCS1 and its equivalents from other sources have the hallmarks of a papain-like, Clan CA Cys protease. Whereas the fold assignment deduced from these analyses, which substantiates and is substantiated by the recent determination of the crystal structure of a distant prokaryotic PC synthase homolog from the cyanobacterium Nostoc, is capable of explaining the strict requirement for a conserved Cys residue, Cys-56 in the case of AtPCS1, for formation of the biosynthetically competent gamma-Glu-Cys enzyme acyl intermediate, the primary data from experiments directed at determining whether the other two residues, His-162 and Asp-180 of the putative papain-like catalytic triad of AtPCS1, are essential for catalysis have yet to be presented. This shortfall in our basic understanding of AtPCS1 is addressed here by the results of systematic site-directed mutagenesis studies that demonstrate that not only Cys-56 but also His-162 and Asp-180 are indeed required for net PC synthesis. It is therefore established experimentally that AtPCS1 and, by implication, other eukaryotic PC synthases are papain Cys protease superfamily members but ones, unlike their prokaryotic counterparts, which, in addition to having a papain-like N-terminal catalytic domain that undergoes primary gamma-Glu-Cys acylation, contain an auxiliary metal-sensing C-terminal domain that undergoes secondary gamma-Glu-Cys acylation.  相似文献   

18.
Raab A  Feldmann J  Meharg AA 《Plant physiology》2004,134(3):1113-1122
We have developed a method to extract and separate phytochelatins (PCs)-metal(loid) complexes using parallel metal(loid)-specific (inductively coupled plasma-mass spectrometry) and organic-specific (electrospray ionization-mass spectrometry) detection systems-and use it here to ascertain the nature of arsenic (As)-PC complexes in plant extracts. This study is the first unequivocal report, to our knowledge, of PC complex coordination chemistry in plant extracts for any metal or metalloid ion. The As-tolerant grass Holcus lanatus and the As hyperaccumulator Pteris cretica were used as model plants. In an in vitro experiment using a mixture of reduced glutathione (GS), PC(2), and PC(3), As preferred the formation of the arsenite [As((III))]-PC(3) complex over GS-As((III))-PC(2), As((III))-(GS)(3), As((III))-PC(2), or As((III))-(PC(2))(2) (GS: glutathione bound to arsenic via sulphur of cysteine). In H. lanatus, the As((III))-PC(3) complex was the dominant complex, although reduced glutathione, PC(2), and PC(3) were found in the extract. P. cretica only synthesizes PC(2) and forms dominantly the GS-As((III))-PC(2) complex. This is the first evidence, to our knowledge, for the existence of mixed glutathione-PC-metal(loid) complexes in plant tissues or in vitro. In both plant species, As is dominantly in non-bound inorganic forms, with 13% being present in PC complexes for H. lanatus and 1% in P. cretica.  相似文献   

19.
The results presented in this paper provide evidence for the role of phytochelatins (PCs) in the detoxification of arsenic in six nonhyperaccumulating plant species, Agropyron repens, Glecoma hederacea, Leonurus marrubiastrum, Lolium perenne, Urtica dioica and Zea mays, in a pot experiment with high phosphate treatment. These plants differed in their arsenic sensitivities and were selected to investigate whether PCs with longer chains in roots of arsenic-tolerant species are synthesized. Raised concentrations of total PCs were measured in plant species with a range of sensitivities to arsenic at equivalent levels of arsenic exposure, determined as the inhibition of root biomass. In addition, the production of PCs as a function of accumulated arsenic was studied. Long-term PC synthesis (over a 5-week period) was positively, but non-linearly correlated with arsenic, suggesting that probably not all As is bound by PCs. Moreover, it could be shown that the synthesis of different chain lengths of PCs is associated with differences in As tolerance. In the more tolerant grasses A. repens and L. perenne it was chiefly the dithiol PC2 which was measured. In contrast, the dominant PC species in the less tolerant plants U. dioica, G. hederacea, L. marrubiastrum and Z. mays was PC3, while PC2 and PC3 were detected as well. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Phytochelatin synthases (PCS) catalyze phytochelatin (PC) synthesis from glutathione (GSH) in the presence of certain metals. The resulting PC-metal complexes are transported into the vacuole, avoiding toxic effects on metabolism. Legumes have the unique capacity to partially or completely replace GSH by homoglutathione (hGSH) and PCs by homophytochelatins (hPCs). However, the synthesis of hPCs has received little attention. A search for PCS genes in the model legume Lotus (Lotus japonicus) resulted in the isolation of a cDNA clone encoding a protein (LjPCS1) highly homologous to a previously reported homophytochelatin synthase (hPCS) of Glycine max (GmhPCS1). Recombinant LjPCS1 and Arabidopsis (Arabidopsis thaliana) PCS1 (AtPCS1) were affinity purified and their polyhistidine-tags removed. AtPCS1 catalyzed hPC synthesis from hGSH alone at even higher rates than did LjPCS1, indicating that GmhPCS1 is not a genuine hPCS and that a low ratio of hPC to PC synthesis is an inherent feature of PCS1 enzymes. For both enzymes, hGSH is a good acceptor, but a poor donor, of gamma-glutamylcysteine units. Purified AtPCS1 and LjPCS1 were activated (in decreasing order) by Cd2+, Zn2+, Cu2+, and Fe3+, but not by Co2+ or Ni2+, in the presence of 5 mm GSH and 50 microm metal ions. Activation of both enzymes by Fe3+ was proven by the complete inhibition of PC synthesis by the iron-specific chelator desferrioxamine. Plants of Arabidopsis and Lotus accumulated (h)PCs only in response to a large excess of Cu2+ and Zn2+, but to a much lower extent than did with Cd2+, indicating that (h)PC synthesis does not significantly contribute in vivo to copper, zinc, and iron detoxification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号