首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An extracorporeal bioartificial liver device has the potential to provide temporary hepatic support for patients with liver failure. Our goal was to optimize the flow environment for the cultured hepatocytes in a flat-plate bioreactor, specifically focusing on oxygen delivery using high medium flow rates while reducing the detrimental effects of the resulting shear stresses. We used photolithographic techniques to fabricate microgrooves onto the underlying glass substrate. The microgrooves, perpendicular to the axial flow direction, protected the hepatocytes from the shear stress induced by the flowing medium. Using finite element analysis, we found that the velocity gradient change near the cell surface (i.e., bottom of the grooves) was smaller than that near the top surface of the flow channel, indicating that the grooves would provide protection to the attached cells from the mechanical effects of the flowing medium. We also determined that the shear stress at the cell surface could be reduced by as much as 30 times (channel height of 100 microm) in the grooved-substrate (0.5 dyn/cm(2)) bioreactor compared to the flat-substrate (15 dyn/cm(2)) bioreactor for a medium flow rate of 4.0 mL/min. Albumin and urea synthesis rates of hepatocytes cocultured with 3T3-J2 fibroblasts remained stable over 5 days of perfusion in the grooved-substrate bioreactor, whereas in the flat-substrate bioreactor they decreased over the same time period. These studies indicate that under "high" flow conditions the microgrooved-substrate in the bioreactor can decrease the detrimental effects of shear stress on the hepatocytes while providing adequate oxygenation, thereby resulting in stable liver-specific function.  相似文献   

2.
The incorporation of monolayers of cultured hepatocytes into an extracorporeal perfusion system has become a promising approach for the development of a temporary bioartificial liver (BAL) support system. In this paper we present a numerical investigation of the oxygen tension, shear stress, and pressure drop in a bioreactor for a BAL composed of plasma-perfused chambers containing monolayers of porcine hepatocytes. The chambers consist of microfabricated parallel disks with center-to-edge radial flow. The oxygen uptake rate (OUR), measured in vitro for porcine hepatocytes, was curve-fitted using Michaelis-Menten kinetics for simulation of the oxygen concentration profile. The effect of different parameters that may influence the oxygen transport inside the chambers, such as the plasma flow rate, the chamber height, the initial oxygen tension in the perfused plasma, the OUR, and K(m) was investigated. We found that both the plasma flow rate and the initial oxygen tension may have an important effect upon oxygen transport. Increasing the flow rate and/or the inlet oxygen tension resulted in improved oxygen transport to cells in the radial-flow microchannels, and allowed significantly greater diameter reactor without oxygen limitation to the hepatocytes. In the range investigated in this paper (10 microns < H < 100 microns), and for a constant plasma flow rate, the chamber height, H, had a negligible effect on the oxygen transport to hepatocytes. On the contrary, it strongly affected the mechanical stress on the cells that is also crucial for the successful design of the BAL reactors. A twofold decrease in chamber height from 50 to 25 microns produced approximately a fivefold increase in maximal shear stress at the inlet of the reactor from 2 to 10 dyn/cm2. Further decrease in chamber height resulted in shear stress values that are physiologically unrealistic. Therefore, the channel height needs to be carefully chosen in a BAL design to avoid deleterious hydrodynamic effects on hepatocytes.  相似文献   

3.
Bioartificial liver (BAL) devices have been developed to treat patients undergoing acute liver failure. One of the most important parameters to consider in designing these devices is the oxygen consumption rate of the seeded hepatocytes which are known to have oxygen consumption rates 10 times higher than most other cell types. Hepatocytes in various culture configurations have been tested in BAL devices including those formats that involve co-culture of hepatocytes with other cell types. In this study, we investigated, for the first time, oxygen uptake rates (OUR)s of hepatocytes co-cultured with 3T3-J2 fibroblasts at various hepatocyte to fibroblast seeding ratios. OURs were determined by measuring the rate of oxygen disappearance using a ruthenium-coated optical probe after closing and sealing the culture dish. Albumin and urea production rates were measured to assess hepatocyte function. Lower hepatocyte density co-cultures demonstrated significantly higher OURs (2 to 3.5-fold) and liver- specific functions (1.6-fold for albumin and 4.5-fold for urea production) on a per cell basis than those seeded at higher densities. Increases in OUR correlated well with increased liver-specific functions. OURs (V(m)) were modeled by fitting Michaelis-Menten kinetics and the model predictions closely correlated with the experimental data. This study provides useful information for predicting BAL design parameters that will avoid oxygen limitations, as well as maximize metabolic functions.  相似文献   

4.
Severe acute liver failure, even when transient, must be treated by transplantation and lifelong immune suppression. Treatment could be improved by bioartificial liver (BAL) support, but this approach is hindered by a shortage of human hepatocytes. To generate an alternative source of cells for BAL support, we differentiated mouse embryonic stem (ES) cells into hepatocytes by coculture with a combination of human liver nonparenchymal cell lines and fibroblast growth factor-2, human activin-A and hepatocyte growth factor. Functional hepatocytes were isolated using albumin promoter-based cell sorting. ES cell-derived hepatocytes expressed liver-specific genes, secreted albumin and metabolized ammonia, lidocaine and diazepam. Treatment of 90% hepatectomized mice with a subcutaneously implanted BAL seeded with ES cell-derived hepatocytes or primary hepatocytes improved liver function and prolonged survival, whereas treatment with a BAL seeded with control cells did not. After functioning in the BAL, ES cell-derived hepatocytes developed characteristics nearly identical to those of primary hepatocytes.  相似文献   

5.
Development of a bioartificial liver employing xenogeneic hepatocytes   总被引:4,自引:0,他引:4  
Liver failure is a major cause of mortality. A bioartificial liver (BAL) employing isolated hepatocytes can potentially provide temporary support for liver failure patients. We have developed a bioartificial liver by entrapping hepatocytes in collagen loaded in the luminal side of a hollow fiber bioreactor. In the first phase of development, liver-specific metabolic activities of biosynthesis, biotransformation and conjugation were demonstrated. Subsequently anhepatic rabbits were used to show that rat hepatocytes continued to function after the BAL was linked to the test animal. For scale-up studies, a canine liver failure model was developed using D-galactosamine overdose. In order to secure a sufficient number of hepatocytes for large animal treatment, a collagenase perfusion protocol was established for harvesting porcine hepatocytes at high yield and viability. An instrumented bioreactor system, which included dissolved oxygen measurement, pH control, flow rate control, an oxygenator and two hollow fiber bioreactors in series, was used for these studies. An improved survival of dogs treated with the BAL was shown over the controls. In anticipated clinical applications, it is desirable to have the liver-specific activities in the BAL as high as possible. To that end, the possibility of employing hepatocyte spheroids was explored. These self-assembled spheroids formed from monolayer culture exhibited higher liver-specific functions and remained viable longer than hepatocytes in a monolayer. To ease the surface requirement for large-scale preparation of hepatocyte spheroids, we succeeded in inducing spheroid formation in stirred tank bioreactors for both rat and porcine hepatocytes. These spheroids formed in stirred tanks were shown to be morphologically and functionally indistinguishable from those formed from a monolayer. Collagen entrapment of these spheroids resulted in sustaining their liver-specific functions at higher levels even longer than those of spheroids maintained in suspension. For use in the BAL, a mixture of spheroids and dispersed hepatocytes was used to ensure a proper degree of collagen gel contraction. This mixture of spheroids and dispersed cells entrapped in the BAL was shown to sustain the high level of liver-specific functions. The possibility of employing such a BAL for improved clinical performance warrants further investigations.  相似文献   

6.
The goal of this study was to investigate the viability and synthetic function of rat hepatocytes cocultured with 3T3-J2 fibroblasts in a small-scale microchannel flat-plate bioreactor with and without an internal membrane oxygenator under flow. Bioreactor channel heights ranged between 85 and 500 microm and medium flow rates ranged between 0.06 and 4.18 mL/min. The results showed that the bioreactor without the oxygenator resulted in significantly decreased viability and function of hepatocytes, whereas hepatocytes in the bioreactor with internal membrane oxygenator were able to maintain their viability and function. The shear stress calculations showed that, at lower wall shear stresses (0.01 to 0.33 dyn/cm(2)), hepatocyte functions, measured as albumin and urea synthesis rates, were as much as 2.6- and 1.9-fold greater, respectively, than those at higher wall shear stresses (5 to 21 dyn/cm(2)). Stable albumin and urea synthesis rates for 10 days of perfusion were also demonstrated in the bioreactor with internal membrane oxygenator. These results are relevant in the design of hepatocyte bioreactors and the eventual scaling-up to clinical devices.  相似文献   

7.
Bioartificial livers (BALs) are bioreactors containing liver cells that provide extracorporeal liver support to liver‐failure patients. Theoretically, the plasma perfusion flow rate through a BAL is an important determinant of its functionality. Low flow rates can limit functionality due to limited substrate availability, and high flow rates can induce cell damage. This hypothesis was tested by perfusing the AMC‐BAL loaded with the liver cell line HepaRG at four different medium flow rates (0.3, 1.5, 5, and 10 mL/min). Hepatic functions ammonia elimination, urea production, lactate consumption, and 6β‐hydroxylation of testosterone showed 2–20‐fold higher rates at 5 mL/min compared to 0.3 mL/min, while cell damage remained stable. However, at 10 mL/min cell damage was twofold higher, and maximal hepatic functionality was not changed, except for an increase in lactate elimination. On the other hand, only a low flow rate of 0.3 mL/min allowed for an accurate measurement of the ammonia and lactate mass balance across the bioreactor, which is useful for monitoring the BAL's condition during treatment. These results show that (1) the functionality of a BAL highly depends on the perfusion rate; (2) there is a universal optimal flow rate based on various function and cell damage parameters (5 mL/min for HepaRG‐BAL); and (3) in the current set‐up the mass balance of substrate, metabolite, or cell damage markers between in‐and out‐flow of the bioreactor can only be determined at a suboptimal, low, perfusion rate (0.3 mL/min for HepaRG‐BAL). Biotechnol. Bioeng. 2012; 109: 3182–3188. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
A microfabricated array bioreactor for perfused 3D liver culture   总被引:9,自引:0,他引:9  
We describe the design, fabrication, and performance of a bioreactor that enables both morphogenesis of 3D tissue structures under continuous perfusion and repeated in situ observation by light microscopy. Three-dimensional scaffolds were created by deep reactive ion etching of silicon wafers to create an array of channels (through-holes) with cell-adhesive walls. Scaffolds were combined with a cell-retaining filter and support in a reactor housing designed to deliver a continuous perfusate across the top of the array and through the 3D tissue mass in each channel. Reactor dimensions were constructed so that perfusate flow rates meet estimated values of cellular oxygen demands while providing fluid shear stress at or below a physiological range (<2 dyne cm(2)), as determined by comparison of numerical models of reactor fluid flow patterns to literature values of physiological shear stresses. We studied the behavior of primary rat hepatocytes seeded into the reactors and cultured for up to 2 weeks, and found that cells seeded into the channels rearranged extensively to form tissue like structures and remained viable throughout the culture period. We further observed that preaggregation of the cells into spheroidal structures prior to seeding improved the morphogenesis of tissue structure and maintenance of viability. We also demonstrate repeated in situ imaging of tissue structure and function using two-photon microscopy.  相似文献   

9.
Media perfusion bioreactor systems have been developed to improve mass transport throughout three-dimensional (3-D) tissue-engineered constructs cultured in vitro. In addition to enhancing the exchange of nutrients and wastes, these systems simultaneously deliver flow-mediated shear stresses to cells seeded within the constructs. Local shear stresses are a function of media flow rate and dynamic viscosity, bioreactor configuration, and porous scaffold microarchitecture. We have used the Lattice-Boltzmann method to simulate the flow conditions within perfused cell-seeded cylindrical scaffolds. Microcomputed tomography imaging was used to define the scaffold microarchitecture for the simulations, which produce a 3-D fluid velocity field throughout the scaffold porosity. Shear stresses were estimated at various media flow rates by multiplying the symmetric part of the gradient of the velocity field by the dynamic viscosity of the cell culture media. The shear stress algorithm was validated by modeling flow between infinite parallel plates and comparing the calculated shear stress distribution to the analytical solution. Relating the simulation results to perfusion experiments, an average surface shear stress of 5x10(-5)Pa was found to correspond to increased cell proliferation, while higher shear stresses were associated with upregulation of bone marker genes. This modeling approach can be used to compare results obtained for different perfusion bioreactor systems or different scaffold microarchitectures and may allow specific shear stresses to be determined that optimize the amount, type, or distribution of in vitro tissue growth.  相似文献   

10.
Lv G  Zhao L  Zhang A  Du W  Chen Y  Yu C  Pan X  Zhang Y  Song T  Xu J  Chen Y  Li L 《Biotechnology and bioengineering》2011,108(9):2229-2236
Bioartificial liver (BAL) support system has been proposed as potential treatment method for end-stage liver diseases. We described an improved BAL system based on a choanoid fluidized bed bioreactor containing alginate-chitosan encapsulated primary porcine hepatocytes. The feasibility, safety, and efficiency of this device were estimated using an allogeneic fulminant hepatic failure (FHF) model. FHF was induced with intravenous administration of D-galactosamine. Thirty FHF pigs were divided into three groups: (1) an FHF group which was only given intensive care; (2) a sham BAL group which was treated with the BAL system with empty encapsulation, and (3) a BAL group which was treated with the BAL system containing encapsulated freshly isolated primary porcine hepatocytes. The survival times and biochemical parameters of these animals were measured, and properties of the encapsulations and hepatocytes before and after perfusion were also evaluated. Compared to the two control groups, the BAL-treated group had prolonged the survival time and decreased the blood lactate levels, blood glucose, and amino acids remained stable. No obvious ruptured beads or statistical decline in viability or function of encapsulated hepatocytes were observed. This new fluidized bed BAL system is safe and efficient. It may represent a feasible alternative in the treatment of liver failure.  相似文献   

11.
Summary With a view to initiating clinical trials, cell morphology and function for a newly developed artificial liver support system employing highly functional human liver cell line, FLC-7, cultured in a radial flow bioreactor were compared to cells grown in a conventional monolayer culture. The radial flow bioreactor consists of a vertically extended cylindrical matrix comprised of porous glass bead microcarriers through which liquid medium flows from the periphery in toward the central axis generating a beneficial concentration gradient of oxygen and nutrients, while preventing excessive shear stresses or buildup of waste products. The three-dimensional culture system supports high-density (1.1 × 108 cells/ml-matrix), large scale cultures (4.4 × 1010 cells/400 ml-bioreactor) with long-term viability. Scanning and transmission electron microscopy (SEM and TEM) revealed that cells cultured in a monolayer system were flattened and extended with numerous cytoplasmic projections. Cells in the three-dimensional culture were spherical and covered with microvillilike processes resembling liver cells in vivo. The cells were solidly attached on the surfaces and within the pores of the microcarriers in highly dense colonies. The spherical cells remained in close contact with adjacent cells, while circulation of liquid medium flowed freely through spaces between cells. FLC-7 cells produced albumin at a rate of 6.41 μg/24 h/106 cells. Alpha-fetoprotein (AFP) production dropped nearly threefold in comparison to monolayer cultures. Results demonstrated that the new artificial liver support systems (ALSS) provides a superior three-dimensional culture environment that allows cells to perform at naturally functioning levels.  相似文献   

12.
Summary Conventional culture systems for hepatocytes generally involve cells cultured as flat, monolayer cells, with limited cell-cell contact, in a static pool of medium, unlike the liver in vivo where the parenchymal cells are cuboidal, with extensive cell-cell contact, and are continuously perfused with blood. We report here a novel bioreactor system for the culturing of primary hepatocytes with cuboidal cell shape, extensive cell-cell contact, and perfusing medium. The hepatocytes were inoculated into the bioreactor and allowed to recirculate at a rate optimal for them to collide and form aggregates. These newly-formed aggregates were subsequently entrapped in a packed bed of glass beads. The bioreactor was perfused with oxygenated nutrient medium, with controlled oxygen tension, pH, and medium perfusion rate. The hepatocytes were viable for up to the longest time point studied of 15 days in culture based on urea synthesis, albumin synthesis and cell morphology. Light microscopy studies of hepatocytes cultured for 15 days in the bioreactor showed interconnecting three-dimensional structures resembling the hepatic cell plate in the liver organ. Electron microscopy studies on the same cells revealed ultrastructure similar to the hepatocytes in vivo, including the presence of plentiful mitochondria, rough and smooth endoplasmic reticulum, glycogen granules, peroxisomes, and desmosomes. We believe that our hepatocyte bioreactor is a major improvement over conventional culture systems, with important industrial applications including toxicology, drug metabolism, and protein/peptide synthesis. The hepatocyte bioreactor concept may also be used as the basis for the development of a bioartificial liver to provide extracorporeal hepatic support to patients with hepatic failure.  相似文献   

13.
A generic “system on a plate” modular multicompartmental bioreactor array which enables microwell protocols to be transferred directly to the bioreactor modules, without redesign of cell culture experiments or protocols is described. The modular bioreactors are simple to assemble and use and can be easily compared with standard controls since cell numbers and medium volumes are quite similar. Starting from fluid dynamic and mass transport considerations, a modular bioreactor chamber was first modeled and then fabricated using “milli‐molding,” a technique adapted from soft lithography. After confirming that the shear stress was extremely low in the system in the range of useful flow rates, the bioreactor chambers were tested using hepatocytes. The results show that the bioreactor chambers can increase or maintain cell viability and function when the flow rates are below 500 µL/min, corresponding to wall shear stresses of 10?5 Pa or less at the cell culture surface. Biotechnol. Bioeng. 2010; 106: 127–137. © 2010 Wiley Periodicals, Inc.  相似文献   

14.
Despite recent advances in medical supportive therapy, patients with severe fulminant hepatic failure (FHF) have mortality rate approaching 90%. Investigators have attempted to improve survival by using various extracorporeal liver support systems loaded with sorbents and liver tissue preparations. None of them succeeded in gaining clinical acceptance and orthotopic liver transplantation (OLT) remains a primary therapeutic option for patients with FHF. In this study, authors discuss the systems which utilize isolated hepatocytes. Most of these devices were tested in vitro and in animals with chemically and surgically induced liver failure. In some studies, signficant levels of detoxification and liver functions were achieved. The authors describe their own hepatocyte-based artificial liver (BAL). It is based on plasma perfusion through a hollow-fiber module seeded with matrix-anchored porcine hepatocytes. The BAL was used 14 times to treat 9 patients with acute liver failure. On 10 occasions, a charcoal column was included in the plasma circuit. Each treatment lasted 7 +/- 1 h. All procedures were tolerated well and 8 patients (including 6 patients with FHF) underwent OLT. Five patients with increased intracranial pressure (ICP) and evidence of decerebration had normalization of ICP and enjoyed full neurologic recovery after OLT. Laboratory data showed evidence for bilirubin conjugation, decrease in blood ammonia, maintenance of low lactic acid levels, and increase in the ration between the branched chain and aromatic amino acids. No allergic reactions to xenogeneic hepatocytes were observed. The authors conclude that BAL treatment with porcine hepatocytes appears to be safe and can help maintain patients alive and neurologically intact until a liver becomes available for transplantation. (c) 1994 John Wiley & Sons, Inc.  相似文献   

15.
The migration of vascular endothelial cells under flow can be modulated by the addition of chemical or mechanical stimuli. The aim of this study was to investigate how topographic cues derived from a substrate containing three-dimensional microtopography interact with fluid shear stress in directing endothelial cell migration. Subconfluent bovine aortic endothelial cells were seeded on fibronectin-coated poly(dimethylsiloxane) substrates patterned with a combinatorial array of parallel and orthogonal microgrooves ranging from 2 to 5 microm in width at a constant depth of 1 microm. During a 4-h time-lapse observation in the absence of flow, the majority of the prealigned cells migrated parallel to the grooves with the distribution of their focal adhesions (FAs) depending on the groove width. No change in this migratory pattern was observed after the cells were exposed to moderate shear stress (13.5 dyn/cm(2)), irrespective of groove direction with respect to flow. After 4-h exposure to high shear stress (58 dyn/cm(2)) parallel to the grooves, the cells continued to migrate in the direction of both grooves and flow. By contrast, when microgrooves were oriented perpendicular to flow, most cells migrated orthogonal to the grooves and downstream with flow. Despite the change in the migration direction of the cells under high shear stress, most FAs and actin microfilaments maintained their original alignment parallel to the grooves, suggesting that topographic cues were more effective than those derived from shear stress in guiding the orientation of cytoskeletal and adhesion proteins during the initial exposure to flow.  相似文献   

16.
Computational fluid dynamics (CFD) models to quantify momentum and mass transport under conditions of tissue growth will aid bioreactor design for development of tissue-engineered cartilage constructs. Fluent CFD models are used to calculate flow fields, shear stresses, and oxygen profiles around nonporous constructs simulating cartilage development in our concentric cylinder bioreactor. The shear stress distribution ranges from 1.5 to 12 dyn/cm(2) across the construct surfaces exposed to fluid flow and varies little with the relative number or placement of constructs in the bioreactor. Approximately 80% of the construct surface exposed to flow experiences shear stresses between 1.5 and 4 dyn/cm(2), validating the assumption that the concentric cylinder bioreactor provides a relatively homogeneous hydrodynamic environment for construct growth. Species mass transport modeling for oxygen demonstrates that fluid-phase oxygen transport to constructs is uniform. Some O(2) depletion near the down stream edge of constructs is noted with minimum pO(2) values near the constructs of 35 mmHg (23% O(2) saturation). These values are above oxygen concentrations in cartilage in vivo, suggesting that bioreactor oxygen concentrations likely do not affect chondrocyte growth. Scale-up studies demonstrate the utility and flexibility of CFD models to design and characterize bioreactors for growth of tissue-engineered cartilage.  相似文献   

17.
Bioartificial livers (BALs) are a potentially effective countermeasure against liver failure, particularly in cases of acute or fulminant liver failure. It is hoped these devices can sustain a patient's liver function until recovery or transplant. However, no large‐scale clinical trial has yet proven that BALs are particularly effective and evidently design issues remain to be addressed. One aspect of BAL design that must be considered is the mass transfer of adequate oxygen to the hepatocytes within the device. We present here a mathematical modeling approach to oxygen mass transport in a BAL. A mathematical model based upon Krogh cylinders is outlined to describe a diffusion‐limited hollow fiber bioreactor. In addition, operating constraints are defined on the system—cells should not experience hypoxia and the cell population should be of adequate size. By combining modeling results with these operating constraints and presenting the results graphically, “operating region” charts can be constructed for the hollow fiber BAL (HF‐BAL). The effects of varying various operating parameters on the BAL are then established. It is found that smaller radii and short, thin walled fibers are generally advantageous while cell populations in excess of 10 billion could be supported in the BAL with a plasma flow rate of 200 mL/min. For fibers of intermediate length and lumen radius, the minimum number of fibers required to produce a viable design ranges approximately from 7,000–10,000. In theory, this may be enough to support patients with failing livers. Biotechnol. Bioeng. 2010;106: 980–988. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
Human hepatocytes, suitable for treatment of patients with liver failure, for the creation of bioartificial (BAL) devices, or for studies for toxicity and metabolization studies in the pharmaceutical industry, are in short supply due to the lack of donor organs. Therefore, methods that allow ex vivo expansion of hepatocytes with mature function are being pursued. One cell source, believed to be a possible inexhaustible source of hepatocytes, is pluripotent stem cells (PSCs). However, directed differentiation of PSCs to cells with features of adult hepatocytes is not yet possible. Differentiated progeny remains mixed and PSC progeny does not have a number of the functional features of mature hepatocytes. In this review article, we will address tools being developed that allow for the identification of mature hepatocytes, in a non-invasive manner; to perform lineage tracing of PSC progeny; and novel culture systems being created for the in vitro differentiation of PSCs to hepatocyte like cells, and for the maintenance of primary liver derived hepatocytes or PSC-derived hepatic progeny in culture. As conventional two-dimensional (2D) static culture conditions poorly recapitulate the in vivo cellular environment, we will discuss bioreactor systems for liver tissue engineering, both macro-scale and micro-scale culture systems.  相似文献   

19.
We describe a microfluidic device with microgrooved patterns for studying cellular behavior. This microfluidic platform consists of a top fluidic channel and a bottom microgrooved substrate. To fabricate the microgrooved channels, a top poly(dimethylsiloxane) (PDMS) mold containing the impression of the microfluidic channels was aligned and bonded to a microgrooved substrate. Using this device, mouse fibroblast cells were immobilized and patterned within microgrooved substrates (25, 50, 75, and 100 microm wide). To study apoptosis in a microfluidic device, media containing hydrogen peroxide, Annexin V, and propidium iodide was perfused into the fluidic channel for 2 hours. We found that cells exposed to the oxidative stress became apoptotic. These apoptotic cells were confirmed by Annexin V that bound to phosphatidylserine at the outer leaflet of the plasma membrane during the apoptosis process. Using this microfluidic device with microgrooved patterns, the apoptosis process was observed in real-time and analyzed by using an inverted microscope containing an incubation chamber (37 degrees C, 5% CO(2)). Therefore, this microfluidic device incorporated with microgrooved substrates could be useful for studying the cellular behavior and performing high-throughput drug screening.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号