首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Context: Surface-modified pH-sensitive liposomal system may be useful for intracellular delivery of chemotherapeutics.

Objective: Achieving site-specific targeting with over-expressed hyaluronic acid (HA) receptors along with using pH sensitive liposome carrier for intracellular drug delivery was the aim of this study.

Materials and methods: Stealth HA-targeted pH-sensitive liposomes (SL-pH-HA) were developed and evaluated to achieve effective intracellular delivery of doxorubicin (DOX) vis–a-vis enhanced antitumor activity.

Results: The in vitro release studies demonstrated that the release of DOX from SL-pH-HA was pH-dependent, i.e. faster at mildly acidic pH ~5, compared to physiological pH ~7.4. SLpH-HA was evaluated for their cytotoxicity potential on CD44 receptor expressing MCF-7 cells. The half maximal inhibitory concentration (IC50) of SL-pH-HA and SL-HA were about 1.9 and 2.5?μM, respectively, after 48?h of incubation. The quantitative uptake study revealed higher localization of targeted liposomes in the receptor positive cells, which was further confirmed by fluorescent microscopy. The antitumor efficacy of the DOX-loaded HA-targeted pH-sensitive liposomes was also verified in a tumor xenograft mouse model.

Discussion: DOX was efficiently delivered to the tumor site by active targeting via HA and CD44 receptor interaction. The major side-effect of conventional DOX formulation, i.e. cardiotoxicity was also estimated by measuring serum enzyme levels of LDH and CPK and found to be minimized with developed formulation. Overall, HA targeted pH-sensitive liposomes were significantly more potent than the non-targeted liposomes in cells expressing high levels of CD44.

Conclusion: Results strongly implies the promise of such liposomal system as an intracellular drug delivery carrier developed for potential anticancer treatment.  相似文献   

2.
CD44 is a major cell surface receptor for the glycosaminoglycan hyaluronan (HA). Native high molecular weight hyaluronan (nHA) and oligosaccharides of hyaluronan (oHA) provoke distinct biological effects upon binding to CD44. Despite the importance of such interactions, however, the feature of binding with CD44 at the cell surface and the molecular basis for functional distinction between different sizes of HA is still unclear. In this study we investigated the effects of high and low molecular weight hyaluronan on CD44 clustering. For the first time, we provided direct evidence for a strong relationship between HA size and CD44 clustering in vivo. In CD44-transfected COS-7 cells, we showed that exogenous nHA stimulated CD44 clustering, which was disrupted by oHA. Moreover, naturally expressed CD44 was distributed into clusters due to abundantly expressed nHA in HK-2 cells (human renal proximal tubule cells) and BT549 cells (human breast cancer cell line) without exogenous stimulation. Our results suggest that native HA binding to CD44 selectively induces CD44 clustering, which could be inhibited by oHA. Finally, we demonstrated that HA regulates cell adhesion in a manner specifically dependent on its size. oHA promoted cell adhesion while nHA showed no effects. Our results might elucidate a molecular- and/or cellular-based mechanism for the diverse biological activities of nHA and oHA.  相似文献   

3.
4.
5.
Pluronic mimicking poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer having multiple hydroxyl groups in the PPO middle segment (core-functionalized Pluronic: CF-PLU) was synthesized for conjugation of doxorubicin (DOX). DOX was conjugated on the multiple hydroxyl groups of CF-PLU via an acid-labile hydrazone linkage (CF-PLU-DOX). In aqueous solution, CF-PLU-DOX copolymers self-assembled to form a core/shell-type micelle structure consisting of a hydrophobic DOX-conjugated PPO core and a hydrophilic PEO shell layer. The conjugated DOX from CF-PLU-DOX micelles was released out more rapidly at pH 5 than pH 7.4, indicating that the hydrazone linkage was cleaved under acidic condition. CF-PLU-DOX micelles exhibited greatly enhanced cytotoxicity for MCF-7 human breast cancer cells compared to naked DOX, while CF-PLU copolymer itself showed extremely low cytotoxicity. Flow cytometry analysis revealed that the extent of cellular uptake for CF-PLU-DOX micelles was greater than free DOX. Confocal image analysis also showed that CF-PLU-DOX micelles had a quite different intracellular distribution profile from free DOX. CF-PLU-DOX micelles were mainly distributed in the cytoplasm, endosomal/lysosomal vesicles, and nucleus, while free DOX was localized mainly within the nucleus, suggesting that CF-PLU-DOX micellar formulation might be advantageously used for overcoming the multidrug resistance (MDR) effect, which gradually develops in many tumor cells during repeated drug administration.  相似文献   

6.
In this study, the chemical features of dendritic mesoporous silica nanoparticles (DMSNs) provided the opportunity to design a nanostructure with the capability to intelligently transport the payload to the tumor cells. In this regard, doxorubicin (DOX)-encapsulated DMSNs was electrostatically surface-coated with polycarboxylic acid dextran (PCAD) to provide biocompatible dextran-capped DMSNs (PCAD-DMSN@DOX) with controlled pH-dependent drug release. Moreover, a RNA aptamer against a cancer stem cell (CSC) marker, CD133 was covalently attached to the carboxyl groups of DEX to produce a CD133-PCAD-DMSN@DOX. Then, the fabricated nanosystem was utilized to efficiently deliver DOX to CD133+ colorectal cancer cells (HT29). The in vitro evaluation in terms of cellular uptake and cytotoxicity demonstrated that the CD133-PCAD-DMSN@DOX specifically targets HT29 as a CD133 overexpressed cancer cells confirmed by flow cytometry and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. The potentially promising intelligent-targeted platform suggests that targeted dextran-capped DMSNs may find impressive application in cancer therapy.  相似文献   

7.
A cell-targeted prodrug was developed for the anti-cancer drug Taxol, using hyaluronic acid (HA) as the drug carrier. HA-Taxol bioconjugates were synthesized by linking the Taxol 2'-OH via a succinate ester to adipic dihydrazide-modified HA (HA-ADH). The coupling of Taxol-NHS ester and HA-ADH provided several HA bioconjugates with different levels of ADH modification and different Taxol loadings. A fluorescent BODIPY-HA was also synthesized to illustrate cell targeting and uptake of chemically modified HA using confocal microscopy. HA-Taxol conjugates showed selective toxicity toward the human cancer cell lines (breast, colon, and ovarian) that are known to overexpress HA receptors, while no toxicity was observed toward a mouse fibroblast cell line at the same concentrations used with the cancer cells. The drug carrier HA-ADH was completely nontoxic. The selective cytotoxicity is consistent with the results from confocal microscopy, which demonstrated that BODIPY-HA only entered the cancer cell lines.  相似文献   

8.
目的:化学全合成聚苹果酸(poly(β-malic acid),PMLA),将其作为高分子药物载体,制备聚苹果酸-羟喜树碱前药(PMLA-HCPT)。研究其体外释药特点和体外细胞毒性。方法:以L-天冬氨酸为原料,通过化学方法全合成PMLA,通过酰胺键键合羟基喜树碱(HCPT)。通过红外光谱、核磁共振光谱表征该前药的结构,利用体外动态透析的方法模拟体外释药特点,用高效液相色谱法测定不同pH值聚合物药物中前喜树碱的释药特性。采用人卵巢癌HO-8910细胞系研究该前药的体外毒性。结果:①经核磁共振表征PMLA-HCPT前药合成完成。②在pH 5.6、pH 6.8及pH 7.4的PBS缓冲体系16 h中,羟喜树碱药物累积释放率分别为76.8%,47.2%和18.1%,证实PMLA-HCPT中羟喜树碱的释放具有pH依赖性。③细胞实验证实PMLA-HCPT的细胞毒性和游离的HCPT相比没有降低。结论:PMLA是一种良好的药物载体材料,PMLA-HCPT有望成为具有pH敏感性的聚合物前药。  相似文献   

9.
目的:制备叶酸介导的普兰多糖-阿霉素聚合物前药(FA-MP-DOX),实现阿霉素药物的靶向控制释放。方法:将普鲁兰多糖用马来酸酐进行修饰后,通过酰胺键键合阿霉素制备得到普鲁兰多糖-阿霉素(MP-DOX),继而酯键键合叶酸制备得到叶酸介导的普鲁兰多糖-阿霉素聚合物前药(FA-MP-DOX)。红外光谱、核磁共振光谱表征聚合物药物的结构,动态透析法模拟体外释药特性,监测不同pH值聚合物药物中阿霉素的释药特性,同时采用人口腔表皮样癌细胞(KB细胞)测定聚合物药物体系的细胞毒性。结果:①经核磁共振表征FA-MP-DOX聚合物合成完成。②在pH2.5、pH5.0及pH7.4的PBS缓冲体系16h中,阿霉素药物累积释放率分别为49.1%,30.3%和15.3%,证实FA-MP-DOX中阿霉素的释放具有pH依赖性。③细胞实验证实FA-MP-DOX的细胞毒性高于阿霉素和MP-DOX。结论:FA-MP-DOX聚合物药物有望成为阿霉素智能型控释和靶向性药物载体。  相似文献   

10.
Ovarian cancer has the highest mortality rate of any gynaecological malignancy. This is caused by metastatic deposits obstructing the intestinal tract. Very little is known about the molecules involved in the initial attachment of the metastatic tumour cells to the peritoneal mesothelial lining. Previously, we showed that many ovarian tumour lines express the adhesion molecule, CD44, on their cell surface. The major ligand for CD44 is the extracellular matrix glycosaminoglycan, hyaluronic acid (HA). Because mesothelial cells have a pericellular cost that contains large amounts of HA, it was postulated that the CD44/HA interaction is an important stage in ovarian cancer spread. However, it was difficult to demonstrate this interaction in an in vitro adhesion assay with mesothelial cells as most of the HA, and presumably the bound tumour cells, were lost from the mesothelial cells during the washing steps of the assay. In order to try and clarify the situation, the adhesion of six ovarian tumour lines to immobilized HA was measured. Four lines expressed high levels of CD44 and two lines expressed negligible amounts. Preliminary experiments were carried out with one of the CD44-expressing lines. After coating a plate overnight with 3 mg ml-1 HA, the 5 min adhesion of this line varied between 2% and 73% according to the type of plate that was used. Falcon Micro Test III flexible plates gave the highest adhesion and was used for further experiments. Plates were coated with concentrations of HA between 0.001 mg ml−1 and 3 mg ml−1. All CD44 expressing lines adhered to HA, but the maximum adhesion and the adhesion strength varied with the line studied and was not closely related to the total CD44 expression. These results suggest that CD44 on ovarian tumour cells binds to HA on mesothelial cells. As much of the HA can be very easily lost from the mesothelial cell surface, additional factors such as the strength of the CD44/HA interaction, and the formation of bonds by the tumour cells with other membrane adhesion molecules, such as integrins, are also important in promoting tumour spread. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

11.
Binding of ovarian cancer cells to immobilized hyaluronic acid   总被引:2,自引:0,他引:2  
Ovarian cancer has the highest mortality rate of any gynaecological malignancy. This is caused by metastatic deposits obstructing the intestinal tract. Very little is known about the molecules involved in the initial attachment of the metastatic tumour cells to the peritoneal mesothelial lining. Previously, we showed that many ovarian tumour lines express the adhesion molecule, CD44, on their cell surface. The major ligand for CD44 is the extracellular matrix glycosaminoglycan, hyaluronic acid (HA). Because mesothelial cells have a pericellular cost that contains large amounts of HA, it was postulated that the CD44/HA interaction is an important stage in ovarian cancer spread. However, it was difficult to demonstrate this interaction in an in vitro adhesion assay with mesothelial cells as most of the HA, and presumably the bound tumour cells, were lost from the mesothelial cells during the washing steps of the assay. In order to try and clarify the situation, the adhesion of six ovarian tumour lines to immobilized HA was measured. Four lines expressed high levels of CD44 and two lines expressed negligible amounts. Preliminary experiments were carried out with one of the CD44-expressing lines. After coating a plate overnight with 3 mg ml−1 HA, the 5 min adhesion of this line varied between 2% and 73% according to the type of plate that was used. Falcon Micro Test III flexible plates gave the highest adhesion and was used for further experiments. Plates were coated with concentrations of HA between 0.001 mg ml−1 and 3 mg ml−1. All CD44 expressing lines adhered to HA, but the maximum adhesion and the adhesion strength varied with the line studied and was not closely related to the total CD44 expression. These results suggest that CD44 on ovarian tumour cells binds to HA on mesothelial cells. As much of the HA can be very easily lost from the mesothelial cell surface, additional factors such as the strength of the CD44/HA interaction, and the formation of bonds by the tumour cells with other membrane adhesion molecules, such as integrins, are also important in promoting tumour spread. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

12.
Migration of some tumor cells, and their lodgment in target organs, is dependent on the activation of cell surface CD44 receptor, usually detected by its ability to bind hyaluronic acid (HA) or other ligands. In an attempt to reveal the mechanism of tumor cell CD44 activation, we compared the physical and chemical properties of CD44 in nonactivated LB cell lymphoma with those in phorbol 12-myristate 13-acetate (PMA)-activated LB cells and of an LB cell subline (designated HA9) expressing constitutively-active CD44. In contrast to nonactivated LB cells, PMA-activated LB cells and HA9 cells displayed a CD44-dependent ability to bind HA. The ability of activated cell CD44 to bind HA was not dependent on microfilament or microtubule integrity or on changes in CD44 mobility on the membrane plane, indicating that the CD44 activation status is not associated with cytoskeleton function. Aside from the increased expression of CD44 on the surface of PMA-activated LB cells and HA9 cells, qualitative differences between the CD44 of nonactivated and activated LB cells were also detected: the CD44 of the activated lymphoma was (i) larger in molecular size, (ii) displayed a broader CD44 isoform repertoire, including a CD44 variant that binds HA, and (iii) its glycoprotein contained less sialic acid. Indeed, after removal of sialic acid from their cell surface by neuraminidase, LB cells acquired the ability to bind HA. However, a reduced dose of neuraminidase did not confer HA binding on LB cells, unless they were also activated by a low concentration of PMA, which by itself was ineffective. Similarly, under suboptimal conditions, a synergistic effect was obtained with tunicamycin and PMA: each one alone was ineffective but in combination they induced the acquisition of HA binding by the lymphoma cells, while their CD44 expression was not enhanced. Unveiling of the activation mechanism of CD44, by exposing the cells to PMA stimulation or to deglycosylation, is not only academically important, but it also has practical implications, as activated CD44 may be involved in the support of tumor progression.  相似文献   

13.
To minimize the side effect of chemotherapy, a novel reduction/pH dual-sensitive drug nanocarrier, based on PEGylated dithiodipropionate dihydrazide (TPH)-modified hyaluronic acid (PEG-SS-HA copolymer), was developed for targeted delivery of doxorubicin (DOX) to hepatocellular carcinoma. The copolymer was synthesized by reductive amination via Schiff's base formation between TPH-modified HA and galactosamine-conjugated poly(ethylene glycol) aldehyde/methoxy poly(ethylene glycol) aldehyde. Conjugation of DOX to PEG-SS-HA copolymer was accomplished through the hydrazone linkage formed between DOX and PEG-SS-HA, and confirmed by FTIR and 1H NMR spectra. The polymer–DOX conjugate could self-assemble into spherical nanoparticles (∼150 nm), as indicated by TEM and DLS. In vitro release studies showed that the DOX-loaded nanoparticles could release DOX rapidly under the intracellular levels of pH and glutathiose. Cellular uptake experiments demonstrated that the nanoparticles could be efficiently internalized by HepG2 cells. These results indicate that the PEG-SS-HA copolymer holds great potential for targeted intracellular delivery of DOX.  相似文献   

14.
Wang YC  Wang F  Sun TM  Wang J 《Bioconjugate chemistry》2011,22(10):1939-1945
Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. The intracellular accumulation of drug and the intracellular release of drug molecules from the carrier could be the most important barriers for nanoscale carriers in overcoming MDR. We demonstrated that the redox-responsive micellar nanodrug carrier assembled from the single disulfide bond-bridged block polymer of poly(ε-caprolactone) and poly(ethyl ethylene phosphate) (PCL-SS-PEEP) achieved more drug accumulation and retention in MDR cancer cells. Such drug carrier rapidly released the incorporated doxorubicin (DOX) in response to the intracellular reductive environment. It therefore significantly enhanced the cytotoxicity of DOX to MDR cancer cells. It was demonstrated that nanoparticular drug carrier with either poly(ethylene glycol) or poly(ethyl ethylene phosphate) (PEEP) shell increased the influx but decreased the efflux of DOX by the multidrug resistant MCF-7/ADR breast cancer cells, in comparison with the direct incubation of MCF-7/ADR cells with DOX, which led to high cellular retention of DOX. Nevertheless, nanoparticles bearing PEEP shell exhibited higher affinity to the cancer cells. The shell detachment of the PCL-SS-PEEP nanoparticles caused by the reduction of intracellular glutathione significantly accelerated the drug release in MCF-7/ADR cells, demonstrated by the flow cytometric analyses, which was beneficial to the entry of DOX into the nuclei of MCF-7/ADR cells. It therefore enhanced the efficiency in overcoming MDR of cancer cells, which renders the redox-responsive nanoparticles promising in cancer therapy.  相似文献   

15.
CD44 is the major hyaluronan cell surface receptor and functions as an adhesion molecule in many different cell types, including human breast epithelial cells. The coexpression of certain CD44 variants (CD44v), such as CD44v (v10/ex14), with CD44s (standard form) appears to be closely associated with human breast tumor metastasis. In this study we have established a stable transfection of CD44v (v10/ex14) cDNA into nontumorigenic human breast epithelial cells (HBL100) which contain endogenous CD44s. Our results indicate that coexpression of both CD44v (v10/ex14) and CD44s alters the following important biological properties of these cells: 1) there is a significant reduction in hyaluronic acid (HA)-mediated cell adhesion; 2) there is an increased migration capability in collagen-matrix gel; and 3) these cells constitutively produce certain angiogenic factors and effectively promote tumorigenesis in athymic nude mice. These findings suggest that coexpression of CD44v (v10/ex14) and CD44s may trigger the onset of cell transformation required for breast cancer development. J. Cell. Physiol. 171:152–160, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
CD44, a widely expressed cell surface glycoprotein, plays a major role in cell-cell adhesion, cell-substrate interaction, lymphocyte homing, and tumor metastasis. For tumor metastasis to occur through the blood vessel and lymphatic vessel pathway, the tumor cells must first adhere to endothelial cells. Recent studies have shown that high expression of CD44 in certain types of tumors is associated with the hematogenic spread of cancer cells. However, the functional relevance of CD44 to tumor cell metastasis remains unknown. In this study, we investigated the mechanisms of CD44 cross-linking-induced adhesion and transendothelial migration of tumor cells using MDA-MB-435S breast cancer cell line. Breast cancer cells were found to express high levels of CD44. Using flow cytometric analysis and immunofluorescence staining, we demonstrated that cross-linking of CD44 resulted in a marked induction of the expression of lymphocyte function-associated antigen-1 (LFA-1) and very late antigen-4 (VLA-4) by exocytosis. These results were also observed with the Hs578T breast cancer cell line. Furthermore, LFA-1- and VLA-4-mediated adhesion and transendothelial cancer cell migration were also studied. Anti-LFA-1 mAb or anti-VLA-4 mAb alone had no effect on adhesion or transendothelial cancer cell migration, but were able to inhibit both of these functions when added together. This shows that CD44 cross-linking induces LFA-1 and VLA-4 expression in MDA-MB-435S cells and increases integrin-mediated adhesion to endothelial cells, resulting in the transendothelial migration of breast cancer cells. These observations provide direct evidence of a new function for CD44 that is involved in the induction of LFA-1 and VLA-4 expression by exocytosis in MDA-MB-435S cells. Because these induced integrins promote tumor cell migration into the target tissue, it may be possible to suppress this by pharmacological means, and thus potentially cause a reduction in invasive capability and metastasis.  相似文献   

17.
Cao W  Zhou J  Mann A  Wang Y  Zhu L 《Biomacromolecules》2011,12(7):2697-2707
A folate-functionalized degradable amphiphilic dendrimer-like star polymer (FA-DLSP) with a well-defined poly(L-lactide) (PLLA) star polymer core and six hydrophilic polyester dendrons based on 2,2-bis(hydroxymethyl) propionic acid was successfully synthesized to be used as a nanoscale carrier for cancer cell-targeted drug delivery. This FA-DLSP hybrid formed unimolecular micelles in the aqueous solution with a mean particle size of ca. 15 nm as determined by dynamic light scattering and transmission electron microscopy. To study the feasibility of FA-DLSP micelles as a potential nanocarrier for targeted drug delivery, we encapsulated a hydrophobic anticancer drug, doxorubicin (DOX), in the hydrophobic core, and the loading content was determined by UV-vis analysis to be 4 wt %. The DOX-loaded FA-DLSP micelles demonstrated a sustained release of DOX due to the hydrophobic interaction between the polymer core and the drug molecules. The hydrolytic degradation in vitro was monitored by weight loss and proton nuclear magnetic resonance spectroscopy to gain insight into the degradation mechanism of the FA-DLSP micelles. It was found that the degradation was pH-dependent and started from the hydrophilic shell gradually to the hydrophobic core. Flow cytometry and confocal microscope studies revealed that the cellular binding of the FA-DLSP hybrid against human KB cells with overexpressed folate-receptors was about twice that of the neat DLSP (without FA). The in vitro cellular cytotoxicity indicated that the FA-DLSP micelles (without DOX) had good biocompatibility with KB cells, whereas DOX-loaded micelles exhibited a similar degree of cytotoxicity against KB cells as that of free DOX. These results clearly showed that the FA-DLSP unimolecular micelles could be a promising nanosize anticancer drug carrier with excellent targeting property.  相似文献   

18.
Antitumor effects of a known bis(imino-quinolyl)palladium(II) complex 1 and its newly synthesized platinum(II) analogue 2 were evaluated against human breast (MCF-7) and human colon (HT-29) cancer cell lines. The complexes gave cytotoxicity profiles that were better than the reference drug cisplatin. The highest cytotoxic activities were pronounced in complex 2 across the two examined cancer cell lines. Both compounds represent potential active drugs based on bimetallic complexes.  相似文献   

19.
王明  陈雷  王朴 《生命的化学》2013,(6):633-637
设计肿瘤靶向性抗癌药物一直是研究热点。因为CD44在许多肿瘤细胞表面过表达,所以基于CD44与其配体透明质酸(hyaluronic acid,HA)的相互作用设计肿瘤靶向药物成为一个新的研究方向。本文介绍了CD44的基本结构7LCD44与HA之间的相互作用,并对以CD44为靶点的靶向抗癌药物研究进展进行了简介。  相似文献   

20.
In this study we have examined CD44 (a hyaluronan (HA) receptor) interaction with a RhoA-specific guanine nucleotide exchange factor (p115RhoGEF) in human metastatic breast tumor cells (MDA-MB-231 cell line). Immunoprecipitation and immunoblot analyses indicate that both CD44 and p115RhoGEF are expressed in MDA-MB-231 cells and that these two proteins are physically associated as a complex in vivo. The binding of HA to MDA-MB-231 cells stimulates p115RhoGEF-mediated RhoA signaling and Rho kinase (ROK) activity, which, in turn, increases serine/threonine phosphorylation of the adaptor protein, Gab-1 (Grb2-associated binder-1). Phosphorylated Gab-1 promotes PI 3-kinase recruitment to CD44v3. Subsequently, PI 3-kinase is activated (in particular, alpha, beta, gamma forms but not the delta form of the p110 catalytic subunit), AKT signaling occurs, the cytokine (macrophage-colony stimulating factor (M-CSF)) is produced, and tumor cell-specific phenotypes (e.g. tumor cell growth, survival and invasion) are up-regulated. Our results also demonstrate that HA/CD44-mediated oncogenic events (e.g. AKT activation, M-CSF production and breast tumor cell-specific phenotypes) can be effectively blocked by a PI 3-kinase inhibitor (LY294002). Finally, we have found that overexpression of a dominant-negative form of ROK (by transfection of MBA-MD-231 cells with the Rho-binding domain cDNA of ROK) not only inhibits HA/CD44-mediated RhoA-ROK activation and Gab-1 phosphorylation but also down-regulates oncogenic signaling events (e.g. Gab-1.PI 3-kinase-CD44v3 association, PI 3-kinase-mediated AKT activation, and M-CSF production) and tumor cell behaviors (e.g. cell growth, survival, and invasion). Taken together, these findings strongly suggest that CD44 interaction with p115RhoGEF and ROK plays a pivotal role in promoting Gab-1 phosphorylation leading to Gab-1.PI 3-kinase membrane localization, AKT signaling, and cytokine (M-CSF) production during HA-mediated breast cancer progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号