首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the degradation of toluene for bacteria isolated from hypoxic (i.e., oxygen-limited) petroleum-contaminated aquifers and compared such strains with other toluene degraders. Three Pseudomonas isolates, P. pickettii PKO1, Pseudomonas sp. strain W31, and P. fluorescens CFS215, grew on toluene when nitrate was present as an alternate electron acceptor in hypoxic environments. We examined kinetic parameters (K(m) and Vmax) for catechol 2,3-dioxygenase (C230), a key shared enzyme of the toluene-degradative pathway for these strains, and compared these parameters with those for the analogous enzymes from archetypal toluene-degrading pseudomonads which did not show enhanced, nitrate-dependent toluene degradation. C230 purified from strains W31, PKO1, and CFS215 had a significantly greater affinity for oxygen as well as a significantly greater rate of substrate turnover than found for the analogous enzymes from the TOL plasmid (pWW0) of Pseudomonas putida PaW1, from Pseudomonas cepacia G4, or from P. putida F1. Analysis of the nucleotide and deduced amino acid sequences of C23O from strain PKO1 suggests that this extradiol dioxygenase belongs to a new cluster within the subfamily of C23Os that preferentially cleave monocyclic substrates. Moreover, deletion analysis of the nucleotide sequence upstream of the translational start of the meta-pathway operon that contains tbuE, the gene that encodes the C230 of strain PKO1, allowed identification of sequences critical for regulated expression of tbuE, including a sequence homologous to the ANR-binding site of Pseudomonas aeruginosa PAO. When present in cis, this site enhanced expression of tbuE under oxygen-limited conditions. Taken together, these results suggest the occurrence of a novel group of microorganisms capable of oxygen-requiring but nitrate-enhanced degradation of benzene, toluene, ethylbenzene, and xylenes in hypoxic environments. Strain PKO1, which exemplifies this novel group of microorganisms, compensates for a low-oxygen environment by the development of an oxygen-requiring enzyme with kinetic parameters favorable to function in hypoxic environments, as well as by elevating synthesis of such an enzyme in response to oxygen limitation.  相似文献   

2.
We characterized bacteria from contaminated aquifers for their ability to utilize aromatic hydrocarbons under hypoxic (oxygen-limiting) conditions (initial dissolved oxygen concentration about 2 mg/l) with nitrate as an alternate electron acceptor. This is relevant to current intense efforts to establish favorable conditions forin situ bioremediation. Using samples of granular activated carbon slurries from an operating groundwater treatment system, we isolated bacteria that are able to use benzene, toluene, ethylbenzene, orp-xylene as their sole source of carbon under aerobic or hypoxic-denitrifying conditions. Direct isolation on solid medium incubated aerobically or hypoxically with the substrate supplied as vapor yielded 103 to 105 bacteria ml–1 of slurry supernatant, with numbers varying little with respect to isolation substrate or conditions. More than sixty bacterial isolates that varied in colony morphology were purified and characterized according to substrate utilization profiles and growth condition (i.e., aerobic vs. hypoxic) specificity. Strains with distinct characteristics were obtained using benzene compared with those isolated on toluene or ethylbenzene. In general, isolates obtained from direct selection on benzene minimal medium grew well under aerobic conditions but poorly under hypoxic conditions, whereas many ethylbenzene isolates grew well under both incubation conditions. We conclude that the conditions of isolation, rather than the substrate used, will influence the apparent characteristic substrate utilization range of the isolates obtained. Also, using an enrichment culture technique, we isolated a strain ofPseudomonas fluorescens, designated CFS215, which exhibited nitrate dependent degradation of aromatic hydrocarbons under hypoxic conditions.Abbreviations BTEX benzene, toluene, ethylbenzene, andp-xylene - HPLC high performance liquid chromatography - GAC granular activated carbon  相似文献   

3.
4.
13C/(12)C and D/H stable isotope fractionation during aerobic degradation was determined for Pseudomonas putida strain mt-2, Pseudomonas putida strain F1, Ralstonia pickettii strain PKO1, and Pseudomonas putida strain NCIB 9816 grown with toluene, xylenes, and naphthalene. Different types of initial reactions used by the respective bacterial strains could be linked with certain extents of stable isotope fractionation during substrate degradation.  相似文献   

5.
6.
Enrichments capable of toluene degradation under O2-free denitrifying conditions were established with diverse inocula including agricultural soils, compost, aquifer material, and contaminated soil samples from different geographic regions of the world. Successful enrichment was strongly dependent on the initial use of relatively low toluene concentrations, typically 5 ppm. From the enrichments showing positive activity for toluene degradation, 10 bacterial isolates were obtained. Fingerprints generated by PCR-amplified DNA, with repetitive extragenic palindromic sequence primers, showed that eight of these isolates were different. Under aerobic conditions, all eight isolates degraded toluene, five degraded ethylbenzene, three consumed benzene, and one degraded chlorobenzene, meta-Xylene was the only other substrate used anaerobically and was used by only one isolate. All isolates were motile gram-negative rods, produced N2 from denitrification, and did not hydrolyze starch. All strains but one fixed nitrogen as judged by ethylene production from acetylene, but only four strains hybridized to the nifHDK genes. All strains appeared to have heme nitrite reductase since their DNA hybridized to the heme (nirS) but not to the Cu (nirU) genes. Five strains hybridized to a toluene ortho-hydroxylase catabolic probe, and two of those also hybridized to a toluene meta-hydroxylase probe. Partial sequences of the 16S rRNA genes of all isolates showed substantial similarity to 16S rRNA sequences of Azoarcus sp. Physiological, morphological, fatty acid, and 16S rRNA analyses indicated that these strains were closely related to each other and that they belong to the genus Azoarcus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Herein we describe a novel and effective screening method for aerobic denitrifying bacteria. For this procedure, we utilized KCN to inhibit the electron transference from Cytaa3 to oxygen in the bacteria respiratory chain. We employed a 3-h aeration operation cycle and intermittent rotations. The resultant bacterial suspensions were plated on a KCN-screening medium and incubated aerobically. Single colonies were selected and incubated in an aerobic culture medium. Culture nitrate and nitrite levels were determined over time, and ultimately four bacterial strains that performed denitrifying under aerobic conditions were identified by this method. Of these, strain Y2-1-1 demonstrated the best aerobic denitrifying ability. In a 5-day test, the NO3--N of the aerobic culture medium was reduced from 282.0+/-8.3 mg L(-1) to 149.2+/-17.1 mg L(-1), with little nitrite or N2O production. The morphological, physiological and biochemical characteristics and the 16S rRNA gene sequence homology comparison data for this strain were consistent with the classification of the genus Pseudomonas. We named this strain Pseudomonas sp. Y2-1-1.  相似文献   

8.
13C/12C and D/H stable isotope fractionation during aerobic degradation was determined for Pseudomonas putida strain mt-2, Pseudomonas putida strain F1, Ralstonia pickettii strain PKO1, and Pseudomonas putida strain NCIB 9816 grown with toluene, xylenes, and naphthalene. Different types of initial reactions used by the respective bacterial strains could be linked with certain extents of stable isotope fractionation during substrate degradation.  相似文献   

9.
The purpose of this study was to examine the effects of different nutrient (carbon, nitrogen, oxygen) concentrations on the microbial activity and community structure in membrane-aerated biofilms (MABs). MABs were grown under well-defined conditions of fluid flow, substrate concentration, and membrane oxygen partial pressure. Biofilms were then removed and thin-sliced using a cryostat/microtome parallel to the membrane. Individual slices were analyzed for changes with depth in biomass density, respiratory activity, and the population densities of ammonia-oxidizing and denitrifying bacteria populations. Oxygen-sensing microelectrodes were used to determine the depth of oxygen penetration into each biofilm. Our results demonstrated that ammonia-oxidizing bacteria grow near the membrane, while denitrifying bacteria grow a substantial distance from the membrane. However, nitrifying and denitrifying bacteria did not grow simultaneously when organic concentrations became too high or ammonia concentrations became too low. In conclusion, membrane-aerated biofilms exhibit substantial stratification with respect to community structure and activity. A fundamental understanding of the factors that control this stratification will help optimize the performance of full-scale membrane-aerated biofilm reactors for wastewater treatment.  相似文献   

10.
Previous studies have shown that membrane-aerated biofilm (MAB) reactors can simultaneously remove carbonaceous and nitrogenous pollutants from wastewater in a single reactor. Oxygen is provided to MABs through gas-permeable membranes such that the region nearest the membrane is rich in oxygen but low in organic carbon, whereas the outer region of the biofilm is void of oxygen but rich in organic carbon. In this study, MABs were grown under similar conditions but at two different fluid velocities (2 and 14 cm s(-1)) across the biofilm. MABs were analyzed for changes in biomass density, respiratory activity, and bacterial community structure as functions of biofilm depth. Biomass density was generally highest near the membrane and declined with distance from the membrane. Respiratory activity exhibited a hump-shaped profile, with the highest activity occurring in the middle of the biofilm. Community analysis by PCR cloning and PCR-denaturing gradient gel electrophoresis of 16S rRNA genes demonstrated substantial stratification of the community structure across the biofilm. Population profiles were also generated by competitive quantitative PCR of gene fragments specific for ammonia-oxidizing bacteria (AOB) (amoA) and denitrifying bacteria (nirK and nirS). At a flow velocity of 14 cm s(-1), AOB were found only near the membrane, whereas denitrifying bacteria proliferated in the anoxic outer regions of the biofilm. In contrast, at a flow velocity of 2 cm s(-1), AOB were either not detected or detected at a concentration near the detection limit. This study suggests that, under the appropriate conditions, both AOB and denitrifying bacteria can coexist within an MAB.  相似文献   

11.
Previous studies have shown that membrane-aerated biofilm (MAB) reactors can simultaneously remove carbonaceous and nitrogenous pollutants from wastewater in a single reactor. Oxygen is provided to MABs through gas-permeable membranes such that the region nearest the membrane is rich in oxygen but low in organic carbon, whereas the outer region of the biofilm is void of oxygen but rich in organic carbon. In this study, MABs were grown under similar conditions but at two different fluid velocities (2 and 14 cm s−1) across the biofilm. MABs were analyzed for changes in biomass density, respiratory activity, and bacterial community structure as functions of biofilm depth. Biomass density was generally highest near the membrane and declined with distance from the membrane. Respiratory activity exhibited a hump-shaped profile, with the highest activity occurring in the middle of the biofilm. Community analysis by PCR cloning and PCR-denaturing gradient gel electrophoresis of 16S rRNA genes demonstrated substantial stratification of the community structure across the biofilm. Population profiles were also generated by competitive quantitative PCR of gene fragments specific for ammonia-oxidizing bacteria (AOB) (amoA) and denitrifying bacteria (nirK and nirS). At a flow velocity of 14 cm s−1, AOB were found only near the membrane, whereas denitrifying bacteria proliferated in the anoxic outer regions of the biofilm. In contrast, at a flow velocity of 2 cm s−1, AOB were either not detected or detected at a concentration near the detection limit. This study suggests that, under the appropriate conditions, both AOB and denitrifying bacteria can coexist within an MAB.  相似文献   

12.
Liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS) was used to determine intact phospholipid profiles for five reference pseudomonad strains harboring different (aerobic) toluene catabolic pathways: Pseudomonas putida mt-2, Pseudomonas putida F1, Burkholderia cepacia G4, Burkholderia pickettii PKO1, and Pseudomonas mendocina KR1. These five strains contained a predominant pool of phosphatidylethanolamines. Other phospholipids identified include phosphatidylglycerol, phosphatidylserine, phosphatidylmethylethanolamine, and phosphatidyldimethylethanolamine. There was a clear separation in phospholipid profiles that allows for the differentiation between the Pseudomonas and Burkholderia genera. Factor analysis of the phospholipid profiles showed that B. cepacia G4, P. putida mt-2, and B. pickettii PKO1 were clearly separated, while P. putida F1 and P. mendocina KR1 were clustered as a group. These results suggest that intact phospholipid profiling could be used to evaluate the relative abundance of specific degraders in bioreactors or in aquifer material. Nevertheless, the usefulness of this technique for taxonomic characterization of such complex samples remains to be demonstrated because of potential confounding effects of overlapping profiles and potential changes in phospholipid composition due to different growth conditions.  相似文献   

13.
Community composition, succession, and performance were compared in three fluidized bed reactors (FBR) operated to test preemptive colonization and the influence of toluene compared with a mixture of benzene, toluene, and p-xylene (BTX) as feeds. One reactor was inoculated with toluene-degrading strains Pseudomonas putida PaW1, Burkholderia cepacia G4, and B. pickettii PKO1. PaW1 outcompeted the other two strains. When groundwater strains were allowed to challenge the steady-state biofilm developed by inoculated strains, they readily displaced the inoculated strains and further reduced the toluene effluent concentration from 0.140 to 0.063 mg/liter for 98% removal. Amplified ribosomal DNA restriction analysis (ARDRA) of reactor community DNA showed a succession of populations to a pattern that was stable for at least 4 months of operation. Parallel reactors fed toluene and BTX but inoculated directly from groundwater had the same treatment performance and the same ARDRA profiles as each other and as the seeded reactor once the groundwater community took over. Convergence and stability of populations were confirmed by genotype analysis of 120 isolates taken from all reactors and at several times. Ninety percent of the isolates were of 4 of the 12 genotypes found, and their ARDRA patterns accounted for most of the community ARDRA patterns. Estimates of the maximum specific growth rates (mu max), half-saturation constants (K(m)), and maximum substrate utilization rates (Vmax) of the 12 genotypes isolated revealed a rather high diversity of toluene use kinetics even though the toluene in the feed was constant. The climax populations, however, generally showed kinetic parameters indicative of greater competitiveness than the inocula. rRNA sequence analysis of three codominant strains showed them to be members of the alpha, beta, and gamma subdivisions of the Proteobacteria. Two were similar to Comamonas and Pseudomonas putida, but the member of the alpha group was somewhat distant from any organism in the rRNA database. The convergence of communities to the same composition from three different starting conditions and their constancy over several months suggests that a rather stable community was selected.  相似文献   

14.
A simple unstructured model, which includes carbon source as the limiting and essential substrate and oxygen as an enhancing substrate for cell growth, has been implemented to depict cell population evolution of two Escherichia coli strains and the expression of their trimethylammonium metabolism in batch and continuous reactors. Although the model is applied to represent the trans-crotonobetaine to L-(-)-carnitine biotransformation, it is also useful for understanding the complete metabolic flow of trimethylammonium compounds in E. coli. Cell growth and biotransformation were studied in both anaerobic and aerobic conditions. For this reason we derived equations to modify the specific growth rate, mu, and the cell yield on the carbon source (glycerol), Y(xg), as oxygen increased the rate of growth. Inhibition functions representing an excess of the glycerol and oxygen were included to depict cell evolution during extreme conditions. As a result, the model fitted experimental data for various growth conditions, including different carbon source concentrations, initial oxygen levels, and the existence of a certain degree of cell death. Moreover, the production of enzymes involved within the E. coli trimethylammonium metabolism and related to trans-crotonobetaine biotransformation was also modeled as a function of both the cell and oxygen concentrations within the system. The model describes all the activities of the different enzymes within the transformed and wild strains, able to produce L-(-)-carnitine from trans-crotonobetaine under both anaerobic and aerobic conditions. Crotonobetaine reductase inhibition by either oxygen or the addition of fumarate as well as its non-reversible catalytic action was taken into consideration. The proposed model was useful for describing the whole set of variables under both growing and resting conditions. Both E. coli strains within membrane high-density reactors were well represented by the model as results matched the experimental data.  相似文献   

15.
一株好氧反硝化菌的分离及特性研究   总被引:3,自引:0,他引:3  
从土壤中分离得到一株好氧反硝化细菌CY1, 该菌株在厌氧和好氧条件下均具有反硝化能力。硝酸盐氮初始浓度为137.25 mg/L, 30 h内硝酸盐氮去除率分别为99.98%(厌氧)和60.16%(好氧)。通过形态学特征、生理生化特性及16S rDNA同源性比较对菌株CY1进行鉴定, 初步判断CY1为泛养副球菌(Paracoccus pantotrophus)。  相似文献   

16.
Denitrifying bacteria capable of degrading halobenzoates were isolated from various geographical and ecological sites. The strains were isolated after initial enrichment on one of the monofluoro-, monochloro-, or monobromo-benzoate isomers with nitrate as an electron acceptor, yielding a total of 33 strains isolated from the different halobenzoate-utilizing enrichment cultures. Each isolate could grow on the selected halobenzoate with nitrate as the terminal electron acceptor. The isolates obtained on 2-fluorobenzoate could use 2-fluorobenzoate under both aerobic and denitrifying conditions, but did not degrade other halobenzoates. In contrast, the 4-fluorobenzoate isolates degraded 4-fluorobenzoate under denitrifying conditions only, but utilized 2-fluorobenzoate under both aerobic and denitrifying conditions. The strains isolated on either 3-chlorobenzoate or 3-bromobenzoate could use 3-chlorobenzoate, 3-bromobenzoate, and 2- and 4-fluorobenzoates under denitrifying conditions. The isolates were identified and classified on the basis of 16S rRNA gene sequence analysis and their cellular fatty acid profiles. They were placed in nine genera belonging to either the alpha-, beta-, or gamma-branch of the Proteobacteria, namely, Acidovorax, Azoarcus, Bradyrhizobium, Ochrobactrum, Paracoccus, Pseudomonas, Mesorhizobium, Ensifer, and Thauera. These results indicate that the ability to utilize different halobenzoates under denitrifying conditions is ubiquitously distributed in the Proteobacteria and that these bacteria are widely distributed in soils and sediments.  相似文献   

17.
A multi-population biofilm model for completely autotrophic nitrogen removal was developed and implemented in the simulation program AQUASIM to corroborate the concept of a redox-stratification controlled biofilm (ReSCoBi). The model considers both counter- and co-diffusion biofilm geometries. In the counter-diffusion biofilm, oxygen is supplied through a gas-permeable membrane that supports the biofilm while ammonia (NH(4)(+)) is supplied from the bulk liquid. On the contrary, in the co-diffusion biofilm, both oxygen and NH(4)(+) are supplied from the bulk liquid. Results of the model revealed a clear stratification of microbial activities in both of the biofilms, the resulting chemical profiles, and the obvious effect of the relative surface loadings of oxygen and NH(4)(+) (J(O(2))/J(NH(4)(+))) on the reactor performances. Steady-state biofilm thickness had a significant but different effect on T-N removal for co- and counter-diffusion biofilms: the removal efficiency in the counter-diffusion biofilm geometry was superior to that in the co-diffusion counterpart, within the range of 450-1,400 microm; however, the efficiency deteriorated with a further increase in biofilm thickness, probably because of diffusion limitation of NH(4)(+). Under conditions of oxygen excess (J(O(2))/J(NH(4)(+)) > 3.98), almost all NH(4)(+) was consumed by aerobic ammonia oxidation in the co-diffusion biofilm, leading to poor performance, while in the counter-diffusion biofilm, T-N removal efficiency was maintained because of the physical location of anaerobic ammonium oxidizers near the bulk liquid. These results clearly reveal that counter-diffusion biofilms have a wider application range for autotrophic T-N removal than co-diffusion biofilms.  相似文献   

18.
In this work, an integrated metabolic model for biological phosphorus removal is presented. Using a previously proposed mathematical model it was shown to be possible to describe the two known biological phosphorus removal processes, under aerobic and denitrifying conditions, with the same biochemical reactions, where only the difference in electron acceptor (oxygen and nitrate) is taken into account. Though, apart from the ATP/NADH ratio, the stoichiometry in those models is identical, different kinetic parameters were found. Therefore, a new kinetic structure is proposed that adequately describes phosphorus removal under denitrifying and aerobic conditions with the same kinetic equations and parameters. The ATP/NADH ratio (delta) is the only model parameter that is different for aerobic and denitrifying growth. With the new model, simulations of anaerobic/aerobic and anaerobic/denitrifying sequencing batch reactors (A(2) SBR and A/O SBR) were made for verification of the model. Not only short-term behavior, but also steady state, was simulated. The results showed very good agreement between model predictions and experimental results for a wide range of dynamic conditions and sludge retention times. Sensitivity analysis shows the influence of the model parameters and the feed substrate concentrations on both systems. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 434-450, 1997.  相似文献   

19.
Anaerobic degradation of alkylbenzenes with side chains longer than that of toluene was studied in freshwater mud samples in the presence of nitrate. Two new denitrifying strains, EbN1 and PbN1, were isolated on ethylbenzene and n-propylbenzene, respectively. For comparison, two further denitrifying strains, ToN1 and mXyN1, were isolated from the same mud with toluene and m-xylene, respectively. Sequencing of 16SrDNA revealed a close relationship of the new isolates to Thauera selenatis. The strains exhibited different specific capacities for degradation of alkylbenzenes. In addition to ethylbenzene, strain EbN1 utilized toluence, but not propylbenzene. In contrast, propylbenzene-degrading strain PbN1 did not grow on toluene, but was able to utilize ethylbenzene. Strain ToN1 used toluene as the only hydrocarbon substrate, whereas strain mXyN1 utilized both toluene and m-xylene. Measurement of the degradation balance demonstrated complete oxidation of ethylbenzene to CO2 by strain EbN1. Further characteristic substrates of strains EbN1 and PbN1 were 1-phenylethanol and acetophenone. In contrast to the other isolates, strain mXyN1 did not grow on benzyl alcohol. Benzyl alcohol (also m-methylbenzyl alcohol) was even a specific inhibitor of toluene and m-xylene utilization by strain mXyN1. None of the strains was able to grow on any of the alkylbenzenes with oxygen as electron acceptor. However, polar aromatic compounds such as benzoate were utilized under both oxic and anoxic conditions. All four isolates grew anaerobically on crude oil. Gas chromatographic analysis of crude oil after growth of strain ToN1 revealed specific depletion of toluene.  相似文献   

20.
Two kinds of phenol-degrading denitrifying bacteria, Azoarcus sp. strain CC-11 and spiral bacterial strain CC-26, were isolated from the same enrichment culture after 1 and 3 years of incubation, respectively. Both strains required ferrous ions for growth, but strain CC-26 grew better than strain CC-11 grew under iron-limited conditions, which may have resulted in the observed change in the phenol-degrading bacteria during the enrichment process. Strain CC-26 grew on phenol, benzoate, and other aromatic compounds under denitrifying conditions. Phylogenetic analysis of 16S ribosomal DNA sequences revealed that this strain is most closely related to a Magnetospirillum sp., a member of the alpha subclass of the class Proteobacteria, and is the first strain of a denitrifying aromatic compound-degrading bacterium belonging to this group. Unlike previously described Magnetospirillum strains, however, this strain did not exhibit magnetotaxis. It grew on phenol only under denitrifying conditions. Other substrates, such as acetate, supported aerobic growth, and the strain exhibited microaerophilic features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号