首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 2,598-base-pair (bp) SalI-HincII DNA fragment has been cloned which codes for vanillate demethylase, the enzyme responsible for the demethylation of vanillate (3-methoxy-4-hydroxybenzoate) to protocatechuate (3,4-dihydroxybenzoate). Complementation and insertional inactivation experiments have shown that this fragment carries two genes (vanA and vanB) which are predominantly cotranscribed from a promoter upstream of vanA. Nucleotide sequencing of the SalI-HincII fragment confirmed the genetic data: two open reading frames of 987 and 942 bp were present in the transcribed orientation. These had a very high G + C content in the third base of each codon, which is characteristic of Pseudomonas chromosomal genes. Expression of the genes in Escherichia coli with the T7 RNA polymerase-promoter system gave rise to two polypeptides of 36 and 33 kilodaltons which could be identified by deletion analysis as the products of vanA and vanB, respectively. A search of the protein sequence data bank indicated that the vanB gene product was related to the ferredoxin family.  相似文献   

2.
3.
Corynebacterium glutamicum, a Gram-positive soil bacterium belonging to the mycolic acids-containing actinomycetes, is able to use the lignin degradation products ferulate, vanillate, and protocatechuate as sole carbon sources. The gene cluster responsible for vanillate catabolism was identified and characterized. The vanAB genes encoding vanillate demethylase are organized in an operon together with the vanK gene, coding for a transport system most likely responsible for protocatechuate uptake. While gene disruption mutagenesis revealed that vanillate demethylase is indispensable for ferulate and vanillate utilization, a vanK mutation does not lead to a complete growth arrest but to a decreased growth rate on protocatechuate, indicating that one or more additional protocatechuate transporter(s) are present in C. glutamicum.  相似文献   

4.
From a ferulic-acid-degrading Pseudomonas fluorescens strain (BF13), we have isolated a transposon mutant, which retained the ability to bioconvert ferulic acid into vanillic acid but lost the ability to further degrade the latter acid. The mutant, BF13-97, was very stable, and therefore it was suitable to be used as a biocatalyst for the preparative synthesis of vanillic acid from ferulic acid. By use of resting cells we determined the effect on the bioconversion rate of several parameters, such as the addition of nutritional factors, the concentration of the biomass, and the carbon source on which the biomass was grown. The optimal yield of vanillic acid was obtained with cells pregrown on M9 medium containing p-coumaric acid (0.1% [wt/vol]) as a sole carbon source and yeast extract (0.001% [wt/vol]) as a source of nutritional factors. Under these conditions, 1 mg (wet weight) of biomass produced 0.23 mg of vanillic acid per h. The genomic region of BF13-97 flanking the transposon's site of insertion was cloned and sequenced revealing two open reading frames of 1,062 (vanA) and 954 (vanB) bp, respectively. The van genes are organized in a cluster and encode the subunits of the vanillate-O-demethylase, which catalyzes the first step of the vanillate catabolism. Amino acid sequences deduced from vanA and vanB genes were shown to have high identity with known VanAs and VanBs from Pseudomonas and Acinetobacter spp. Highly conserved regions known to exist in class IA oxygenases were also found in the vanillate-O-demethylase components from P. fluorescens BF13. The terminal oxygenase VanA is characterized by a conserved Rieske-type [2Fe-2S](R) ligand center. The reductase VanB contains a plant-type ferredoxin [2Fe-2S](Fd), flavin mononucleotide, and NAD-ribose binding domains which are located in its C-terminal and N-terminal halves, respectively. Transfer of wild-type vanAB genes to BF13-97 complemented this mutant, which recovered its ability to grow on either vanillic or ferulic acid.  相似文献   

5.
VanK is the fourth member of the ubiquitous major facilitator superfamily of transport proteins to be identified that, together with PcaK, BenK, and MucK, contributes to aromatic catabolism in Acinetobacter sp. strain ADP1. VanK and PcaK have overlapping specificity for p-hydroxybenzoate and, most clearly, for protocatechuate: inactivation of both proteins severely impairs growth with protocatechuate, and the activity of either protein alone can mask the phenotype associated with inactivation of its homolog. Furthermore, vanK pcaK double-knockout mutants appear completely unable to grow in liquid culture with the hydroaromatic compound quinate, although such cells on plates convert quinate to protocatechuate, which then accumulates extracellularly and is readily visible as purple staining. This provides genetic evidence that quinate is converted to protocatechuate in the periplasm and is in line with the early argument that quinate catabolism should be physically separated from aromatic amino acid biosynthesis in the cytoplasm so as to avoid potential competition for intermediates common to both pathways. Previous studies of aromatic catabolism in Acinetobacter have taken advantage of the ability to select directly strains that contain a spontaneous mutation blocking the beta-ketoadipate pathway and preventing the toxic accumulation of carboxymuconate. By using this procedure, strains with a mutation in structural or regulatory genes blocking degradation of vanillate, p-hydroxybenzoate, or protocatechuate were selected. In this study, the overlapping specificity of the VanK and PcaK permeases was exploited to directly select strains with a mutation in either vanK or pcaK. Spontaneous mutations identified in vanK include a hot spot for frameshift mutation due to contraction of a G6 mononucleotide repeat as well as point mutations producing amino acid substitutions useful for analysis of VanK structure and function. Preliminary second-site suppression analysis using transformation-facilitated PCR mutagenesis in one VanK mutant gave results similar to those using LacY, the prototypic member of the major facilitator superfamily, consistent with the two proteins having a similar mechanism of action. The selection for transport mutants described here for Acinetobacter may also be applicable to Pseudomonas putida, where the PcaK permease has an additional role in chemotaxis.  相似文献   

6.
Hydroxycinnamates are plant products catabolized through the diphenol protocatechuate in the naturally transformable bacterium Acinetobacter sp. strain ADP1. Genes for protocatechuate catabolism are central to the dca-pca-qui-pob-hca chromosomal island, for which gene designations corresponding to catabolic function are dca (dicarboxylic acid), pca (protocatechuate), qui (quinate), pob (p-hydroxybenzoate), and hca (hydroxycinnamate). Acinetobacter hcaC had been cloned and shown to encode a hydroxycinnamate:coenzyme A (CoA) SH ligase that acts upon caffeate, p-coumarate, and ferulate, but genes for conversion of hydroxycinnamoyl-CoA to protocatechuate had not been characterized. In this investigation, DNA from pobS to an XbaI site 5.3 kb beyond hcaC was captured in the plasmid pZR8200 by a strategy that involved in vivo integration of a cloning vector near the hca region of the chromosome. pZR8200 enabled Escherichia coli to convert p-coumarate to protocatechuate in vivo. Sequence analysis of the newly cloned DNA identified five open reading frames designated hcaA, hcaB, hcaK, hcaR, and ORF1. An Acinetobacter strain with a knockout of HcaA, a homolog of hydroxycinnamoyl-CoA hydratase/lyases, was unable to grow at the expense of hydroxycinnamates, whereas a strain mutated in HcaB, homologous to aldehyde dehydrogenases, grew poorly with ferulate and caffeate but well with p-coumarate. A chromosomal fusion of lacZ to the hcaE gene was used to monitor expression of the hcaABCDE promoter. LacZ was induced over 100-fold by growth in the presence of caffeate, p-coumarate, or ferulate. The protein deduced to be encoded by hcaR shares 28% identity with the aligned E. coli repressor, MarR. A knockout of hcaR produced a constitutive phenotype, as assessed in the hcaE::lacZ-Km(r) genetic background, revealing HcaR to be a repressor as well. Expression of hcaE::lacZ in strains with knockouts in hcaA, hcaB, or hcaC revealed unambiguously that hydroxycinnamoyl-CoA thioesters relieve repression of the hcaABCDE genes by HcaR.  相似文献   

7.
An 18-kbp Acinetobacter calcoaceticus chromosomal segment contains the pcaIJFBDKCHG operon, which is required for catabolism of protocatechuate, and pobSRA, genes associated with conversion of p-hydroxybenzoate to protocatechuate. The genetic function of the 6.5 kbp of DNA between pcaG and pobS was unknown. Deletions in this DNA were designed by removal of fragments between restriction sites, and the deletion mutations were introduced into A. calcoaceticus by natural transformation. The mutations prevented growth with either quinate or shikimate, growth substrates that depend upon qui gene function for their catabolism to protocatechuate. The location of quiA, a gene encoding quinate-shikimate dehydrogenase, was indicated by its expression in one of the deletion mutants, and the position of the gene was confirmed by determination of its 2,427-bp nucleotide sequence. The deduced amino acid sequence of QuiA confirmed that it is a member of a family of membrane-associated, pyrrolo-quinoline quinone-dependent dehydrogenases, as had been suggested by earlier biochemical investigations. Catabolism of quinate and skikimate is initiated by NAD(+)-dependent dehydrogenases in other microorganisms, so it is evident that different gene pools were called upon to provide the ancestral enzyme for this metabolic step.  相似文献   

8.
The vanillate demethylase genes from Streptomyces sp. NL15-2K were cloned and sequenced. The vanA and vanB gene homologs, which encode the terminal oxygenase subunit (VanA) and the ferredoxin-type reductase subunit (VanB) of the enzyme respectively, were found in the sequenced 7.5-kb DNA region. Expression of the vanAB genes in Streptomyces lividans 1326 resulted in in vivo demethylation of veratric acid to vanillic acid.  相似文献   

9.
Parke D 《Journal of bacteriology》2000,182(21):6145-6153
A positive selection method for mutations affecting bioconversion of aromatic compounds was applied to a mutant strain of Agrobacterium tumefaciens A348. The nucleotide sequence of the A348 pcaHGB genes, which encode protocatechuate 3,4-dioxygenase (PcaHG) and beta-carboxy-cis,cis-muconate cycloisomerase (PcaB) for the first two steps in catabolism of the diphenolic protocatechuate, was determined. An omega element was introduced into the pcaB gene of A348, creating strain ADO2077. In the presence of phenolic compounds that can serve as carbon sources, growth of ADO2077 is inhibited due to accumulation of the tricarboxylate intermediate. The toxic effect, previously described for Acinetobacter sp., affords a powerful selection for suppressor mutations in genes required for upstream catabolic steps. By monitoring loss of the marker in pcaB, it was possible to determine that the formation of deletions was minimal compared to results obtained with Acinetobacter sp. Thus, the tricarboxylic acid trick in and of itself does not appear to select for large deletion mutations. The power of the selection was demonstrated by targeting the pcaHG genes of A. tumefaciens for spontaneous mutation. Sixteen strains carrying putative second-site mutations in pcaH or -G were subjected to sequence analysis. All single-site events, their mutations revealed no particular bias toward multibase deletions or unusual patterns: five (-1) frameshifts, one (+1) frameshift, one tandem duplication of 88 bp, one deletion of 92 bp, one nonsense mutation, and seven missense mutations. PcaHG is considered to be the prototypical ferric intradiol dioxygenase. The missense mutations served to corroborate the significance of active site amino acid residues deduced from crystal structures of PcaHG from Pseudomonas putida and Acinetobacter sp. as well as of residues in other parts of the enzyme.  相似文献   

10.
11.
D Parke 《Journal of bacteriology》1993,175(11):3529-3535
An Escherichia coli system for generating a commercially unavailable catabolite in vivo was developed and was used to facilitate molecular genetic studies of phenolic catabolism. Introduction of the plasmid-borne Acinetobacter pcaHG genes, encoding the 3,4-dioxygenase which acts on protocatechuate, into E. coli resulted in bioconversion of exogenously supplied protocatechuate into beta-carboxy-cis,cis-muconate. This compound has been shown to be an inducer of the protocatechuate (pca) genes required for catabolism of protocatechuate to tricarboxylic acid cycle intermediates in Rhizobium leguminosarum biovar trifolii. The E. coli bioconversion system was used to explore regulation of the pca genes in a related bacterium, Agrobacterium tumefaciens. The pcaD gene, which encodes beta-ketoadipate enol-lactone hydrolase, from A. tumefaciens A348 was cloned and was shown to be adjacent to a regulatory region which responds strongly to beta-carboxy-cis,cis-muconate in E. coli. Site-specific insertional mutagenesis of the regulatory region eliminated expression of the pcaD gene in E. coli. When the mutation was incorporated into the A. tumefaciens chromosome, it eliminated expression of the pcaD gene and at least three other pca genes as well. The regulatory region was shown to activate gene expression in trans. The novel regulatory gene was termed pcaQ to differentiate it from pca regulatory genes identified in other microbes, which bind different metabolites.  相似文献   

12.
Acinetobacter lwoffii K24 known as an aniline degrading bacterium has also been found to utilize p-hydroxybenzoate as a sole carbon source. In this study, 2-DE using Q-Sepharose column separation was attempted for fast screening of protocatechuate 3,4-dioxygenase for catabolism of p-hydroxybenzoate in A. lwoffii K24. Two protocatechuate 3,4-dioxygenase subunits, pcaG and pcaH were detected and identified with N-terminal and internal sequencing, suggesting proteomics using a column separation may be helpful for the identification of specific protein spots and maximizing the detectable protein spots on the 2-DE gel. The PCR process using degenerate primers for protocatechuate 3,4-dioxygenase and sequence analyses of the PCR products revealed the existence of pcaH and pcaG in A. lwoffii K24. These two subunits were found to be closely located and share extensive homology with pcaH and pcaG of Pseudomonas marginata or Pseudomonas cepacia, providing the evidence that A. lwoffi K24 has the protocatechuate branches as well as catechol branches of beta-ketoadipate pathway.  相似文献   

13.
14.
Vanillate and syringate are converted into protocatechuate (PCA) and 3-O-methylgallate (3MGA), respectively, by O-demethylases in Sphingomonas paucimobilis SYK-6. PCA is further degraded via the PCA 4,5-cleavage pathway, while 3MGA is degraded through multiple pathways in which PCA 4,5-dioxygenase (LigAB), 3MGA 3,4-dioxygenase (DesZ), and an unidentified 3MGA O-demethylase and gallate dioxygenase are participants. For this study, we isolated a 4.7-kb SmaI fragment that conferred on Escherichia coli the activity required for the conversion of vanillate to PCA. The nucleotide sequence of this fragment revealed an open reading frame of 1,413 bp (ligM), the deduced amino acid sequence of which showed 49% identity with that of the tetrahydrofolate (H4folate)-dependent syringate O-demethylase gene (desA). The metF and ligH genes, which are thought to be involved in H4folate-mediated C1 metabolism, were located just downstream of ligM. The crude LigM enzyme expressed in E. coli converted vanillate and 3MGA to PCA and gallate, respectively, with similar specific activities, and only in the presence of H4folate; however, syringate was not a substrate for LigM. The disruption of ligM led to significant growth retardation on both vanillate and syringate, indicating that ligM is involved in the catabolism of these substrates. The ability of the ligM mutant to transform vanillate was markedly decreased, and this mutant completely lost the 3MGA O-demethylase activity. A ligM desA double mutant completely lost the ability to transform vanillate, thus indicating that desA also contributes to vanillate degradation. All of these results indicate that ligM encodes vanillate/3MGA O-demethylase and plays an important role in the O demethylation of vanillate and 3MGA, respectively.  相似文献   

15.
Aromatic compound degradation in six bacteria representing an ecologically important marine taxon of the alpha-proteobacteria was investigated. Initial screens suggested that isolates in the Roseobacter lineage can degrade aromatic compounds via the beta-ketoadipate pathway, a catabolic route that has been well characterized in soil microbes. Six Roseobacter isolates were screened for the presence of protocatechuate 3,4-dioxygenase, a key enzyme in the beta-ketoadipate pathway. All six isolates were capable of growth on at least three of the eight aromatic monomers presented (anthranilate, benzoate, p-hydroxybenzoate, salicylate, vanillate, ferulate, protocatechuate, and coumarate). Four of the Roseobacter group isolates had inducible protocatechuate 3, 4-dioxygenase activity in cell extracts when grown on p-hydroxybenzoate. The pcaGH genes encoding this ring cleavage enzyme were cloned and sequenced from two isolates, Sagittula stellata E-37 and isolate Y3F, and in both cases the genes could be expressed in Escherichia coli to yield dioxygenase activity. Additional genes involved in the protocatechuate branch of the beta-ketoadipate pathway (pcaC, pcaQ, and pobA) were found to cluster with pcaGH in these two isolates. Pairwise sequence analysis of the pca genes revealed greater similarity between the two Roseobacter group isolates than between genes from either Roseobacter strain and soil bacteria. A degenerate PCR primer set targeting a conserved region within PcaH successfully amplified a fragment of pcaH from two additional Roseobacter group isolates, and Southern hybridization indicated the presence of pcaH in the remaining two isolates. This evidence of protocatechuate 3, 4-dioxygenase and the beta-ketoadipate pathway was found in all six Roseobacter isolates, suggesting widespread abilities to degrade aromatic compounds in this marine lineage.  相似文献   

16.
Aims:  The aim of the study was to determine if vancomycin-resistant Enterococcus spp. [VRE] carrying vanA and/or vanB genes were present in public marine beaches and a fishing pier [2001–2003, 2008] from Washington and California [2008].
Methods:  PCR assays for the vanA and/or vanB genes with verification by DNA–DNA hybridization of the PCR products were used. Positive isolates were speciated using the BD BBL Crystal™ Identification and/or by sequencing the 16S ribosomal region.
Results:  Eighteen (8%) of 227 isolates including Enterococcus faecalis , Enterococcus faecium , Enterococcus casseliflavus/gallinarum and a Staphylococcus epidermidis carrying vanA and/or vanB genes, from four of six Washington and one of two California sites, were identified. Selected VRE and the S. epidermidis were able to transfer their van genes to an E. faecalis recipient at frequencies ranging from 1·9 × 10−6 to 6·7 × 10−9.
Conclusions:  Vancomycin-resistant Enterococcus spp. was isolated from five of the seven sites suggesting that other North America public beaches could be the reservoirs for VRE and should be assessed.
Significance & Impact of the Study:  This is the first report of isolation and characterization of VRE strains (and a vanB Staphylococcus sp.) from North American environmental sources suggesting that public beaches may be a reservoir for possible transmission of VRE to beach visitors.  相似文献   

17.
18.
A mutant strain of Pseudomonas testosteroni blocked in phthalate catabolism converted phthalate into 4,5-dihydroxyphthalate. The latter compound was isolated, and its physical properties were determined. A stoichiometric conversion of the compound to protocatechuate was demonstrated spectrophotometrically with crude extracts of a protocatechuate 4,5-dioxygenase-deficient mutant. Therefore, phthalate is metabolized through 4,5-dihydroxyphthalate and protocatechuate, which is further degraded by protocatechuate 4,5-dioxygenase in P. testosteroni. By using several mutants blocked in phthalate catabolism, 4,5-dihydroxyphthalate decarboxylase was shown to be induced by phthalate. A simple spectrophotometric assay for the enzyme is also reported.  相似文献   

19.
A previous study of deletions in the protocatechuate (pca) region of the Acinetobacter sp. strain ADP1 chromosome revealed that genes required for utilization of the six-carbon dicarboxylic acid, adipic acid, are linked to the pca structural genes. To investigate the genes involved in adipate catabolism, a 33.8-kb SacI fragment, which corrects a deletion spanning this region, was cloned. In addition to containing known pca, qui, and pob genes (for protocatechuate, quinate, and 4-hydroxybenzoate dissimilation), clone pZR8000 contained 10 kb of DNA which was the subject of this investigation. A mutant strain of Escherichia coli DH5alpha, strain EDP1, was isolated that was able to utilize protocatechuate and 4-hydroxybenzoate as growth substrates when EDP1 cells contained pZR8000. Sequence analysis of the new region of DNA on pZR8000 revealed open reading frames predicted to be involved in beta-oxidation. Knockouts of three genes implicated in beta-oxidation steps were introduced into the chromosome of Acinetobacter sp. strain ADP1. Each of the mutants was unable to grow with adipate. Because the mutants were affected in their ability to utilize additional saturated, straight-chain dicarboxylic acids, the newly discovered 10 kb of DNA was termed the dca (dicarboxylic acid) region. Mutant strains included one with a deletion in dcaA (encoding an acyl coenzyme A [acyl-CoA] dehydrogenase homolog), one with a deletion in dcaE (encoding an enoyl-CoA hydratase homolog), and one with a deletion in dcaH (encoding a hydroxyacyl-CoA dehydrogenase homolog). Data on the dca region should help us probe the functional significance and interrelationships of clustered genetic elements in this section of the Acinetobacter chromosome.  相似文献   

20.
J.E. TURNER AND N. ALLISON. 1995. A newly-isolated strain of Pseudomonas putida (HVA-1) utilized homovanillic acid as sole carbon and energy source. Homovanillate-grown bacteria oxidized homovanillate and homoprotocatechuate but monohydroxylated and other methoxylated phenylacetic acids were oxidized poorly; methoxy-substituted benzoates were not oxidized. Extracts of homovanillate-grown cells contained homoprotocatechuate 2,3-dioxygenase but the primary homovanillate-degrading enzyme could not be detected. No other methoxylated phenylacetic acid supported growth of the organism but vanillate was utilized as a carbon and energy source. When homovanillate-grown cells were used to inoculate media containing vanillate a 26 h lag period occurred before growth commenced. Vanillate-grown bacteria oxidized vanillate and protocatechuate but no significant oxygen uptake was obtained with homovanillate and other phenylacetic acid derivatives. Analysis of pathway intermediates revealed that homovanillate-grown bacteria produced homoprotocatechuate, formaldehyde and the ring-cleavage product 5-carboxymethyl 2-hydroxymuconic semialdehyde (CHMS) when incubated with homovanillate but monohydroxylated or monomethoxylated phenylacetic acids were not detected. These results suggest that homovanillate is degraded directly to the ring-cleavage substrate homoprotocatechuate by an unstable but highly specific demethylase and then undergoes extradiol cleavage to CHMS. It would also appear that the uptake/degradatory pathways for homovanillate and vanillate in this organism are entirely separate and independently controlled. If stabilization of the homovanillate demethylase can be achieved, there is potential for exploiting the substrate specificity of this enzyme in both medical diagnosis and in the paper industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号