首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The clastogenic activities of diepoxybutane and bleomycin were comparatively studied on prematurely condensed interphase chromatin and metaphase chromosomes of Chinese hamster ovary cells. The yield of chromosomal aberrations was distinctly higher in G2-premature chromosome condensation as compared to metaphase. Most notably, the clastogenic activity of bleomycin was visible in premature chromosome condensation after application of much lower final concentrations than necessary for induction of chromosome aberrations in metaphase. In addition, the different mechanisms of action of both clastogens were reflected by the aberration yield in GI and G2 immediately after exposure. While bleomycin induced aberrations throughout all stages of interphase, diepoxybutane did not induce aberrations in GI or G2. Though certainly not a routine system for genotoxicity testing, premature chromosome condensation analyses provide a powerful opportunity to demonstrate relationships between DNA damage and repair, and the production of chromosomal changes at the site of their formation.Abbreviations BM bleomycin - BrdUrd bromodeoxyuridine - CHO Chinese hamster ovary - DEB diepoxybutane - DMSO dimethylsulfoxide - FCS fetal calf serum - PCC premature chromosome condensation, prematurely condensed chromosomes - PEG polyethylene glycol  相似文献   

2.
A new method is described to visualize chromosome damage in interphase cells immediately after exposure to mutagenic agents. This method involves the fusion of treated interphase cells with untreated mitotic cells which results in the induction of premature chromosome condensation (PCC). Chinese hamster ovary (CHO) cells were treated with X-rays and chromosome aberrations were scored in G2-PCC and the mitotic chromosomes. The incidence of aberrations was significantly higher in PCC than that observed in the mitotic chromosomes of the treated cells. Post-irradiation incubation for I h before fusion allowed the repair of some of the chromosome damage. Data are also presented which indicate that the extent of radiation damage visualized in PCC is inversely proportional to the degree of chromosome condensation. These results indicate that the PCC method has a greater senstivity in the detection of induced chromosome damage than the standard method of scoring metaphase chromosomes.  相似文献   

3.
The complementation effect of wild-type CHO-K1 and xrs mutants after fusion, as judged by the frequencies of X-ray-induced G1 and G2 premature chromosome condensation (PCC), was studied. For induction of PCC, X-irradiated interphase cells (G1 and G2) were fused immediately with untreated mitotic cells of the same cell line or with mitotic cells of another line. The frequencies of breaks in G1-PCC, or breaks and chromatid exchanges in G2-PCC were determined and the latter parameter was compared with the frequency of chromosomal aberrations in mitotic cells following G2 irradiation. CHO-K1 cells were capable of complementing the X-ray sensitivity of both xrs 5 and xrs 6 cells. However, full restoration of the repair defect in xrs cells could never be accomplished. The mutants failed to complement each other. In CHO-K1 cells, the incidence of chromosomal aberrations was significantly higher in G2-PCC (2.5-fold) than that observed in mitotic cells at 2.5 h after irradiation. The ratio of the induced frequency of aberrations in G2-PCC to that in mitotic cells was correlated with the degree of repair of DNA double-strand breaks (dsb) and reached almost 1 in xrs 5 cells indicating no repair. In addition the data indicated that, during the period of recovery of CHO-K1 cells, X-ray-induced breaks decreased but exchanges remained at the same level. In contrast, due to a deficiency in rejoining of dsb in xrs mutants, breaks remained open for a long period of time, allowing the formation of additional chromatid exchanges during recovery time.  相似文献   

4.
We have studied the induction of chromosomal aberrations in human lymphocytes exposed in G0 to X rays or carbon ions. Aberrations were analyzed in G0, G1, G2 or M phase. Analysis during the interphase was performed by chemically induced premature chromosome condensation, which allows scoring of aberrations in G1, G2 and M phase; fusion-induced premature chromosome condensation was used to analyze the damage in G0 cells after incubation for repair; M-phase cells were obtained by conventional Colcemid block. Aberrations were scored by Giemsa staining or fluorescence in situ hybridization (chromosomes 2 and 4). Similar yields of fragments were observed in G1 and G2 phase, but lower yields were scored in metaphase. The frequency of chromosomal exchanges was similar in G0 (after repair), G2 and M phase for cells exposed to X rays, while a lower frequency of exchanges was observed in M phase when lymphocytes were irradiated with high-LET carbon ions. The results suggest that radiation-induced G2-phase block is associated with unrejoined chromosome fragments induced by radiation exposure during G0.  相似文献   

5.
Potentially lethal damage (PLD) and its repair were studied in confluent human fibroblasts by analyzing the kinetics of chromosome break rejoining and misrejoining in irradiated cells that were either held in noncycling G(0) phase or allowed to enter G(1) phase of the cell cycle immediately after 6 Gy irradiation. Virally mediated premature chromosome condensation (PCC) methods were combined with fluorescence in situ hybridization (FISH) to study chromosomal aberrations in interphase. Flow cytometry revealed that the vast majority of cells had not yet entered S phase 15 h after release from G(0). By this time some 95% of initially produced prematurely condensed chromosome breaks had rejoined, indicating that most repair processes occurred during G(1). The rejoining kinetics of prematurely condensed chromosome breaks was similar for each culture condition. However, under noncycling conditions misrepair peaked at 0.55 exchanges per cell, while under cycling conditions (G(1)) it peaked at 1.1 exchanges per cell. At 12 h postirradiation, complex-type exchanges were sevenfold more abundant for cycling cells (G(1)) than for noncycling cells (G(0)). Since most repair in G(0)/G(1) occurs via the non-homologous end-joining (NHEJ) process, increased PLD repair may result from improved cell cycle-specific rejoining fidelity of the NHEJ pathway.  相似文献   

6.
The premature chromosome condensation (PCC) technique was used to study several factors that determine the yield of chromosome fragments as observed in interphase cells after irradiation. In addition to absorbed dose and the extent of chromosome condensation at the time of irradiation, changes in chromosome conformation as cells progressed through the cell cycle after irradiation affected dramatically the yield of chromosome fragments observed. As a test of the effect of chromosome decondensation, irradiated metaphase Chinese hamster ovary (CHO) cells were allowed to divide, and the prematurely condensed chromosomes in the daughter cells were analyzed in their G1 phase. The yield of chromosome fragments increased as the daughter cells progressed toward S phase and chromosome decondensation occurred. When early G1 CHO cells were irradiated and analyzed at later times in G1 phase, an increase in chromosome fragmentation again followed the gradual increase in chromosome decondensation. As a test of the effect of chromosome condensation, G0 human lymphocytes were irradiated and analyzed at various times after fusion with mitotic CHO cells, i.e., as condensation proceeded. The yield of fragments observed was directly related to the amount of chromosome condensation allowed to take place after irradiation and inversely related to the extent of chromosome condensation at the time of irradiation. It can be concluded that changes in chromosome conformation interfered with rejoining processes. In contrast, resting chromosomes (as in G0 lymphocytes irradiated before fusion) showed efficient rejoining. These results support the hypothesis that cytogenetic lesions become observable chromosome breaks when chromosome condensation or decondensation occurs during the cell cycle.  相似文献   

7.
A N Stroud  R Nathan  S Harami 《In vitro》1975,11(2):61-68
Early chromatin condensation in interphase cells (G1) of human peripheral blood lymphocytes has been induced without virus or cell fusion by exposure to allogeneic or xenogeneic mitotic cells. The event, although similar in some ways to the phenomenon described as "premature chromosome condensation," "chromosome pulverization," and "prophasing," differs in that it does not require the presence of viruses and cell fusion before mitosis proceeds in the G1 cell. Early chromatin condensation in interphase cells induced by mitotic cells only, consists of chromatids in the early or late G1 phase of the cell cycle that are not pulverized or fragmented at mitosis. Some of the chromosomes are twice as long as the metaphase chromosomes and exhibit natural bands. Almost twice as many of these bands are produced as by trypsin treatment of metaphase chromosomes. The nuclear membrane is intact and nucleoli are present, to which some chromosomes are attached. The DNA content of the precocious chromosomes in G1 is half the amount of the metaphase complement.  相似文献   

8.
Premature chromosome condensation was induced in Indian muntjak fibroblasts after exposure of the cells to bleomycin. Further experiments were devoted to the interaction of anticlastogens and a repair inhibitor, streptovitacin A. Chromosomal aberrations due to bleomycin treatment were S -phase-independently visible in the GI and G2 phase of the cell cycle. For premature chromosome condensation experiments, a 100 fold lower concentration of the mutagen produced a similar extent of chromosome damage as in metaphase studies. Additional exposure to the anticlastogens -aminoethylisothiouronium or N-acetylcysteine revealed differences between corresponding interphase and metaphase effects and between different exposure conditions. Streptovitacin A, known as an inhibitor of protein synthesis, acted like an anticlastogen in the G2 phase of the cell cycle. Our studies show that the premature chromosome condensation technique offers various qualitative insights into primary processes of mutagenicity and antimutagenicity, but requires further improvement and careful choice of the cell system for study.Abbreviationd AET -aminoethylisothiouronium - BM bleomycin - CHO Chinese hamster ovary - DMSO dimethylsulfoxide - FBS fetal bovine serum - NAC N-acetylcysteine - PCC premature chromosome condensation prematurely condensed chromosomes - PEG polyethylene glycol - SA streptovitacin A  相似文献   

9.
Premature chromosome condensation (PCC) experiments using human lymphocytes with centromere staining have shown that after exposure to 3.45 MeV alpha-particle radiation, the full number of dicentric chromosomes appears when the cell fusion protocol is applied immediately after irradiation. In this case, the time available for repair and misrepair of DNA damage is only about 30 min. The number of dicentrics does not change with a further increase in the time available for chromatin rearrangement. This fast response confirms the expectation based on our previous experiments using PCC with 150 kV X rays in which the alpha component of the yield of dicentrics was found to appear when the cell fusion protocol was applied immediately after irradiation, whereas the beta component was delayed by several hours. The time constant for rejoining of the excess acentric chromosome fragments is found to be donor-specific and not to differ for alpha particles and X rays, but alpha-particle radiation leaves a larger fraction of the excess acentric fragments unrejoined. The RBEs of the 3.45 MeV alpha-particle radiation compared to 150 kV X rays, evaluated for the alpha component for the yield of dicentrics and for the yield of unrepaired acentric fragments, have almost equal values of about 4. This is consistent with data in the literature on chromosome aberrations observed in metaphase that show the equality of the RBE values for production of dicentrics and acentric fragments. Our experimental results concerning the fast kinetics of the alpha component of the yield of exchange-type chromosome aberrations are not consistent with Lea's pairwise lesion interaction model, and they support the proposed alternative mechanism of lesion-nonlesion interaction between chromatin regions carrying clustered DNA damage and intact chromatin regions.  相似文献   

10.
Chromatin folding in the interphase nucleus is not known. We compared the pattern of chromatin condensation in Indian muntjac, Chinese hamster ovary, murine pre B, and K562 human erythroleukemia cells during the cell cycle. Fluorescent microscopy showed that chromosome condensation follows a general pathway. Synchronized cells were reversibly permeabilized and used to isolate interphase chromatin structures. Based on their structures two major categories of intermediates were distinguished: (1) decondensed chromatin and (2) condensed chromosomal forms. (1) Chromatin forms were found between the G1 and mid-S phase involving veil-like, supercoiled, fibrous, ribboned structures; (2) condensing chromosomal forms appeared in the late-S, G2, and M phase, including strings, chromatin bodies, elongated pre-chromosomes, pre-condensed chromosomes, and metaphase chromosomes. Results demonstrate that interphase chromosomes are clustered in domains; condensing interphase chromosomes are linearly arranged. Our results raise questions related to telomer sequences and to the chemical nature of chromosome connectivity.  相似文献   

11.
Premature chromosome condensation of G1, G2, and S-phase chromosomes has been achieved by the use of electrofusion in the fusion of Chinese hamster ovary (CHO) cells and HeLa cells and CHO cells with human leukocytes. Very high yields of heterokaryons, of over 80%, as well as elimination of adverse effects of chemical and viral fusion agents, facilitated induction of premature chromosome condensation of high quality.  相似文献   

12.
PCC (premature chromosome condensation) can be used for visualizing and scoring damage induced by radiation in the chromatin of cells undergoing a G1 or G2 arrest. A method involving the fusion of irradiated single embryonic cells with single MI oocytes was used to induce PCC in mouse zygotes of the BALB/c strain, which suffer a drastic G2 arrest after X-irradiation (dose used 2.5 Gy). Other G2-arrested embryos were exposed in vitro to the phosphatase inhibitor calyculin A. Both methods furnished excellent chromosome preparations of the G2-arrested embryos. The mean number of chromosome fragments did not change significantly during G2 arrest, suggesting that zygotes of this strain are unable to repair DNA damage leading to such aberrations. Forty to fifty percent of the irradiated embryos were unable to cleave after G2 arrest and remained blocked at the one-cell stage for a few days before dying. PCC preparations obtained from such embryos suggested that about 30% of them had undergone a late mitosis not followed by cytokinesis and had entered a new DNA synthesis. These results are discussed in the light of recent observations in irradiated human cells deficient in the p53/14-3-3sigma pathway.  相似文献   

13.
Multinucleate (MN) cells were induced in PtK1 cells by colcemid treatment. A large percentage of cells developed nuclear asynchrony both in relation to DNA synthesis and mitosis within one cell cycle. Asynchrony could be traced even in metaphase and anaphase cells in which interphase nuclei, PCC of S-phase nuclei and less condensed prophase-like chromosomes could be observed along with normally condensed chromosomes. The occurrence of such abnormalities in these large MN cells may be explained on the basis of an uneven distribution of inducer molecules of DNA synthesis and mitosis due to cytoplasmic compartmentation. The less condensed form of all the chromosomes except chromosome 4 could be traced in asynchronous metaphase. The failure of the less condensed chromosomes to undergo complete condensation does not always appear to result from late entry of nuclei containing these chromosomes into G2 phase. It is likely that chromosome 4 carries gene(s) for chromosome condensation, as this chromosome itself never appears in a less condensed form. The inducers for chromosome condensation may not always be available at equal concentrations to all chromosomes located in separate nuclei, thus they may sometimes fail to undergo complete condensation before other nuclei reach the end of prophase, when the nuclear envelopes of all nuclei present in the cell break down simultaneously.  相似文献   

14.
In contrast to those of metaphase chromosomes, the shape, length, and architecture of human interphase chromosomes are not well understood. This is mainly due to technical problems in the visualization of interphase chromosomes in total and of their substructures. We analyzed the structure of chromosomes in interphase nuclei through use of high-resolution multicolor banding (MCB), which paints the total shape of chromosomes and creates a DNA-mediated, chromosome-region-specific, pseudocolored banding pattern at high resolution. A microdissection-derived human chromosome 5-specific MCB probe mixture was hybridized to human lymphocyte interphase nuclei harvested for routine chromosome analysis, as well as to interphase nuclei from HeLa cells arrested at different phases of the cell cycle. The length of the axis of interphase chromosome 5 was determined, and the shape and MCB pattern were compared with those of metaphase chromosomes. We show that, in lymphocytes, the length of the axis of interphase chromosome 5 is comparable to that of a metaphase chromosome at 600-band resolution. Consequently, the concept of chromosome condensation during mitosis has to be reassessed. In addition, chromosome 5 in interphase is not as straight as metaphase chromosomes, being bent and/or folded. The shape and banding pattern of interphase chromosome 5 of lymphocytes and HeLa cells are similar to those of the corresponding metaphase chromosomes at all stages of the cell cycle. The MCB pattern also allows the detection and characterization of chromosome aberrations. This may be of fundamental importance in establishing chromosome analyses in nondividing cells.  相似文献   

15.
Premature chromosome pulverization (PCC) or prophasing is a much misunderstood cytological entity. It must be separated from chromosome damage caused by a number of chemical, physical and biological agents. Prophasing is observed in fused cells in which one of the constituent cells must be in metaphase and another in interphase. The morphology of the "pulverized" interphase nucleus will depend on the phase of the cell cycle in which the interphase cell was in when exposed to a substance present in the cytoplasm of the metaphase cell leading to "prophasing". Prophasing is a normal cellular phenomenon occurring prematurely or under abnormal conditions (fusion of cells) and its demonstration in human cells or tumors may be indicative of the presence of a virus (or its products) which leads to cell fusion, but does not play a role in prophasing.  相似文献   

16.
L I Lebedeva 《Genetika》1982,18(9):1462-1467
The frequency of chromosome aberrations induced by UV light at wavelengths 254, 265, 280 and 302 using doses 2-10 J/m2 in the primary culture of mouse embryonic fibroblasts during the G1, S and G2 phases was studied at metaphase of the first mitosis. Two classes of chromosome aberrations were distinguished. These classes differ in the time intervals of the final establishment of the cell cycle. The aberrations of the class 1 emerge before the beginning of prometaphase (possibly, at interphase). Formation of the second class aberrations is completed during the metaphase. It is shown that the class 1 aberrations occur with almost the same rate in approx. 7% of cells, irrespective of the cell cycle, irradiation dose and wavelength. It is suggested that these aberrations arise as a result of indirect UV action on the chromosome structures; the mechanism of their emergence does not depend on DNA replication. The class 2 aberrations do not appear after UV irradiation during the post-DNA-synthetic G2 phase of the cell cycle. However, after UV treatment at the G1 or S periods, they represent the majority of aberrations and their rate increases almost monotonously with the radiation dose. The UV action spectrum for these aberrations coincides with the adsorption spectrum of thymidine and the action spectrum for DNA cross-links. Thus, it may be inferred that formation of DNA cross-links following thymine dimerization is the first step in formation of UV-induced aberrations of the class 2. The passage of cells through DNA replication is a very important step in the process of their emergence.  相似文献   

17.
Large multinucleate (LMN) HeLa cells with more than 10–50 nuclei were produced by random fusion with polyethylene glycol. The number of nuclei in a particular stage of the cell cycle at the time of fusion was proportionate to the duration of the phase relative to the total cell cycle. The fused cells did not gain generation time. Interaction of various nuclei in these cells has been observed. The nuclei initially belonging to the G1-or S-phase required a much longer time to complete DNA synthesis than in mononucleate cells. Some of the cells reached mitosis 15 h after fusion, whereas others required 24 h. The cells dividing early, contained a larger number of initially early G1-phase nuclei than those cells dividing late. The former very often showed prematurely condensed chromosome (PCC) groups. In cells with a large number of advanced nuclei the few less advanced nuclei could enter mitosis prematurely. On the other hand, the cells having a large number of nuclei belonging initially to late S-or G2-phase took longer to reach mitosis. These nuclei have been taken out of the normal sequence and therefore failed to synthesize the mitotic factors and depended on others to supply them. Therefore the cells as a whole required a longer period to enter mitosis. Although the nuclei became synchronized at metaphase, the cells revealed a gradation in prophase progression in the different nuclei. At the ultrastructural level the effect of advanced nuclei on the less advanced ones was evident with respect to chromosome condensation and nuclear envelope breakdown. Less advanced nuclei trapped among advanced nuclei showed PCC and nuclear envelope breakdown prematurely, whereas mitotic nuclei near interphase or early prophase nuclei retained their nuclear envelopes for a much longer time. PCC is closely related to premature breakdown of the nuclear envelope. Our observations clearly indicate that chromosome condensation and nuclear envelope breakdown are two distinct events. Kinetochores with attached microtubules could be observed on prematurely condensed chromosomes. Kinetochores of fully condensed chromosomes often failed to become connected to spindle elements. This indicates that the formation of a functional spindle is distinct from the other events and may depend on different factors.  相似文献   

18.
The classical cytogenetic assay to estimate the dose to which an individual has been exposed relies on the measurement of chromosome aberrations in lymphocytes at the first post-irradiation mitosis 48 h after in vitro stimulation. However, evidence is accumulating that this protocol results in an underestimation of the cytogenetic effects of high LET radiation due to a selective delay of damaged cells. To address this issue, human lymphocytes were irradiated with C-ions (25-mm extended Bragg peak, LET: 60-85 keV/ micro m) and aberrations were measured in cells reaching the first mitosis after 48, 60, 72 and 84 h and in G2-phase cells collected after 48 h by calyculin A induced premature chromosome condensation (PCC). The results were compared with recently published data on the effects of X-rays and 200 MeV/u Fe-ions (LET: 440 keV/ micro m) on lymphocytes of the same donor (Ritter et al., 2002a). The experiments show clearly that the aberration yield rises in first-generation metaphase (M1) with culture time and that this effect increases with LET. Obviously, severely damaged cells suffer a prolonged arrest in G2. The mitotic delay has a profound effect on the RBE: RBE values estimated from the PCC data were about two times higher than those obtained by conventional metaphase analysis at 48 h. Altogether, these observations argue against the use of single sampling times to quantify high LET induced chromosomal damage in metaphase cells.  相似文献   

19.
The cytogenetic effect of formaldehyde (FA) on unstimulated human lymphocytes was studied by means of conventional chromosome analysis and the premature chromosome condensation (PCC) technique. In first post-treatment metaphases no significantly increased yields of chromosomal changes could be observed. The analysis of PCCs, however, showed high yields of chromosome fragments. Bleomycin (BLM) used as positive control was also highly clastogenic in PCCs and resulted in significantly increased yields of chromosome-type aberrations. As recently argued, a premitotic selection against heavily damaged cells could be an explanation for the discrepancy between the chromosome findings in metaphase and PCC analysis after FA treatment. In addition, a differential effectiveness may exist in unstimulated lymphocytes to convert multiple fragmentation into chromatid- or chromosome-type aberrations through S-phase-dependent or S-phase-independent mechanisms.  相似文献   

20.
The distinguishable morphologic features of nuclei of acute myelogenous leukemia cells with enlarged size and finely distributed nuclear chromatin indicate incomplete chromosome condensation that can be related to elevated gene expression. To confirm this, interphase chromosome structures were studied in exponentially growing rat myelomonocytic leukemia 1 cells isolated at the University of Debrecen (My1/De cells). This cell line was established from primary rat leukemia chemically induced by 7,12-dimethylbenz[a]anthracene treatment. The enlarged nuclei of My1/De cells allowed improved fluorescent visualization of chromosomal structures. Increased resolution revealed major interphase intermediates consisting of (1) veil-like chromatin, (2) chromatin ribbon, (3) chromatin funnel, (4) chromatin bodies, (5) elongated prechromosomes, (6) seal-ring, spiral shaped, and circular chromosomal subunits, (7) elongated, bent, u- and v-shaped prechromosomes, and (8) metaphase chromosomes. Results confirmed the existence of the chromatin funnel, the first visible interphase chromosome generated by the supercoiling of the chromatin ribbon. Other intermediates not seen previously included the spiral subunits that are involved in the chromonemic folding of metaphase chromosomes. The existence of spiral subunits favors the helical coil model of chromosome condensation. Incomplete chromatin condensation in leukemia cells throughout the cell cycle is an indication of euchromatization contributing to enhanced gene expression and is regarded as a leukemic factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号