首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using PGH2 as substrate, we have previously demonstrated that human placenta synthetizes mainly PGE2, TxB2 and PGD2(1,2). Other reports have shown that placental tissue generates a substance which inhibits ADP-induced platelet aggregation and which was supposed to be PGI2 (3). The present study indicates that the stability of that substance is different from the stability of prostacyclin (released by umbilical artery pieces). By GC-MS and multiple ion-monitoring, we have shown the presence of 6 keto-PGF (the stable metabolite of PGI2) in the umbilical artery incubation medium, while no trace of 6-keto-PGF could be found in the placental medium. No conversion of AA to 6-keto-PGF by placental microsomes was observed, even in the presence of antioxidants. The placenta possesses, in addition to the known 15-OH-PGDH and Δ-13 reductase activities, a weak 9 OH pGDH which is specific for PGF (and not PGI2 nor 6-keto-PGF). GC-MS analysis is showed that the expected metabolites of PGI2 through those three enzymes were not found in the placental medium, indicating that neither PGI2 synthesis nor metabolism could be demonstrated in the placenta.  相似文献   

2.
Uterine cervix tissue, obtained from nonpregnant fertile women undergoing hysterectomy, was mechanically chopped into 1 mm thick slices and incubated in Krebs-Ringer bicarbonate buffer containing 6-keto-PGF (0.03–10 μg/ml) and 3H-proline. After incubation of 30–120 min the incorporated radioactivity was determined and related to the protein content of each slice. 6-keto-PGF had specific and significant effects on the incorporation of 3H-proline into cervical tissue. In the follicular phase of the cycle a decreased incorporation was registered, indicating a reduced net synthesis of protein. However, increased radiolabelling was observed in the luteal phase, reflecting an augmented protein synthesis. It is suggested that 6-keto-PGF, the stable metabolite of prostacyclin (PGI2), has the ability to influence cervical protein metabolism and that this effect is steroid hormone dependent.  相似文献   

3.
The role of prostacyclin (PGI2) on amphibian adrenal steroidogenesis was studied in perifused interrenal fragments from adult male frogs. Exogenous PGI2 (3×10−8 M to 3×10−5 M) and, in a lesser extent, 6-keto-PGF increased both corticosterone and aldosterone production in a dose-related manner. Short pulses (20 min) of 0.88 μM PGI2 administered at 90 min intervals within the same experiment did not induce any desensitization phenomenon. A prolonged administration (6 h) of PGI2 gave rise to an important increase in steroid production followed by a decline of corticosteroidogenesis. Indomethacin (IDM, 5 μM) induced a marked reduction of the spontaneous secretion of corticosteroid which confirmed the involvement of endogenous PGs in the process of corticosteroid biosynthesis. The IDM-induced blockade of corticosterone and aldosterone secretion was totally reversed by administration of exogenous PGI2 in our model. Angiotensin II (AII) induced a massive release of 6-keto-PGF, the stable metabolite of PGI2. The increase of 6-keto-PGF preceded the stimulation of corticosterone and aldosterone secretions. In contrast, the administration of ACTH did not modify the release of 6-keto-PGF. These results indicate that PGI2 might be an important mediator of adrenal steroidogenesis in frog. They confirm that the corticosteroidogenic actions of ACTH and AII are mediated by different mechanisms.  相似文献   

4.
Prostaglandin synthesis by fetal rat bones was examined by thin-layer chromatography of culture media after preincubation with labeled arachidonic acid. Cultures in rabbit complement (non-heat inactivated serum) were compared with cultures in heat-inactivated serum or cultures treated with indomethacin. The major complement-dependent products were PGE2, PGF and 6-keto-PGF, the metabolite of prostacyclin (PGI2). Since PGI2 had not been previously identified in bone its ability to stimulate bone resorption was tested. Repeated addition of PGI2 stimulated release of previously incorporated 45Ca from fetal rat long bones in both short-term and long-term cultures at concentrations of 10−5 to 10−9M. Because of the short half life of PGI2 in solution at neutral pH, we tested a sulfur analog, thiaprostacyclin (S-PGI2) which was found to be a stimulator of bone resorption at concentrations of 10−5 to 10−6M. These studies suggest that endogenous PGI2 production may play a role in bone metabolism. Since vessels produce PGI2 it is possible that PGI2 release may be responsible for the frequent association between vascular invasion and resorption of bone or calcified cartilage in physiologic remodeling and pathologic osteolysis.  相似文献   

5.
Metabolism of arachidonic acid (AA) was studied in perfused lungs and kidneys of normal and atherosclerotic rabbits by determination of PGE2, PGF and the stable metabolites of PGI2 (6-keto-PGF) and TXA2 (TXB2). PGI2 was the main AA metabolite formed by normal lungs and kidneys. Atherosclerosis reduced the formation of PGI2 by about 50 % in both organs. TXA2 formation was similarily decreased in lungs. In kidneys, the decrease in PGI2 formation was accompanied by an increase in PGE2 formation.  相似文献   

6.
This study tested the hypothesis that in hypertensive arteries cyclooxygenase-1 (COX-1) remains as a major form, mediating prostacyclin (prostaglandin I2; PGI2) synthesis that may evoke a vasoconstrictor response in the presence of functional vasodilator PGI2 (IP) receptors. Two-kidney-one-clip (2K1C) hypertension was induced in wild-type (WT) mice and/or those with COX-1 deficiency (COX-1-/-). Carotid arteries were isolated for analyses 4 weeks after. Results showed that as in normotensive mice, the muscarinic receptor agonist ACh evoked a production of the PGI2 metabolite 6-keto-PGF and an endothelium-dependent vasoconstrictor response; both of them were abolished by COX-1 inhibition. At the same time, PGI2, which evokes contraction of hypertensive vessels, caused relaxation after thromboxane-prostanoid (TP) receptor antagonism that abolished the contraction evoked by ACh. Antagonizing IP receptors enhanced the contraction to the COX substrate arachidonic acid (AA). Also, COX-1-/- mice was noted to develop hypertension; however, their increase of blood pressure and/or heart mass was not to a level achieved with WT mice. In addition, we found that either the contraction in response to ACh or that evoked by AA was abolished in COX-1-/- hypertensive mice. These results demonstrate that as in normotensive conditions, COX-1 is a major contributor of PGI2 synthesis in 2K1C hypertensive carotid arteries, which leads to a vasoconstrictor response resulting from opposing dilator and vasoconstrictor activities of IP and TP receptors, respectively. Also, our data suggest that COX-1-/- attenuates the development of 2K1C hypertension in mice, reflecting a net adverse role yielded from all COX-1-mediated activities under the pathological condition.  相似文献   

7.
Incubation of [1-14C]arachidonic acid (AA) with homogenates of bovine gallbladder muscle generated a large amount of radioactive material having the chromatographic mobility of 6-keto-PGF (stable product of PGI2) and smaller amounts of products that comigrated with PGF and PGE2. Formation of these products was inhibited by the cyclooxygenase inhibitor indomethacin. The major radioactive product identified by thin-layer chromatographic mobility and by gas chromatography - mass spectrometric analysis was found to be 6-keto-PGF. The quantitative metabolic pattern of [1-14C]PGH2 was virtually identical to that of [1-14C]AA. Incubation of arachidonic acid with slices of bovine gallbladder muscle released labile anti-aggregatory material in the medium, which was inhibited by aspirin or 15-hydroperoxy-AA.These results indicate that bovine gallbladder muscle has a considerable enzymatic capacity to produce PGI2 from arachidonic acid.  相似文献   

8.
Estrogen has been proposed as a negative risk factor for development of peripheral vascular disease yet mechanisms of this protection are not known. This study examines the hypothesis that estrogen stimulates rat aortic endothelial cell (RAEC) release of PGI2. Male Sprague-Dawley rat abdominal aortic 1-mm rings were placed on 35 mm matrigel plates, and incubated for 1 week. The cells were transferred to a Primaria 60-mm dish and maintained from passage 3 in RAEC complete media and experiments performed between passages 4–10. Cells were incubated with Krebs-Henseleit buffer (pH 7.4) containing carrier or increasing concentrations of β-estradiol or testosterone for 60 min. The effluent was analyzed for eicosanoid release of 6-keto-PGF (6-keto, PGI2 metabolite), PGE2 and thromboxane B2 (TXB2) by EIA (hormone stimulated — basal). Cells were analyzed for total protein by the Bradford method and for cyclooxygenase-1 (COX-1) and prostacyclin synthase (PS) content by Western blot analysis and densitometry. Testosterone did not alter RAEC 6-keto-PGF release, whereas estrogen increased RAEC 6-keto-PGF release in a dose-related manner. Estrogen preincubation (10 ng/ml) decreased COX-1 and PS content by 40% suggesting that the estrogen-induced increase in male RAEC PGI2 release was not due to increased synthesis of COX-1 or PS. These data support the hypothesis that estrogen stimulation can increase endogenous male RAEC release of PGI2.  相似文献   

9.
The ability of aortae from young and mature swine to produce prostacyclin (PGI2) has been determined. PGI2 was measured as its hydration product, 6-keto-PGF and assayed by stable isotope dilution GC-MS. There was no significant difference in 6-keto-PGF production between intimal strips from young and mature aortae in the basal state. In the presence of saturating concentrations of arachidonic acid, however, intimal strips from young aortae synthesized twice as much 6-keto-PGF as did older tissues. Fatty acid compositions of young and mature aortae were virtually identical, making dietary differences an unlikely explanation for the age-related decrease in PGI2 synthesis. Both young and mature vascular tissues produced essentially only PGI2; insignificant amounts of PGE2 and PGF were found.  相似文献   

10.
Dose-response curves for several prostaglandins (PGI2; PGD2; PGF2 and PGE2); BaCl2 or prostaglandin metabolites (15-keto-PGF; 13, 14-diOH-15-keto-PGF; 6-keto-PGF and 6-keto-PGE1 in quiescent (indomethacin-treated) uterine strips from ovariectomized rats, were constructed. All PGs tested as well as BaCl2, triggered at different concentrations, evident phasic contractions. Within the range of concentrations tested the portion of the curves for the metabolites of PGF was shifted to the right of that for PGF itself; the curve for 6-keto-PGF was displaced to the right of the curve for PGI2 and that for 6-keto-PGE1 to the left.It was also demonstrated that the uterine motility elicited by 10−5 M PGF and its metabolites was long lasting (more than 3 hours) and so it was the activity evoked by PGI2; 6-keto-PGF and BaCl2, but not the contractions following 6-keto-PGE1, which disappeared much earlier. The contractile tension after PGF; 15-keto-PGF; 13, 14-diOH-15-keto-PGF and PGI2, increased as time progressed whilst that evoked by 6-keto-PGF or BaCl2 fluctuated during the same period around more constant levels.The surprising sustained and gradually increasing contractile activity after a single dose of an unstable prostaglandin such as PGI2, on the isolated rat uterus rendered quiescent by indomethacin, is discussed in terms of an effect associated to its transformation into more stable metabolites (6-keto-PGF, or another not tested) or as a consequence of a factor which might protects prostacyclin from inactivation.  相似文献   

11.
Prostaglandins are thought to play an important role in the local regulation of glomerular blood flow and in the release of renin from the juxtaglomerular apparatus. We therefore examined prostaglandin synthesis by isolated rat glomeruli. Isolated glomeruli were either prelabeled with [14C] arachidonic acid or were incubated with [14C] arachidonic acid for the entire experimental incubation in Krebs buffer. Prostaglandin synthesis was determined by thin layer radiochromatography of acid extracts of the supernatant solutions. Indomethacin inhibitable synthesis of small amounts of 6-keto-PGF, the metabolite of prostacyclin(PGI2,) and larger amounts of PGF, and PGE2, and possibly thromboxane B2 (TXB2) by isolated glomeruli could be demonstrated with either prelabeling or direct incubation. These findings support the hypothesis that prostaglandins are produced within the glomerulus where they may affect local glomerular blood flow and function.  相似文献   

12.
We assessed the effect of a specific thromboxane synthetase inhibitor (an imidazole derivative) on pulmonary hemodynamics and the concentrations of TxB2 (TxA2), 6-keto-PGF (PGI2), and PGF in pulmonary lymph and transpulmonary blood samples following intravenous administration of E. coli endotoxin (1 μg/kg) in sheep. In control animals the rise in pulmonary artery pressure correlated with increases in plasma and lymph TxB2 concentrations and large transpulmonary concentration gradients of this metabolite were measured. In imidazle treated animals both pulmonary hypertension as well as increases in plasma and lymph TxB2 concentrations were substantially reduced. In contrast, peak concentrations of 6-keto-PGF (PGI2) and PGF were severalfold higher than those measured in control animals. This suggests a shunting of endoperoxide metabolism towards prostacyclin and primary prostaglandins and documents the specificity of the thromboxane synthetase inhibitor. Out study provides evidence that endotoxin-induced pulmonary hypertension is mediated by pulmonary synthesis of TxA2.  相似文献   

13.
The cross-reactivity of the PGI3 metabolite, Δ17-6-keto-PGF, with antibodies against 6-keto-PGF for radioimmunoassays (RIA) has been investigated. Δ17-6-keto-PGF was obtained either from commercial sources or after its purification from endothelial cells. In the latter case, primary cultured bovine aortic endothelial cells were incubated for 20 min at 37°C with 10 μM eicosapentaenoic acid (EPA) in the presence of 2 μM 13-hydroperoxy-octadecadienoic acid, an activator of the EPA cyclooxygenation, and the 6-keto-PGF and Δ17-6keto-PGF produced were separated by RP-HPLC. Then, cross-reactivities of the commercial and purified Δ17-6-keto-PGF with 6-keto-PGF antibodies were determined and found not to exceed 10%. In addition, the amounts of prostacyclin-related compounds detected by direct measurements in media of cells loaded with EPA were compared with those obtained after purification of 6-keto-PGF. In accordance with the cross-reactivity data, we found that RIA in media mainly measured 6-keto-PGF, the Δ17-6-keto-PGF formed being undetected at 90%. It is concluded that 6-keto-PGF antibodies generally used for RIA of 6-keto-PGF are highly specific since they can discriminate a metabolite bearing an additional double bond such as the PGI3 metabolite Δ17-6-keto-PGF.  相似文献   

14.
Western diets are enriched in omega-6 vs. omega-3 fatty acids, and a shift in this balance toward omega-3 fatty acids may have health benefits. There is limited information about the catabolism of 3-series prostaglandins (PG) formed from eicosapentaenoic acid (EPA), a fish oil omega-3 fatty acid that becomes elevated in tissues following fish oil consumption. Quantification of appropriate urinary 3-series PG metabolites could be used for noninvasive measurement of omega-3 fatty acid tone. Here we describe the preparation of tritium- and deuterium-labeled 6-keto-PGF and their use in identifying urinary metabolites in mice using LC-MS/MS. The major 6-keto-PGF urinary metabolites included dinor-6-keto-PGF (∼10%) and dinor-13,14-dihydro-6,15-diketo-PGF (∼10%). These metabolites can arise only from the enzymatic conversion of EPA to the 3-series PGH endoperoxide by cyclooxygenases, then PGI3 by prostacyclin synthase and, finally, nonenzymatic hydrolysis to 6-keto-PGF. The 6-keto-PGF derivatives are not formed by free radical mechanisms that generate isoprostanes, and thus, these metabolites provide an unbiased marker for utilization of EPA by cyclooxygenases.  相似文献   

15.
PGI2 synthesis by aortic strips obtained from thoracic aorta of rabbits fed a high cholesterol diet was examined and compared with that of control rabbits fed a normal diet. In this report, the amounts of PGI2 produced were shown as 6-keto-PGF per μg of aortic tissue DNA instead of per mg wet weight. We also investigated PGI2 synthesis by cultured smooth muscle cells (SMC) obtained from atherosclerotic intima.Basal PGI2 production by aortic strips from atherosclerotic rabbit aorta was significantly augmented compared with that of controls. Arachidonic acid (AA)-induced PGI2 production by atherosclerotic aorta was also significantly higher than that of controls. PGI2 producing capacities of intimal and medial layers, separated from atherosclerotic aorta, were examined and the intimal layer was found to elicit a significantly greater PGI2 production than the medial layer.Furthermore, cultured intimal SMC obtained from atherosclerotic rabbit aorta produced a greater amount of PGI2 than medial SMC from normal rabbit aorta at various cultured conditions. These results suggest that the possibility of enhanced PGI2 production by atherosclerotic aorta may well be considered as a defence mechanism of the vessel wall against damaging stimuli.  相似文献   

16.
The metabolism of endogenous PGI2 (released by angiotensin II or bradykinin) and exogenous PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase was studied in five different vascular beds of the anaesthetized cat. Plasma concentrations of 6-keto-PGF (the product of spontaneous hydrolysis of PGI2) and 6,15-diketo-13,14-dihydro-PGF (the metabolite formed from PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase) were determined in the efferent vessels of the respective vascular beds by specific radioimmunoassays.No major metabolism of PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase was detected in the head and the hindlimbs of the cat. In the lung exogenous (circulating) PGI2 was not metabolized, whereas PGI2 synthetized in the lung itself was converted to 6,15-diketo-13,14-dihydor-PGF. No significant amounts of 6,15-diketo-13,14-dihydro-PGF-immunoreactivity were detected in hepatic venous blood after infusion of PGI2 into the portal vein. However as also no 6-keto-PGF was found, the liver seems to efficiently extract PGI2 from the circulation. The cat kidney had the highest capacity of all vascular beds investigated to release endogenous and exogenous PGI2 as 6-15-diketo-13,14-dihydro-PGF. In other organs (vascular beds) investigated PGI2 is either metabolized less efficiently by the 15-hydroxy-PG-dehydrogenase or further transformed to other metabolites.  相似文献   

17.
Prostaglandin E2 (PGE2) has previously been shown to inhibit sympathetic neurotransmission in different organs and species. Based on this inhibitory effect and on its reversal by cyclo-oxygenase inhibitors, PGE2 has been claimed to be a physiological modulator of in vivo release of norepinephrine (NE) from sympathetic nerves. It is now recognized that prostacyclin (PGI2) is the main cyclo-oxygenase product in the heart. We therefore addressed the question whether PGI2, within the same preparation, is formed in increased amounts during sympathetic nerve stimulation and has neuromodulatory activity.The effluent from isolated rabbit hearts subjected to sympathetic nerve stimulation or to infusion of NE or adenosine (ADO) was collected, and its content of PGE2 and 6-keto-PGF (dehydration product of PGI2) was analyzed using gas chromatography/mass spectrometry, operated in the negative ion/chemical ionization mode. Other hearts were infused with PGI2 and nerve stimulation induced outflow of endogenous NE into the effluent was analyzed using HPLC with electrochemical detection. Nerve stimulation at 5 or 10 Hz (before but not after adrenergic receptor blockade), as well as infusion of NE (10−6–10−5M) or ADO (10−4M) increased the cardiac outflow of 6-keto-PGF1α. Basal and nerve stimulation induced efflux of 6-keto-PGF1α was approximately 5 times higher than the corresponding efflux of PGE2. PGI2 dose-dependently inhibited the outflow of NE from sympathetically stimulated hearts, the inhibition at 10−6M being approximately 40%.On the basis of these observations we propose that PGI2 is a more likely candidate than PGE2 as a potential modulator of neurotransmission in cardiac tissue in vivo.  相似文献   

18.
A highly purified ethyl ester of EPA (EPAEE) (74%) was manufactured from sardine oil. Sixty mg/kg/day of EPAEE was given orally to male Wishar rats for 8 weeks. No side effect or toxicity from the administration of EPAEE was observed. Plasma EPA concentration and the ratio of EPA to arachidonic acid were significantly increased, compared with control Wistar rats. An enhancement of PGI2-like substance production by aortas obtained from rats fed EPAEE was noted. Conversion of EPA to Λ17-6-keto-PGF, a stable metabolite of PGI3, could not be detected by an incubation study of 14C-EPA and aortas either from rats fed EPAEE or from control rats. Therefore, PGI2-like substance produced by rat aorta is most likely to be PGI2. itself and not PGI3.  相似文献   

19.
Physiologic concentrations of insulin completely inhibited the norepinephrine-induced increment in the production of 6-keto-prostaglandin (PG) F, the stable derivative of prostacyclin (PGI2), by isolated rat adipocytes. The inhibition of PGI2 production by insulin in isolated rat adipocytes supports the view that the elevated plasma level of 6-keto-PGF in rats with non-ketotic diabetes mellitus and diabetic ketoacidosis is derived at least in part from production of PGI2 by the adipocyte cell mass.  相似文献   

20.
Histamine caused a triphasic response of human pulmonary artery strips in vitro, consisting of a small initial contraction followed by pronounced relaxation preceding a second contractile response. These characteristics were not seen with other contractile stimuli including 5-hdyroxytryptamine, leukotriene D4, and KC1. The relaxant component of this response was ablated by removal of endothelium from the vascular strips or by pretreatment of the tissues with 1μM indomethacin. Measurement of the PGI2 degradation product 6-keto-PGF in supernatants from histamine-challenged tissues confirmed the synthesis of PGI2. Supernatants from unstimulated or leukotriene-challenged tissues contained no detectable amounts of 6-keto-PGF. The histamine H1 antagonist diphenhydramine inhibited both the contractile and relaxant responses to histamine whereas the H2 antagonist cimetidine affected neither component. The released PGI2 significantly altered the dose-respons curve to histamine without inhibiting the maximal contractile responses. We conclude that histamine induces PGI2 formation from pulmonary arterial endothelium via an H1 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号