首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Submerged batch cultures of Aspergillus kawachii grown on indigestible dextrin were investigated for potential improvements in glucoamylase (GA) production. In flask culture, specific GA productivities per dry weight biomass using dextrin and indigestible dextrin were 11.0 and 56.1 mU/mg-DW, respectively. Indigestible dextrin was a poor substrate for enzymatic hydrolysis. Rates of glucose formation from dextrin and indigestible dextrin by enzymatic hydrolysis were 0.477 and 0.100 mg-glucose/ml/h, respectively. For this reason, residual glucose concentrations in batch cultures grown on indigestible dextrin remained below 1.32 mg/ml where glucose-limiting conditions were easily maintained. Batch culture using indigestible dextrin had the same residual glucose profile as dextrin fed-batch culture, and nearly the same GA activity was obtained after 42.5 h of growth. However, between 42.5 and 66 h, the GA production rate of the indigestible dextrin batch culture (11.5 mU/ml/h) was higher than that of the dextrin fed-batch culture (6.5 mU/ml/h). During this period, a high amount of residual maltooligosaccharide was detected in the culture supernatant grown on indigestible dextrin. The high GA productivity observed in the indigestible dextrin batch culture may have resulted from the absence of glucose and the simultaneous presence of maltooligosaccharides throughout growth.  相似文献   

2.
The objective of this research was to saccharify cassava flour by acid-acid and acid-enzyme hydrolysis and further conversion of the resulting sugar into ethanol by fermenting with the immobilized (in Ca-alginate) cells of Saccharomyces cerevisiae. The saccharification resulted in higher total sugar recovery by acid-enzyme hydrolysis (72.88 %) than by enzyme-enzyme hydrolysis (58.1 %). Further study on ethanol production was carried out using the hydrolysate obtained from acid-enzyme hydrolysis. The growth of the yeast started in the log phage and maximum ethanol (189?±?3.1 g ethanol/kg flour) production was achieved with 94.74?±?2.187 % sugar conversion during the stationary phase.  相似文献   

3.
Summary The production of extracellular alkaline proteases from Aspergillus clavatus was evaluated in a culture filtrate medium, with different carbon and nitrogen sources. The fungus was cultivated at three different temperatures during 10 days. The proteolytic activity was determined on casein pH 9.5 at 37 °C. The highest alkaline proteolytic activity (38 U/ml) was verified for culture medium containing glucose and casein at 1% (w/v) as substrates, obtained from cultures developed at 25 °C for 6 days. Cultures developed in Vogel medium with glucose at 2% (w/v) and 0.2% (w/v) NH4NO3 showed higher proteolytic activity (27 U/ml) when compared to the cultures with 1% of the same sugar. Optimum temperature was 40 °C and the half-lives at 40, 45 and 50 °C were 90, 25 and 18 min, respectively. Optimum pH of enzymatic activity was 9.5 and the enzyme was stable from pH 6.0 to 12.0.  相似文献   

4.
A novel raw-starch-digesting glucoamylase producer, Rhizopus sp. W-08, and Saccharomyces cerevisiae Z-06 were used in a fed batch process for simultaneous saccharification and fermentation of raw corn flour. Ethanol concentration of 21% (v/v) was obtained after 48 h. The conversion efficiency of raw corn flour to ethanol was 94.5% of the theoretical ethanol yield.  相似文献   

5.
Statistically based experimental design was employed for the optimization of fermentation conditions for maximum production of enzyme tannase from Aspergillus niger. Central composite rotatable design (CCRD) falling under response surface methodology (RSM) was used. Based on the results of ‘one-at-a-time’ approach in submerged fermentation, the most influencing factors for tannase production from A. niger were concentrations of tannic acid and sodium nitrate, agitation rate and incubation period. Hence, to achieve the maximum yield of tannase, interaction of these factors was studied at optimum production pH of 5.0 by RSM. The optimum values of parameters obtained through RSM were 5% tannic acid, 0.8% sodium nitrate, 5.0 pH, 5 × 107 spores/50mL inoculum density, 150 rpm agitation and incubation period of 48 h which resulted in production of 19.7 UmL−1 of the enzyme. This activity was almost double as compared to the amount obtained by ‘one-at-a-time’ approach (9.8 UmL−1).  相似文献   

6.
The effect of extracellular proteinases of A. flavipes A17, A. fumigatus D1, and A. sydowii 1 on proteins of the human haemostasis system was studied. It was shown that A. fumigatus D1 proteinases are able to hydrolyze a wide range of chromogenic peptide substrates of specific human proteinases of the haemostatic system. Proteinases formed by A. flavipes A17 and A. sydowii 1 have a narrow specificity, mainly to thrombin and plasmin substrates. It was first shown that proteinase of A. flavipes A17 is capable to activate protein C and Factor X. Extracellular proteinase produced by A. sydowii 1 has greater fibrinolytic activity as compared with proteinases produced by A. flavipes A17 and A. fumigatus D1.  相似文献   

7.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

8.
Aflatoxins are carcinogenic mycotoxins formed by a number of fungi in the genus Aspergillus. The major fungi responsible for aflatoxin formation in crop seeds in the field and in storage are Aspergillus flavus and A. parasiticus. This review emphasizes developmental, environmental, biological, and chemical factors that influence aflatoxin formation by A. flavus and A. parasiticus.  相似文献   

9.
Two new effective microbial producers of inulinases were isolated from Jerusalem artichoke tubers grown in Thailand and identified as Aspergillus niger TISTR 3570 and Candida guilliermondii TISTR 5844. The inulinases produced by both these microorganisms were appropriate for hydrolysing inulin to fructose as the principal product. An initial inulin concentration of ∼100 g l−1 and the enzyme concentration of 0.2 U g−1 of substrate, yielded 37.5 g l−1 of fructose in 20 h at 40°C when A. niger TISTR 3570 inulinase was the biocatalyst. The yield of fructose on inulin was 0.39 g g−1. Under identical conditions, the yeast inulinase afforded 35.3 g l−1 of fructose in 25 h. The fructose yield was 0.35 g g−1 of substrate. The fructose productivities were 1.9 g l−1 h−1 and 1.4 g l−1 h−1 for the mold and yeast enzymes, respectively. After 20 h of reaction, the mold enzyme hydrolysate contained 53% fructose and more than 41% of initial inulin had been hydrolysed. Using the yeast enzymes, the hydrolysate contained nearly 38% fructose at 25 h and nearly 36% of initial inulin had been hydrolysed. The A. niger TISTR 3570 inulinases exhibited both endo-inulinase and exo-inulinase activities. In contrast, the yeast inulinases displayed mainly exo-inulinase activity. The mold and yeast crude inulinases mixed in the activity ratio of 5:1 proved superior to individual crude inulinases in hydrolysing inulin to fructose. The enzyme mixture provided a better combination of endo- and exo-inulinase activities than did the crude extracts of either the mold or the yeast individually.  相似文献   

10.
A revision of Penstemon sect. Saccanthera subsect. Serrulati includes a new species (P. salmonensis), a new variety (P. triphyllus var. infernalis), and the elevation of a subspecies to species (P. curtiflorus), bringing the total number of species to eight, which are keyed and described, complete with nomenclature and type citations.  相似文献   

11.
Studying Pneumocystis has proven to be a challenge from the perspective of propagating a significant amount of the pathogen in a facile manner. The study of several fungal pathogens has been aided by the use of invertebrate model hosts. Our efforts to infect the invertebrate larvae Galleria mellonella with Pneumocystis proved futile since P. murina neither caused disease nor was able to proliferate within G. mellonella. It did, however, show that the pathogen could be rapidly cleared from the host.  相似文献   

12.
Production of gamma-aminobutyric acid (GABA) from crop biomass such as cassava in high concentration is desirable, but difficult to achieve. A safe biotechnological route was investigated to produce GABA from cassava powder by C. glutamicum G01 and L. plantarum GB01-21. Liquefied cassava powder was first transformed to glutamic acid by simultaneous saccharification and fermentation with C. glutamicum G01, followed by biotransformation of glutamic acid to GABA with resting cells of L. plantarum GB01-21 in the reaction medium. After optimizing the reaction conditions, the maximum concentration of GABA reached 80.5 g/L with a GABA productivity of 2.68 g/L/h. This is the highest yield ever reported of GABA production from cassava-derived glucose. The bioprocess provides the added advantage of employing nonpathogenic microorganisms, C. glutamicum and L. plantarum, in microbial production of GABA from cassava biomass, which can be used in the food and pharmaceutical industries.  相似文献   

13.
Hydrophobins are small fungal proteins with amphipatic properties and the ability to self-assemble on a hydrophobic/hydrophilic interface; thus, many technical applications for hydrophobins have been suggested. The pathogenic fungus Aspergillus fumigatus expresses the hydrophobins RodA and RodB on the surface of its conidia. RodA is known to be of importance to the pathogenesis of the fungus, while the biological role of RodB is currently unknown. Here, we report the successful expression of both hydrophobins in Pichia pastoris and present fed-batch fermentation yields of 200–300 mg/l fermentation broth. Protein bands of expected sizes were detected by SDS-PAGE and western blotting, and the identity was further confirmed by tandem mass spectrometry. Both proteins were purified using his-affinity chromatography, and the high level of purity was verified by silver-stained SDS-PAGE. Recombinant RodA as well as rRodB were able to convert a glass surface from hydrophilic to hydrophobic similar to native RodA, but only rRodB was able to decrease the hydrophobicity of a Teflon-like surface to the same extent as native RodA, while rRodA showed this ability to a lesser extent. Recombinant RodA and native RodA showed a similar ability to emulsify air in water, while recombinant RodB could also emulsify oil in water better than the control protein bovine serum albumin (BSA). This is to our knowledge the first successful expression of hydrophobins from A. fumigatus in a eukaryote host, which makes it possible to further characterize both hydrophobins. Furthermore, the expression strategy and fed-batch production using P. pastoris may be transferred to hydrophobins from other species.  相似文献   

14.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

15.
The yajC gene (Lbuc_0921) from Lactobacillus buchneri NRRL B-30929 was identified from previous proteomics analyses in response to ethanol treatment. The YajC protein expression was increased by 15-fold in response to 10 % ethanol vs 0 % ethanol. The yajC gene encodes the smaller subunit of the preprotein translocase complex, which interacts with membrane protein SecD and SecF to coordinate protein transport and secretion across cytoplasmic membrane in Escherichia coli. The YajC protein was linked to sensitivity to growth temperatures in E. coli, involved in translocation of virulence factors during Listeria infection, and stimulating a T cell-mediated response of Brucella abortus. In this study, the L. buchneri yajC gene was over-expressed in E. coli. The strain carrying pET28byajC that produces YajC after isopropyl β-d-1-thiogalactopyranoside induction showed tolerance to 4 % ethanol in growth media, compared to the control carrying pET28b. This is the first report linking YajC to ethanol stress and tolerance.  相似文献   

16.
The gene encoding the xlnR xylanolytic activator of the heterologous fungus Aspergillus niger was incorporated into the Penicillium canescens genome. Integration of the xlnR gene resulted in the increase in a number of activities, i.e. endoxylanase, β-xylosidase, α-L-arabinofuranosidase, α-galactosidase, and feruloyl esterase, compared to the host P. canescens PCA 10 strain, while β-galactosidase, β-glucosidase, endoglucanase, and CMCase activities remained constant. Two different expression constructs were developed. The first consisted of the nucleotide sequence containing the mature P. canescens phytase gene under control of the axhA promoter region gene encoding A. niger (1,4)-β-D-arabinoxylan-arabinofuranohydrolase. The second construct combined the P. canescens phytase gene and the bgaS promoter region encoding homologous β-galactosidase. Both expression cassettes were transformed into P. canescens host strain containing xlnR. Phytase synthesis was observed only for strains with the bgaS promoter on arabinose-containing culture media. In conclusion, the bgaS and axhA promoters were regulated by different inducers and activators in the P. canescens strain containing a structural tandem of the axhA promoter and the gene of the xlnR xylanolytic activator.  相似文献   

17.
Here we evaluate the origins and relationships of Mexican and Central American Diplazium hybrids derived from crosses involving either D. plantaginifolium or D. ternatum. Based on study of live plants and herbarium specimens, we distinguish D. ×verapax from the similar D. riedelianum and present evidence that the former is a sterile hybrid derived from a cross between D. plantaginifolium and D. werckleanum. We also describe new hybrids, D. ×torresianum and D. ×subternatum from Mexico and northern Central America. Both involve D. ternatum as one parent. Diplazium. cristatum is the other putative parent of D. ×torresianum, and D. plantaginifolium is the second parent of D. ×subternatum. We also designate lectotypes for D. cordovense and D. dissimile.  相似文献   

18.
Summary Shoot apex, nodal, and leaf explants of Stevia rebaudiana Bertoni can regenerate shoots when cultured on Murashige and Skoog (MS) medium supplemented with 6-benzyladenine (BA; 8.87 μM) and indole-3-acetic acid (5.71 μM). Rooting of the in vitro-derived shoots could be achieved following subculture onto auxin-containing medium. A survival rate of 70% was recorded at the hardening phase on the substrate cocopeat. The presence of the sweet diterpene glycosides, viz. stevioside and rebaudioside, was confirmed in the in vitro-derived tissues of Stevia using HPTLC techniques. Callus cultured on agar-solidified MS medium supplemented with BA (8.87 μM) and indole-3-butyric acid (9.80 μM) showed the highest sweetener content.  相似文献   

19.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

20.
The acuB gene of Aspergillus niger is an ortholog of facB in Aspergillus nidulans. Under carbon-repression conditions, facB is repressed, thereby preventing acetate metabolism when the repressing carbon source is present. Even though facB is reported to be repressed directly by CreA, it is believed that a basal level of FacB activity exists under glucose-repressive conditions. In the present study, the effect of deletion of acuB on the physiology of A. niger was assessed. Differences in organic acid and acetate production, enzyme activities and extracellular amino and non-amino organic acid production were determined under glucose-repressing and -derepressing conditions. Furthermore, consumption of alternative carbon sources (e.g. xylose, citrate, lactate and succinate) was investigated. It was shown that AcuB has pleiotropic effects on the physiology of A. niger. The results indicate that metabolic pathways that are not directly involved in acetate metabolism are influenced by acuB deletion. Clear differences in organic acid consumption and production were detected between the ∆acuB and reference strain. However, the hypothesis that AcuB is responsible for basal AcuA activity necessary for activation of acetate metabolic pathways, even during growth on glucose, could not be confirmed. The experiments demonstrated that also when acuB was deleted, no acetate was formed. Therefore, AcuB cannot be the only activator of AcuA, and another control mechanism has to be available for activating AcuA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号