首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The importance of non-Saccharomyces yeast species in fermentation processes is widely acknowledged. Within this group, Pichia kudriavzevii ITV-S42 yeast strain shows particularly desirable characteristics for ethanol production. Despite this fact, a thorough study of the metabolic and kinetic characteristics of this strain is currently unavailable. The aim of this work is to study the nutritional requirements of Pichia kudriavzevii ITV-S42 strain and the effect of different carbon sources on the growth and ethanol production. Results showed that glucose and fructose were both assimilated and fermented, achieving biomass and ethanol yields of 0.37 and 0.32 gg−1, respectively. Glycerol was assimilated but not fermented; achieving a biomass yield of 0.88 gg−1. Xylose and sucrose were not metabolized by the yeast strain. Finally, the use of a culture medium enriched with salts and yeast extract favored glucose consumption both for growth and ethanol production, improving ethanol tolerance reported for this genre (35 g L−1) to 90 g L−1 maximum ethanol concentration (over 100%). Furthermore Pichia kudriavzevii ITV-S42 maintained its fermentative capacity up to 200 g L−1 initial glucose, demonstrating that this yeast is osmotolerant.

  相似文献   

2.
A yeast strain Kluyveromyces sp. IIPE453 (MTCC 5314), isolated from soil samples collected from dumping sites of crushed sugarcane bagasse in Sugar Mill, showed growth and fermentation efficiency at high temperatures ranging from 45°C to 50°C. The yeast strain was able to use a wide range of substrates, such as glucose, xylose, mannose, galactose, arabinose, sucrose, and cellobiose, either for growth or fermentation to ethanol. The strain also showed xylitol production from xylose. In batch fermentation, the strain showed maximum ethanol concentration of 82 ± 0.5 g l−1 (10.4% v/v) on initial glucose concentration of 200 g l−1, and ethanol concentration of 1.75 ± 0.05 g l−1 as well as xylitol concentration of 11.5 ± 0.4 g l−1 on initial xylose concentration of 20 g l−1 at 50°C. The strain was capable of simultaneously using glucose and xylose in a mixture of glucose concentration of 75 g l−1 and xylose concentration of 25 g l−1, achieving maximum ethanol concentration of 38 ± 0.5 g l−1 and xylitol concentration of 14.5 ± 0.2 g l−1 in batch fermentation. High stability of the strain was observed in a continuous fermentation by feeding the mixture of glucose concentration of 75 g l−1 and xylose concentration of 25 g l−1 by recycling the cells, achieving maximum ethanol concentration of 30.8 ± 6.2 g l−1 and xylitol concentration of 7.35 ± 3.3 g l−1 with ethanol productivity of 3.1 ± 0.6 g l−1 h−1 and xylitol productivity of 0.75 ± 0.35 g l−1 h−1, respectively.  相似文献   

3.
Compared with steady state, oscillation in continuous very-high-gravity ethanol fermentation with Saccharomyces cerevisiae improved process productivity, which was thus introduced for the fermentation system composed of a tank fermentor followed by four-stage packed tubular bioreactors. When the very-high-gravity medium containing 280 g l−1 glucose was fed at the dilution rate of 0.04 h−1, the average ethanol of 15.8% (v/v) and residual glucose of 1.5 g l−1 were achieved under the oscillatory state, with an average ethanol productivity of 2.14 g h−1 l−1. By contrast, only 14.8% (v/v) ethanol was achieved under the steady state at the same dilution rate, and the residual glucose was as high as 17.1 g l−1, with an ethanol productivity of 2.00 g h−1 l−1, indicating a 7% improvement under the oscillatory state. When the fermentation system was operated under the steady state at the dilution rate of 0.027 h−1 to extend the average fermentation time to 88 h from 59 h, the ethanol concentration increased slightly to 15.4% (v/v) and residual glucose decreased to 7.3 g l−1, correspondingly, but the ethanol productivity was decreased drastically to 1.43 g h−1 l−1, indicating a 48% improvement under the oscillatory state at the dilution rate of 0.04 h−1.  相似文献   

4.
Mucor indicus can be used to produce ethanol from a variety of sugars, including pentose’s. An extract of it, produced by autolysis, could replace yeast extract in culture medium with improved production of ethanol. At 10 g l−1, the extract gave a higher ethanol yield (0.47 g g−1) and productivity (0.71 g l−1 h−1) compared to medium containing yeast extract (yield 0.45 g g−1; productivity 0.67 g l−1 h−1).  相似文献   

5.
Clostridium beijerinckii mutant strain IB4, which has a high level of inhibitor tolerance, was screened by low-energy ion implantation and used for butanol fermentation from a non-detoxified hemicellulosic hydrolysate of corn fiber treated with dilute sulfuric acid (SAHHC). Evaluation of toxicity showed C. beijerinckii IB4 had a higher level of tolerance than parent strain C. beijerinckii NCIMB 8052 for five out of six phenolic compounds tested (the exception was vanillin). Using glucose as carbon source, C. beijerinckii IB4 produced 9.1 g l−1 of butanol with an acetone/butanol/ethanol (ABE) yield of 0.41 g g−1. When non-detoxified SAHHC was used as carbon source, C. beijerinckii NCIMB 8052 grew well but ABE production was inhibited. By contrast, C. beijerinckii IB4 produced 9.5 g l−1 of ABE with a yield of 0.34 g g−1, including 2.2 g l−1 acetone, 6.8 g l−1 butanol, and 0.5 g l−1 ethanol. The remarkable fermentation and inhibitor tolerance of C. beijerinckii IB4 appears promising for ABE production from lignocellulosic materials.  相似文献   

6.
Bi D  Chu D  Zhu P  Lu C  Fan C  Zhang J  Bao J 《Biotechnology letters》2011,33(2):273-276
Dry distiller’s grain and solubles (DDGS) is a major by-product of corn-based ethanol production and is usually used as animal feed. Here, it was added to the simultaneous saccharification and ethanol fermentation (SSF) carried out at high solids loading of steam explosion pretreated corn stover using a mutant strain Saccharomyces cerevisiae DQ1. The performance of SSF process with DDGS was comparable to those using the expensive yeast extract supplementation. With 30% (w/w) solids plus the addition of cellulase and 1 g DDGS l−1, the final ethanol reached 55 g l−1 (7% v/v). The results indicated that the expensive supplement of yeast extract could be replaced by DDGS.  相似文献   

7.
Two wild strains of Zymomonas mobilis were isolated (named as ML1 and ML2) from sugar cane molasses obtained from different farms of Santander, Colombia. Initially, selection of the best ethanol-producer strains was carried out using ethanol production parameters obtained with a commercial strain Z. mobilis DSM 3580. Three isolated strains were cultivated in a culture medium containing yeast extract, peptone, glucose and salts, at pH 6 and 32°C with stirring rate of 65 rpm during 62 h. The best results of ethanol production were obtained with the native strain ML1, reaching a maximum ethanol concentration of 79.78 g l−1. ML1 and ML2 strains were identified as Z. mobilis, according to the morphology, biochemical tests and molecular characterization by PCR of specific DNA sequences from Z. mobilis. Subsequently, the effect of different nitrogen sources on production of ethanol was evaluated. The best results were obtained using urea at a 0.73 g/l. In this case, maximum concentration of ethanol was 83.81 g l−1, with kinetic parameters of yield of ethanol on biomass (YP/X) = 69.01(g g−1), maximum volumetric productivity of ethanol (Qpmax) = 2.28 (g l−1 h−1), specific productivity of ethanol (qP) = 3.54 (h−1) and specific growth rate (μ) = 0.12 h−1. Finally, we studied the effect of different culture conditions (pH, temperature, stirring, C/N ratio) with a Placket-Burman′s experimental design. This optimization indicated that the most significant variables were temperature and stirring. In the best culture conditions a significant increase in all variables of response was achieved, reaching a maximum ethanol concentration of 93.55 g l−1.  相似文献   

8.
Several fungal endophytes of the Egyptian marine sponge Latrunculia corticata were isolated, including strains Trichoderma sp. Merv6, Penicillium sp. Merv2 and Aspergillus sp. Merv70. These fungi exhibited high cellulase activity using different lignocellulosic substrates in solid state fermentations (SSF). By applying mutagenesis and intergeneric protoplast fusion, we have obtained a recombinant strain (Tahrir-25) that overproduced cellulases (exo-β-1,4-glucanase, endo-β-1,4-glucanase and β-1,4-glucosidase) that facilitated complete cellulolysis of agricultural residues. The process parameters for cellulase production by strain Tahrir-25 were optimized in SSF. The highest cellulase recovery from fermentation slurries was achieved with 0.2% Tween 80 as leaching agent. Enzyme production was optimized under the following conditions: initial moisture content of 60% (v/w), inoculum size of 106 spores ml−1, average substrate particle size of 1.0 mm, mixture of sugarcane bagasse and corncob (2:1) as the carbon source supplemented with carboxymethyl cellulose (CMC) and corn steep solids, fermentation time of 7 days, medium pH of 5.5 at 30°C. These optimized conditions yielded 450, 191, and 225 units/gram dry substrate (U gds−1) of carboxylmethyl cellulase, filter-paperase (FPase), and β-glucosidase, respectively. Subsequent fermentation by the yeast, Saccharomyces cerevisiae NRC2, using lignocellulose hydrolysates obtained from the optimized cellulase process produced the highest amount of ethanol (58 g l−1). This study has revealed the potential of exploiting marine fungi for cost-effective production of cellulases for second generation bioethanol processes.  相似文献   

9.
An optimized very high gravity (VHG) glucose medium supplemented with low cost nutrient sources was used to evaluate bio-ethanol production by 11 Saccharomyces cerevisiae strains. The industrial strains PE-2 and CA1185 exhibited the best overall fermentation performance, producing an ethanol titre of 19.2% (v/v) corresponding to a batch productivity of 2.5 g l−1 h−1, while the best laboratory strain (CEN.PK 113-7D) produced 17.5% (v/v) ethanol with a productivity of 1.7 g l−1 h−1. The results presented here emphasize the biodiversity found within S. cerevisiae species and that naturally adapted strains, such as PE-2 and CA1185, are likely to play a key role in facilitating the transition from laboratory technological breakthroughs to industrial-scale bio-ethanol fermentations.  相似文献   

10.
Lactic acid is used as an additive in foods, pharmaceuticals, and cosmetics, and is also an industrial chemical. Optically pure lactic acid is increasingly used as a renewable bio-based product to replace petroleum-based plastics. However, current production of lactic acid depends on carbohydrate feedstocks that have alternate uses as foods. The use of non-food feedstocks by current commercial biocatalysts is limited by inefficient pathways for pentose utilization. B. coagulans strain 36D1 is a thermotolerant bacterium that can grow and efficiently ferment pentoses using the pentose-phosphate pathway and all other sugar constituents of lignocellulosic biomass at 50°C and pH 5.0, conditions that also favor simultaneous enzymatic saccharification and fermentation (SSF) of cellulose. Using this bacterial biocatalyst, high levels (150–180 g l−1) of lactic acid were produced from xylose and glucose with minimal by-products in mineral salts medium. In a fed-batch SSF of crystalline cellulose with fungal enzymes and B. coagulans, lactic acid titer was 80 g l−1 and the yield was close to 80%. These results demonstrate that B. coagulans can effectively ferment non-food carbohydrates from lignocellulose to l(+)-lactic acid at sufficient concentrations for commercial application. The high temperature fermentation of pentoses and hexoses to lactic acid by B. coagulans has these additional advantages: reduction in cellulase loading in SSF of cellulose with a decrease in enzyme cost in the process and a reduction in contamination of large-scale fermentations.  相似文献   

11.
Extracellular lipase was produced from Rhizopus oligosporus NRRL 5905 through solid state fermentation (SSF). To provide an optimum fermentation conditions for maximum lipase yield, five process variables (temperature, liquid–solid ratio, pH, incubation period and spore concentration) were optimized using evolutionary operation (EVOP) factorial design technique taking into account the interaction between the process variables. Optimization through EVOP resulted in around 3 fold increase in lipase activity (77 U gds−1) at a liquid–solid ratio of 1.5:1, fermentation temperature of 35°C, initial fermentation pH 6, incubation period 5 days and a spore concentration of 108 spores ml−1.  相似文献   

12.
Yeasts that ferment both hexose and pentose are important for cost-effective ethanol production. We found that the soil yeast strain NY7122 isolated from a blueberry field in Tsukuba (East Japan) could ferment both hexose and pentose (d-xylose and l-arabinose). NY7122 was closely related to Candida subhashii on the basis of the results of molecular identification using the sequence in the D1/D2 domains of 26S rDNA and 5.8S-internal transcribed spacer region. NY7122 produced at least 7.40 and 3.86 g l−1 ethanol from 20 g l−1 d-xylose and l-arabinose within 24 h. NY7122 could produce ethanol from pentose and hexose sugars at 37°C. The highest ethanol productivity of NY7122 was achieved under a low pH condition (pH 3.5). Fermentation of mixed sugars (50 g l−1 glucose, 20 g l−1 d-xylose, and 10 g l−1 l-arabinose) resulted in a maximum ethanol concentration of 27.3 g l−1 for the NY7122 strain versus 25.1 g l−1 for Scheffersomyces stipitis. This is the first study to report that Candida sp. NY7122 from a soil environment could produce ethanol from both d-xylose and l-arabinose.  相似文献   

13.
Continuous production of acetone, n-butanol, and ethanol (ABE) was carried out using immobilized cells of Clostridium acetobutylicum DSM 792 using glucose and sugar mixture as a substrate. Among various lignocellulosic materials screened as a support matrix, coconut fibers and wood pulp fibers were found to be promising in batch experiments. With a motive of promoting wood-based bio-refinery concept, wood pulp was used as a cell holding material. Glucose and sugar mixture (glucose, mannose, galactose, arabinose, and xylose) comparable to lignocellulose hydrolysate was used as a substrate for continuous production of ABE. We report the best solvent productivity among wild-type strains using column reactor. The maximum total solvent concentration of 14.32 g L−1 was obtained at a dilution rate of 0.22 h−1 with glucose as a substrate compared to 12.64 g L−1 at 0.5 h−1 dilution rate with sugar mixture. The maximum solvent productivity (13.66 g L−1 h−1) was obtained at a dilution rate of 1.9 h−1 with glucose as a substrate whereas solvent productivity (12.14 g L−1 h−1) was obtained at a dilution rate of 1.5 h−1 with sugar mixture. The immobilized column reactor with wood pulp can become an efficient technology to be integrated with existing pulp mills to convert them into wood-based bio-refineries.  相似文献   

14.
A repeated batch fermentation system was used to produce ethanol using an osmotolerant Saccharomyces cerevisiae (VS3) immobilized in calcium alginate beads. For comparison free cells were also used to produce ethanol by repeated batch fermentation. Fermentation was carried for six cycles with 125, 250 or 500 beads using 150, 200 or 250 g glucose L−1 at 30°C. The maximum amount of ethanol produced by immobilized VS3 using 150 g L−1 glucose was only 44 g L−1 after 48 h, while the amount of ethanol produced by free cells in the first cycle was 72 g L−1. However in subsequent fed batch cultures more ethanol was produced by immobilized cells compared to free cells. The amount of ethanol produced by free cells decreased from 72 g L−1 to 25 g L−1 after the fourth cycle, while that of immobilized cells increased from 44 to 72 g L−1. The maximum amount of ethanol produced by immobilized VS3 cells using 150, 200 and 250 g glucose L−1 was 72.5, 93 and 87 g ethanol L−1 at 30°C. Journal of Industrial Microbiology & Biotechnology (2000) 24, 222–226. Received 16 September 1999/ Accepted in revised form 22 December 1999  相似文献   

15.
We demonstrate the value of the thermotolerant yeast Issatchenkia orientalis as a candidate microorganism for bioethanol production from lignocellulosic biomass with the goal of consolidated bioprocessing. The I. orientalis MF-121 strain is acid tolerant, ethanol tolerant, and thermotolerant, and is thus a multistress-tolerant yeast. To express heterologous proteins in I. orientalis, we constructed a transformation system for the MF-121 strain and then isolated the promoters of TDH1 and PGK1, two genes that were found to be strongly expressed during ethanol fermentation. As a result, expression of β-glucosidase from Aspergillus aculeatus could be achieved with I. orientalis, demonstrating successful heterologous gene expression in I. orientalis for the first time. The transformant could convert cellobiose to ethanol under acidic conditions and at high temperature. Simultaneous saccharification and fermentation (SSF) was performed with the transformant, which produced 29 g l−1 of ethanol in 72 h at 40°C even without addition of β-glucosidase when SSF was carried out in medium containing 100 g l−1 of microcrystalline cellulose and a commercial cellulase preparation. These results suggest that using a genetically engineered thermotolerant yeast such as I. orientalis in SSF could lead to cost reduction because less saccharification enzymes are required.  相似文献   

16.
Clostridium beijerinckii DSM 6423 was studied using different continuous production methods to give maximum and stable production of isopropanol and n-butanol. In a single-stage continuous culture, when wood pulp was added as a cell holding material, we could increase the solvent productivity from 0.47 to 5.52 g L−1 h−1 with the yield of 54% from glucose. The overall solvent concentration of 7.51 g L−1 (39.4% isopropanol and 60.6% n-butanol) with the maximum solvent productivity of 0.84 g L−1 h−1 was obtained with two-stage continuous culture. We were able to run the process for more than 48 overall retention times without losing the ability to produce solvents.  相似文献   

17.
Dynamic Saccharomyces cerevisiae responses to increasing ethanol stresses were investigated to monitor yeast viability and to optimize bioprocess performance when gradients occurred due to the specific configuration of multi-stage bioreactors with cell recycling or of large volume industrial bioreactors inducing chemical heterogeneities. Twelve fed-batch cultures were carried out with initial ethanol concentrations (P in) ranging from 5 g l−1 to 110 g l−1 with three different inoculums in different physiological states in terms of viability and quantity of ethanol produced (P o). For a given initial cell viability of 50%, the time to reach the maximum growth rate and maximum ethanol production rate was dependent on the difference P in − P o. Whatever the initial physiological state, when the initial ethanol concentration P in reached 100 g l−1, the yeasts died. Experimental results showed that the initial physiological state of the yeast was the major parameter to determine, the microorganisms’ capacities to adapt and resist environmental changes.  相似文献   

18.
Efficient utilization of pentose sugars (xylose and arabinose) is an essential requirement for economically viable ethanol production from cellulosic biomass. The desirable pentose-fermenting ethanologenic biocatalysts are the native microorganisms or the engineered derivatives without recruited exogenous gene(s). We have used a metabolic evolution (adaptive selection) approach to improve a non-transgenic homoethanol Escherichia coli SZ420 (ldhA pflB ackA frdBC pdhR::pflBp6-aceEF-lpd) for xylose fermentation. An improved mutant, E. coli KC01, was evolved through a 3 month metabolic evolution process. This evolved mutant increased pyruvate dehydrogenase activity by 100%, cell growth rate (h−1) by 23%, volumetric ethanol productivity by 65% and ethanol tolerance by 200%. These improvements enabled KC01 to complete 50 g xylose l−1 fermentations with an ethanol titer of 23 g l−1 and a yield of 90%. The improved cell growth and ethanol production of KC01 are likely attributed to its three fold increased ethanol tolerance.  相似文献   

19.
Previously, a Saccharomyces cerevisiae strain was engineered for xylose assimilation by the constitutive overexpression of the Orpinomyces xylose isomerase, the S. cerevisiae xylulokinase, and the Pichia stipitis SUT1 sugar transporter genes. The recombinant strain exhibited growth on xylose, under aerobic conditions, with a specific growth rate of 0.025 h−1, while ethanol production from xylose was achieved anaerobically. In the present study, the developed recombinant yeast was adapted for enhanced growth on xylose by serial transfer in xylose-containing minimal medium under aerobic conditions. After repeated batch cultivations, a strain was isolated which grew with a specific growth rate of 0.133 h−1. The adapted strain could ferment 20 g l−1 of xylose to ethanol with a yield of 0.37 g g−1 and production rate of 0.026 g l−1 h−1. Raising the fermentation temperature from 30°C to 35°C resulted in a substantial increase in the ethanol yield (0.43 g g−1) and production rate (0.07 g l−1 h−1) as well as a significant reduction in the xylitol yield. By the addition of a sugar complexing agent, such as sodium tetraborate, significant improvement in ethanol production and reduction in xylitol accumulation was achieved. Furthermore, ethanol production from xylose and a mixture of glucose and xylose was also demonstrated in complex medium containing yeast extract, peptone, and borate with a considerably high yield of 0.48 g g−1.  相似文献   

20.
Due to its excellent capability to ferment five-carbon sugars, Escherichia coli has been considered one of the platform organisms to be engineered for production of cellulosic ethanol. Nevertheless, genetically engineered ethanologenic E. coli lacks the essential trait of alcohol tolerance. Development of ethanol tolerance is required for cost-effective ethanol fermentation. In this study, we improved alcohol tolerance of a nontransgenic E. coli KC01 (ldhA pflB ackA frdBC pdhR::pflBp6-aceEF-lpd) through adaptive evolution. During ~350 generations of adaptive evolution, a gradually increased concentration of ethanol was used as a selection pressure to enrich ethanol-tolerant mutants. The evolved mutant, E. coli SZ470, was able to grow anaerobically at 40 g l−1 ethanol, a twofold improvement over parent KC01. When compared with KC01 for small-scale (500 ml) xylose (50 g l−1) fermentation, SZ470 achieved 67% higher cell mass, 48% faster volumetric ethanol productivity, and 50% shorter time to complete fermentation with ethanol titer of 23.5 g l−1 and yield of 94%. These results demonstrate that an industry-oriented nontransgenic E. coli strain could be developed through incremental improvements of desired traits by a combination of molecular biology and traditional microbiology techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号