首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tyrosine hydroxylase (TH)-mRNA, assayed by in situ hybridization combined with TH immunocytochemistry, showed a selective increase in the ventral tegmental area (A-10) but not in the substantia nigra (A-9) midbrain dopaminergic (DAergic) neurons 3 days after reserpine treatment. TH-mRNA in locus ceruleus noradrenergic (A-4) neurons was increased by reserpine, as confirmed by RNA blot hybridization. These findings show that TH-mRNA is differentially regulated in midbrain DAergic neurons in response to reserpine.  相似文献   

2.
3.
We described in a previous study two pathways by which Th cells induced macrophage membrane IL-1(mIL-1) during Ag presentation. One pathway was lymphokine-independent and mediated by cell-cell contact. The second was lymphokine-dependent. We have now characterized this lymphokine and show that it belongs to the TNF family of proteins. All TH1 and most TH2 clones produced the lymphokine, although TH1 levels were markedly greater. Both types of clones also induced macrophage mIL-1 by cell-cell contact (i.e., in the absence of lymphokine release). Examination of macrophages by in situ hybridization showed that both IL-1 alpha and IL-1 beta mRNA were coordinately induced during Ag presentation to either TH1 or TH2 clones.  相似文献   

4.
W S Neckameyer  W G Quinn 《Neuron》1989,2(2):1167-1175
  相似文献   

5.
Transgenic mice carrying multiple copies of the human tyrosine hydroxylase (TH) gene have been produced. The transgenes were transcribed correctly and expressed specifically in brain and adrenal gland. The level of human TH mRNA in brain was about 50-fold higher than that of endogenous mouse TH mRNA. In situ hybridization demonstrated an enormous region-specific expression of the transgene in substantia nigra and ventral tegmental area. TH immunoreactivity in these regions, though not comparable to the increment of the mRNA, was definitely increased in transgenic mice. This observation was also supported by Western blot analysis and TH activity measurements. However, catecholamine levels in transgenics were not significantly different from those in nontransgenics. These results suggest unknown regulatory mechanisms for human TH gene expression and for the catecholamine levels in transgenic mice.  相似文献   

6.
7.
8.
Abstract: Tyrosine hydroxylase (TH) cDNA has been characterized in rodents and primates, but only a few studies have been developed in ungulates, except in cows. Because sheep is a species used for many physiological studies, it was of interest to clone TH cDNA in this species. Ovine TH cDNA was purified from a library of sheep adrenal glands. The entire cDNA was 1,721 bp long. It presented a higher percentage of similarity with bovine TH cDNA (93%) than with rodent cDNAs (75%). The deduced amino acid sequence was 490 amino acids long and had 96% similarity with the bovine amino acid sequence. The entire cDNA and different fragments obtained with endonuclease restriction enzymes were cloned in plasmid pUC 18 and were labeled with 35S-dATP to detect TH mRNA by in situ hybridization. Strong labelings were observed on adrenal medulla and on noradrenergic and dopaminergic neurons in the sheep but also in the cow and pig. This labeling matched completely TH immunohistochemical staining obtained on the same sections with anti-TH antibodies. Ovine TH cDNA is a useful tool to study the variations of TH mRNA levels in sheep catecholaminergic neurons.  相似文献   

9.
To enable us to study expression of tyrosine hydroxylase [TH; tyrosine 3-monooxygenase; L-tyrosine tetrahydropteridine:oxygen oxidoreductase (3-hydroxylating); EC 1.14.16.2] as a measure of dopaminergic neuron function in future experiments, methods were developed to quantify TH mRNA levels in cultures of dopaminergic mesencephalic cells. The model of selective dopaminergic toxicity of 1-methyl-4-phenylpyridinium (MPP+) was used to verify the specificity of our methods. Fetal (embryonic day 15) rat ventral mesencephalic cell cultures were treated with 15 microM MPP+ for 48 h, conditions previously shown to reduce the number of TH-immunoreactive neurons, TH activity, and dopamine uptake to 5-10% of control values. This treatment decreased the number of neurons labeled by TH in situ hybridization to 9% of untreated controls and caused a strong reduction of the abundance of TH mRNA in Northern blots. Our findings establish TH mRNA expression as a parameter for future studies of toxic and trophic effects on cultured dopaminergic neurons, and they support the view that MPP+ destroys dopaminergic neurons.  相似文献   

10.
11.
12.
13.
14.
15.
The activity (Vmax) of tyrosine hydroxylase (TH; EC 1.14.16.2), the rate limiting enzyme in the synthesis of catecholamines, is increased in carotid body, superior cervical ganglion, and the adrenal medulla during hypoxia (i.e., reduced PaO2). The present study was undertaken to determine if the increase in TH activity in these tissues during hypoxia is regulated at the level of TH mRNA. Adult rats were exposed to hypoxia (10% O2) or room air for periods lasting from 1 to 48 h. The carotid bodies, superior cervical ganglia, and adrenals were removed and processed for in situ hybridization using 35S-labeled oligonucleotide probes. The concentration of TH mRNA was increased by hypoxia at all time points in carotid body type I cells, but not in cells of either superior cervical ganglion or adrenal medulla. The increase in TH mRNA in carotid body during hypoxia did not require innervation of the carotid body or intact adrenal glands. In addition, hypercapnia, another physiological stimulus of carotid body activity, failed to induce an increase in TH mRNA in type I cells. Our findings suggest that hypoxia stimulates TH gene expression in the carotid body by a mechanism that is intrinsic to type I cells.  相似文献   

16.
Amphibian metamorphosis is under the strict control of thyroid hormones (TH). These hormones induce metamorphosis by controlling gene expression through binding to thyroid hormone receptors (TRs). Necturus maculosus is considered to be an obligatory paedomorphic Amphibian since metamorphosis never occurs spontaneously and cannot be induced by pharmacological means. Since metamorphosis depends on the acquisition of response of tadpole tissues to thyroid hormone, we aimed to determine TR gene expression patterns in Necturus maculosus as well as the expression of two TH-related genes: Cytosolic Thyroid Hormone-Binding Protein (CTHBP)-M2-pyruvate kinase, a gene encoding a cytosolic TH binding protein and stromelysin 3, a direct TH target gene in Xenopus laevis. Tissue samples were obtained from specimens of Necturus maculosus. We performed in situ hybridization using non-cross-hybridizing RNA probes obtained from the cloned Necturus TRalpha and TRbeta genes. We found clear expression of Necturus TRalpha gene in several tissues including the central nervous system, epithelial cells of digestive and urinary organs, as well as myocardium and skeletal muscle. TRbeta was also expressed in the brain. In other tissues, hybridization signals were too low to draw reliable conclusions about their precise distribution. In addition, we observed that the expression of CTHBP and ST3 is largely distinct from that of TRs. The fact that we observed a clear expression of TRalpha and TRbeta which are evolutionary conserved, suggests that Necturus tissues express TRs. Our results thus indicate that, in contrast to previously held hypotheses, Necturus tissues are TH responsive.  相似文献   

17.
Su Y  Duan CL  Zhao CL  Zhao HY  Xu QY  Yang H 《生理学报》2003,55(5):583-588
由于在帕金森病中合成多巴胺所需的酪氨酸羟化酶(tyrosine hydroxylase,TH)和左旋芳香族氨基酸脱羧酶(aromatic L-amino acid decarboxylase,AADC)活性明显降低,所以补充多巴胺合成酶成为基因治疗帕金森病研究的主要手段。我们分别构建了重组逆转录病毒载体pLHCX/TH及pLNCX2/AADC,通过脂质体介导将带有目的基因的载体分别转到包装细胞PA317中,经筛选得到产病毒的细胞PA317/TH和PA317/AADC,采用免疫组化、原位杂交方法检测目的基因表达;细胞经裂解后进行的酶促反应产物多巴胺以高压液相电化学方法检测证明所克隆的T‘H及AADC基因具有功能活性;这两种基因工程改造细胞可以完成酶促动力学的功能,使L-dopa及多巴胺产生明显增加。本研究为用TH和AADC双基因对帕金森病进行基因治疗提供了一定的依据。  相似文献   

18.
In situ hybridization was used to examine the appearance of mRNA specific for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine (CA) biosynthesis, in neural crest derivatives of the rat embryo. These derivatives include sympathetic ganglia and transient catecholaminergic cells of embryonic intestine. Messenger RNA is first detected in sympathetic ganglia at E11.5, the age corresponding to the initial immunocytochemical expression of TH protein. In older embryos increased accumulation of TH-specific mRNA in sympathetic ganglia parallels the increase in TH immunoreactivity. By contrast, mRNA for TH is difficult to detect in embryonic intestines at E11.5 but is found instead in cells clustered at the dorsal boundaries of the pharynx and foregut. Cells expressing TH mRNA are infrequently found in embryonic intestines at any age, even though TH protein is immunohistochemically apparent. Treatment of pregnant rats with doses of reserpine, known to increase circulating levels of glucocorticoid hormones and prolong the expression of TH protein in embryonic gut cells, dramatically but transiently increases the number of gut cells at E12.5 with detectable TH mRNA. After E13.5 TH mRNA is undetectable even in reserpine-treated guts. Reserpine treatment also increases the labeling density in sympathetic ganglia. Taken together, these data are consistent with the hypothesis that the microenvironment of the embryonic intestine affects gene expression directly to alter phenotype. Moreover, although reserpine administration briefly increases TH mRNA levels, the effect is short-lived and does not alter neurotransmitter phenotypic conversion.  相似文献   

19.
Experiments were done to study the fate of transient catecholaminergic (TC) cells that develop in the rodent gut during ontogeny. When they are first detected, at Day E11 in rats, TC cells are distributed along the vagal pathway, in advance of the descending fibers of the vagus nerves, and in the foregut. The early TC cells coexpress the immunoreactivities of several neural markers, including 150-kDa neurofilament protein, peripherin, microtubule associated protein (MAP) 5, and growth-associated protein (GAP)-43, with those of the catecholamine biosynthetic enzymes tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH). All cells in the fetal rat bowel at Day E11 that express neural markers also express TH immunoreactivity. The primitive TC cells also express the immunoreactivities of neural cell adhesion molecule (N-CAM), neuropeptide Y (NPY), and nerve growth factor (NGF) receptor (and NGF receptor mRNA). By Day E12 TC cells are found along the vagal pathway and throughout the entire preumbilical bowel. At this age TC cells acquire additional characteristics, including MAP 2 and synaptophysin immunoreactivities and acetylcholinesterase activity, which indicate that they continue to mature as neurons. In addition, TC cells of the rat are immunostained at Day E12 by the NC-1 monoclonal antibody, which in rats labels multiple cell types including migrating cells of neural crest origin. Despite their neural properties, at least some TC cells divide and therefore are neural precursors and not terminally differentiated neurons. At Day E10 TH mRNA-containing cells were not detected by in situ hybridization; however, by Day E11 TH mRNA was detected in sympathetic ganglia and in scattered cells in the mesenchyme of the foregut and vagal pathway. At this age, the number of enteric and vagal cells containing TH mRNA is about 30% less than the number of cells containing TH immunoreactivity in adjacent sections. The ratio of TH mRNA-containing cells to TH-immunoreactive vagal and enteric cells is even less at Day E12, especially in more caudal regions of the preumbilical bowel. A similar decline in the ratio of TH mRNA-containing to TH-immunoreactive cells was not observed in sympathetic ganglia. After Day E12 TH mRNA cannot be detected in enteric or vagal cells by in situ hybridization; nevertheless, TH immunoreactivity continues to be present through Day E14. DBH, NPY, and NGF receptor immunoreactivities are expressed by TH-immunoreactive transitional cells in the fetal rat gut after TH mRNA is no longer detectable.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
We have cloned cDNA of a testis-specific histone, TH2B (a variant of H2B), and rat somatic H2B gene to investigate regulation of testis-specific histone genes during rat spermatogenesis. The amino acid sequences deduced from DNA sequences show extensive sequence divergence in the N-terminal third of the two histones. The rest is highly conserved. One cysteine residue was found in TH2B. No cysteine is present in somatic histones except in H3 histone. We investigated the expression of TH2B and H2B genes using the regions of sequence divergence as hybridization probes. The TH2B gene is expressed only in the testis, and the expression of this gene is detected 14 days after birth, reaching a maximum at Day 20. The level of H2B mRNA shows a reciprocal pattern. This contrasting pattern can be explained by the gradually changing proportion of spermatogonia and spermatocytes with testicular maturation. In situ cytohybridization studies show that H2B gene is expressed primarily in proliferating spermatogonia and preleptotene spermatocytes, whereas TH2B gene is expressed exclusively in pachytene spermatocytes which first appear in testis about 14 days after birth. H2B and TH2B genes appear to be ideal markers for the study of proliferation and differentiation events in spermatogenesis and their regulatory mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号