首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complex nature of blood flow in the human arterial system is still gaining more attention, as it has become clear that cardiovascular diseases localize in regions of complex geometry and complex flow fields. In this article, we demonstrate that the lattice Boltzmann method can serve as a mesoscopic computational hemodynamic solver. We argue that it may have benefits over the traditional Navier-Stokes techniques. The accuracy of the method is tested by studying time-dependent systolic flow in a 3D straight rigid tube at typical hemodynamic Reynolds and Womersley numbers as an unsteady flow benchmark. Simulation results of steady and unsteady flow in a model of the human aortic bifurcation reconstructed from magnetic resonance angiography, are presented as a typical hemodynamic application.  相似文献   

2.
Brereton GJ 《Biorheology》2011,48(3-4):199-217
Analytical solutions to the model problem of unsteady Newtonian fluid flow in straight, elastic-walled vessels can provide: theoretical insights into the flow of blood in arteries; a theoretical basis for clinical measurements in diagnoses of arterial flow rates; and guidance for boundary conditions in numerical simulations of flow in finite computational domains. However, while Womersley's analyses of blood flow assume solution forms that treat the flow as periodic and continuously unsteady, many flow variables in the smaller arteries are not continuously unsteady at all. They are characterized more accurately as rapid transient motions followed by a period of recovery to a stationary state, repeated in successive cycles. These flows are not continually unsteady ones described by Womersley's solutions but unsteady flows restarted from rest in each cycle, characterized as initial-boundary value problems. In this paper, we compare the Womersley and initial-boundary value solutions for model transients that stop then restart, explain these previously unreported limitations of Womersley's solutions, and demonstrate how the initial-boundary value solutions provide excellent agreement with measurements of blood flow in the anterior tibial and popliteal arteries of patients. Some consequences of these findings for understanding and interpreting measurements of blood flow, and for prescribing boundary conditions in computer simulations of arterial blood flow are discussed.  相似文献   

3.
A three-dimensional and pulsatile blood flow in a human aortic arch and its three major branches has been studied numerically for a peak Reynolds number of 2500 and a frequency (or Womersley) parameter of 10. The simulation geometry was derived from the three-dimensional reconstruction of a series of two-dimensional slices obtained in vivo using CAT scan imaging on a human aorta. The numerical simulations were obtained using a projection method, and a finite-volume formulation of the Navier-Stokes equations was used on a system of overset grids. Our results demonstrate that the primary flow velocity is skewed towards the inner aortic wall in the ascending aorta, but this skewness shifts to the outer wall in the descending thoracic aorta. Within the arch branches, the flow velocities were skewed to the distal walls with flow reversal along the proximal walls. Extensive secondary flow motion was observed in the aorta, and the structure of these secondary flows was influenced considerably by the presence of the branches. Within the aorta, wall shear stresses were highly dynamic, but were generally high along the outer wall in the vicinity of the branches and low along the inner wall, particularly in the descending thoracic aorta. Within the branches, the shear stresses were considerably higher along the distal walls than along the proximal walls. Wall pressure was low along the inner aortic wall and high around the branches and along the outer wall in the ascending thoracic aorta. Comparison of our numerical results with the localization of early atherosclerotic lesions broadly suggests preferential development of these lesions in regions of extrema (either maxima or minima) in wall shear stress and pressure.  相似文献   

4.
Steady flow studies were conducted in a transparent canine aortic cast. The cast segment stretched from the aortic valve to beyond the renal arteries and included all major branches. Flow was visualized by analysis of dye streaklines. Flow rates for basal and exercising cardiovascular states were simulated. The Reynolds numbers in the ascending aorta for basal and exercising conditions were 900 and 1587 respectively. Aortic core flow was laminar in basal simulations. Disturbed flow commenced in the upper descending aorta with exercising flow rates. Separation zones existed along the inner curvature of the aortic arch and the proximal walls of the brachiocephalic, left subclavian, and coeliac arteries. Such zones may exist over a portion of the cardiac cycle. If either renal artery was occluded, then a vortex formed. This vortex is associated with high shear regions which correlate well with sites where sudanophilic lesions have been reported in cholesterol-fed nephrectomized rabbits.  相似文献   

5.
The inverse Womersley problem for pulsatile flow in straight rigid tubes   总被引:2,自引:0,他引:2  
In this study a numerical solution for the problem of pulsating flow in rigid tubes is described. The method applies to the case of known flow rate waveform, as opposed to Womersley solution where the pressure gradient was the known quantity. The solution provides the pressure gradient and wall shear stress waveforms as well as the instantaneous velocity profiles. Results show that the method can be used to study the blood flow characteristics in large arteries.  相似文献   

6.
The effect of blood velocity pulsations on bioheat transfer is studied. A simple model of a straight rigid blood vessel with unsteady periodic flow is considered. A numerical solution that considers the fully coupled Navier-Stokes and energy equations is used for the simulations. The influence of the pulsation rate on the temperature distribution and energy transport is studied for four typical vessel sizes: aorta, large arteries, terminal arterial branches, and arterioles. The results show that: the pulsating axial velocity produces a pulsating temperature distribution; reversal of flow occurs in the aorta and in large vessels, which produces significant time variation in the temperature profile. Change of the pulsation rate yields a change of the energy transport between the vessel wall and fluid for the large vessels. For the thermally important terminal arteries (0.04-1 mm), velocity pulsations have a small influence on temperature distribution and on the energy transport out of the vessels (8 percent for the Womersley number corresponding to a normal heart rate). Given that there is a small difference between the time-averaged unsteady heat flux due to a pulsating blood velocity and an assumed nonpulsating blood velocity, it is reasonable to assume a nonpulsating blood velocity for the purposes of estimating bioheat transfer.  相似文献   

7.
Fang J  Owens RG 《Biorheology》2006,43(5):637-660
In the present paper we use a new constitutive equation for whole human blood [R.G. Owens, A new microstructure-based constitutive model for human blood, J. Non-Newtonian Fluid Mech. (2006), to appear] to investigate the steady, oscillatory and pulsatile flow of blood in a straight, rigid walled tube at modest Womersley numbers. Comparisons are made with the experimental results of Thurston [Elastic effects in pulsatile blood flow, Microvasc. Res. 9 (1975), 145-157] for the pressure drop per unit length against volume flow rate and oscillatory flow rate amplitude. Agreement in all cases is very good. In the presentation of the numerical and experimental results we discuss the microstructural changes in the blood that account for its rheological behaviour in this simple class of flows. In this context, the concept of an apparent complex viscosity proves to be useful.  相似文献   

8.
D Liepsch  S Moravec  R Baumgart 《Biorheology》1992,29(5-6):563-580
Flow studies were done in an elastic true-to-scale silicone rubber model of an aortic arch to study further hemodynamic influences on atherosclerosis. The model was prepared from a cast of a young woman. A revised model technique was used. The model had a compliance similar to that of the human aortic arch. Velocity measurements were done in the model with a two component laser-Doppler-anemometer in steady and pulsatile flow using a calcium chloride solution with a viscosity of eta = 3.18 mPas and density of rho = 1.28 kg/m3 at 20 degrees C. The time average Reynolds numbers over a whole cycle in the ascending aorta was Re = 1350. The Womersley parameter for pulsatile flow was a = 20. The pulse wave velocity in the ascending aorta was about c = 5.4 m/sec. The secondary flow behavior was discussed for steady and pulsatile flow. Reverse flows were found, especially along the inner radius of the aortic arch in the descending aorta in steady and pulsatile flow and also in small areas of the ascending aorta and at the branches of the aortic arch. The formation of atherosclerotic plaques at preferred local flow regions is discussed.  相似文献   

9.
A three-dimensional model with simplified geometry for the branched coronary artery is presented. The bifurcation is defined by an analytical intersection of two cylindrical tubes lying on a sphere that represents an idealized heart surface. The model takes into account the repetitive variation of curvature and motion to which the vessel is subject during each cardiac cycle, and also includes the phase difference between arterial motion and blood flowrate, which may be nonzero for patients with pathologies such as aortic regurgitation. An arbitrary Lagrangian Eulerian (ALE) formulation of the unsteady, incompressible, three-dimensional Navier-Stokes equations is employed to solve for the flow field, and numerical simulations are performed using the spectral/hp element method. The results indicate that the combined effect of pulsatile inflow and dynamic geometry depends strongly on the aforementioned phase difference. Specifically, the main findings of this work show that the time-variation of flowrate ratio between the two branches is minimal (less than 5%) for the simulation with phase difference angle equal to 90 degrees, and maximal (51%) for 270 degrees. In two flow pulsatile simulation cases for fixed geometry and dynamic geometry with phase angle 270 degrees, there is a local minimum of the normalized wall shear rate amplitude in the vicinity of the bifurcation, while in other simulations a local maximum is observed.  相似文献   

10.
11.
Pressure drop and flow rate measurements in a rigid cast of a human aortic bifurcation under both steady and physiological pulsatile flow conditions are reported. Integral momentum and mechanical energy balances are used to calculate impedance, spatially averaged wall shear stress and viscous dissipation rate from the data. In the daughter branches, steady flow impedance is within 30% of the Poiseuille flow prediction, while pulsatile flow impedance is within a factor of 2 of fully developed, oscillatory, straight tube flow theory (Womersley theory). Estimates of wall shear stress are in accord with measurements obtained from velocity profiles. Mean pressure drop and viscous dissipation rate are elevated in pulsatile flow relative to steady flow at the mean flow rate, and the exponents of their Reynolds number dependence are in accord with available theory.  相似文献   

12.
Symmetrical 30-60% stenosis in a common carotid artery under unsteady flow condition for Newtonian and six non-Newtonian viscosity models are investigated numerically. Results show power-law model produces higher deviations, in terms of velocity and wall shear stress in comparison with other models while generalized power-law and modified-Casson models are more prone to Newtonian state. Comparing separation length of recirculation region at different critical points of cardiac cycle confirms the necessity of considering blood flow in unsteady mode. Increasing stenosis intensity causes flow patterns more disturbed downstream of the stenosis and WSS appear to develop remarkably at the stenosis throat.  相似文献   

13.
The three dimensionally curved aortic arch is modeled as a portion of a helical pipe. Pulsatile blood flow therein is calculated assuming helical symmetry and an experimentally measured pressure pulse. Appropriate values for the Womersley and Reynolds numbers are taken from allometric scaling relations for a variety of body masses. The flow structure is discussed with particular reference to the wall shear, which is believed to be important in the inhibition of atheroma. It is found that nonplanar curvature limits the severity of flow separation at the inner bend, and reduces spatial variation of wall shear.  相似文献   

14.
Haemodynamic perturbations such as flow recirculation zones play a key role in progression and development of renal artery stenosis, which typically originate at the aorta-renal bifurcation. The spiral nature of aortic blood flow, division of aortic blood flow in renal artery as well as the exercise conditions have been shown to alter the haemodynamics in both positive and negative ways. This study focuses on the combinative effects of spiral component of blood flow, renal-to-aorta flow ratio and the exercise conditions on the size and distribution of recirculation zones in renal branches using computational fluid dynamics technique. Our findings show that the recirculation length was longest when the renal-to-aorta flow ratio was smallest. Spiral flow and exercise conditions were found to be effective in reducing the recirculation length in particular in small renal-to-aorta flow ratios. These results support the hypothesis that in renal arteries with small flow ratios where a stenosis is already developed an artificially induced spiral flow within the aorta may decelerate the progression of stenosis and thereby help preserve kidney function.  相似文献   

15.
Transport of soluble material is analyzed for volume-cycle oscillatory flow in a tapered tube. The equations of motion are solved using a regular perturbation method for small taper angle and order unity amplitude over a range of the Womersley parameter. The transport equation is also solved by a regular perturbation method where uniform end concentrations and no wall flux are assumed. The time-averaged axial transport of solute is calculated for several tapered tubes. There is substantial modification of transport compared to the straight tube case and the results are interpreted with respect to pulmonary gas exchange.  相似文献   

16.
Right ventricular (RV) enlargement and pulmonary valve insufficiency (PI) are well-known, unavoidable long term sequelae encountered by patients who undergo tetralogy of Fallot (TOF) surgery. Despite their lifelong need for cardiac surveillance and occasional re-intervention, there is a paucity of numerical data characterizing blood flows in their pulmonary arteries (PA). Specifically, although PA regurgitation is well-known to be ubiquitously present in adult repaired TOF (rTOF) patients yet, there have been only limited numerical studies to fully characterize this process. The few studies available have utilized idealized, simplistic geometric models or overly simplistic boundary conditions that fail to account for flow reversals near the arterial walls as observed in in-vitro and MRI based in-vivo studies. The objective of this study was to establish and validate a numerical methodology of PA blood flow using actual patient specific geometry and flow measurements obtained using phase-contrast MRI, employing Womersley type velocity profiles that model flow reversals near walls. The results from computation were validated with measurements. For the normal subject, the time averaged right PA pressure from computation (13.8 mmHg) and experiment (14.6 mmHg) differed by 6%. The time-averaged main PA pressure from computation (16.5 mmHg) and experiment (16.3 mmHg) differed by 1%. The numerically computed left PA regurgitant fraction was 89% compared to measured 77.5%, while the same for the rTOF was 43% (computation), compared to 39.6% (measured). We conclude that the use of numerical computations using the Womersley boundary condition allows reliable modeling of the pathophysiology of PA flow in rTOF.  相似文献   

17.
Data are presented to compare fluid flow parameters for steady flow with those for time-varying flow in a simplified two branch model which simulates the region of the abdominal aorta near the celiac and superior mesenteric branches of the dog. Measurements in the model included laser doppler anemometry velocity profiles during steady flow, sinusoidal flow with a superimposed mean flow (referred to as simple oscillatory flow) and arterial pulsatile flow. Shear rate measurements were made by an electrochemical technique during steady flow. Flow visualization studies were done during steady and pulsatile flow. Fluid flow effects in the simplified model during steady flow showed many similarities to the results from previous steady flow studies in a canine aortic cast. Shear rates in the region of the proximal (first, or celiac) branch were independent of flow rates in the distal (second, or mesenteric) branch, but the shear pattern within the proximal branch changed significantly as flow in the proximal branch increased. Shear rates on the proximal flow divider (leading edge into the distal branch) depended primarily on the flow rate to the proximal branch, but not on flow to the distal branch. At certain daughter branch flow ratios (approximately 2:1, proximal to distal), flow separation was promoted at the outer wall of the second branch, but flow separation did not occur in the first branch. In contrast to the canine aortic case results, flow separation was never detected on the distal (mesenteric) flow divider of the simplified model. This observation reflects the subtle effects of geometry on flow since the mesenteric flow divider in the canine cast protrudes into the main flow whereas the distal flow divider in the simplified model does not. There were distinct differences in the flow phenomena between steady, simple oscillatory and arterial pulsatile flow. Peak shear rates during pulsatile flow were as much as 10--100 times greater than steady flow shear rates at comparable mean flow rates. Particularly noteworthy for the pulsatile flow with a Womersley parameter of sixteen were very blunt velocity profiles throughout systole, and the absence of flow separation or reversal in those regions of the model that exhibited flow separation during steady flow. The shape of the waveform influences the nature of the flow during time-varying flows. Future studies of fluid dynamics in model systems must consider the pulsatile nature of the flow if a true interpretation of arterial flow phenomena is to be made.  相似文献   

18.
Characterizing embryonic circulatory physiology requires accurate cardiac output and flow data. Despite recent applications of high-frequency ultrasound Doppler to the study of embryonic circulation, current Doppler analysis of volumetric flow is relatively crude. To improve Doppler derivation of volumetric flow, we sought a preliminary model of the spatial velocity profile in the mouse embryonic dorsal aorta using ultrasound biomicroscopy (UBM)-Doppler data. Embryonic hematocrit is 0.05-0.10 so rheologic properties must be insignificant. Low Reynolds numbers (<500) and Womersley parameters (<0.76) suggest laminar flow. UBM demonstrated a circular dorsal aortic cross section with no significant tapering. Low Dean numbers (<100) suggest the presence of minimal skewing of the spatial velocity profile. The inlet length allows for fully developed flow. There is no apparent aortic wall pulsatility. Extrapolation of prior studies to these vessel diameters (300-350 microm) and flow velocities (~50-200 mm/s) suggests parabolic spatial velocity profiles. Therefore, mouse embryonic dorsal aortic blood flow may correspond to Poiseuille flow in a straight rigid tube with parabolic spatial velocity profiles. As a first approximation, these results are an important step toward precise in utero ultrasound characterization of blood flow within the developing mammalian circulation.  相似文献   

19.
Understanding cardiac blood flow patterns has many applications in analysing haemodynamics and for the clinical assessment of heart function. In this study, numerical simulations of blood flow in a patient-specific anatomical model of the left ventricle (LV) and the aortic sinus are presented. The realistic 3D geometry of both LV and aortic sinus is extracted from the processing of magnetic resonance imaging (MRI). Furthermore, motion of inner walls of LV and aortic sinus is obtained from cine-MR image analysis and is used as a constraint to a numerical computational fluid dynamics (CFD) model based on the moving boundary approach. Arbitrary Lagrangian–Eulerian finite element method formulation is used for the numerical solution of the transient dynamic equations of the fluid domain. Simulation results include detailed flow characteristics such as velocity, pressure and wall shear stress for the whole domain. The aortic outflow is compared with data obtained by phase-contrast MRI. Good agreement was found between simulation results and these measurements.  相似文献   

20.
The image-based computational fluid dynamics (IB-CFD) technique, as the combination of medical images and the CFD method, is utilized in this research to analyze the left ventricle (LV) hemodynamics. The research primarily aims to propose a semi-automated technique utilizing some freely available and commercial software packages in order to simulate the LV hemodynamics using the IB-CFD technique. In this research, moreover, two different physiological time-resolved 2D models of a patient-specific LV with two different types of aortic and mitral valves, including the orifice-type valves and integrated with rigid leaflets, are adopted to visualize the process of developing intraventricular vortex formation and propagation. The blood flow pattern over the whole cardiac cycle of two models is also compared to investigate the effect of utilizing different valve types in the process of the intraventricular vortex formation. Numerical findings indicate that the model with integrated valves can predict more complex intraventricular flow that can match better the physiological flow pattern in comparison to the orifice-type model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号