首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of pH on chorismate mutase/prephenate dehydratase (chorismate pyruvate mutase/prephenate hydro-lyase (decarboxylating) EC 5.4.99.5/EC 4.2.1.51) from Escherichia coli K12 has been studied. While the maximum velocity of both activities is independent of pH, Km for chorismate or prephenate shows a complex pH dependence. Differences in mutase activity in acetate/phosphate/borate and citrate/phosphate/borate buffers were traced to inhibition by citrate. When a variety of analogues of citrate were tested as possible inhibitors of the enzyme, several were found to inhibit mutase and dehydratase activities to different extents, and by different mechanisms. Thus citrate competitively inhibits mutase activity, but inhibits dehydratase activity by either a non-competitive or an uncompetitive mechanism. Conversely, cis- and trans-aconitate competitively inhibit dehydratase activity, but are partially competitive inhibitors of mutase activity. The differential effects of these inhibitors on the two activities are consistent with the existence of two distinct active sites, but additionally suggest some degree of interconnection between them. The implications of these results for possible mechanisms of catalysis by chorismate mutase/prephenate dehydratase are discussed.  相似文献   

2.
The state of association of chorismate mutase/prephenate dehydratase (EC 5.4.99.5/ 4.2.1.51) from E. coli K12 has been studied using ultracentrifugal techniques. The smallest species inferred is a dimer of molecular weight 73,000–84,000, with a s20,w0 of 5.02 S at pH 8.2, I = 0.013 M. This species undergoes a concentration-dependent self-association which results in an equilibrium mixture of dimer, tetramer, and probably octamer, with a Mr of 164,000 at an enzyme concentration of 8.0 mg/ml under the same conditions. Addition of the feedback inhibitor phenylalanine (2 mm) or increase in ionic strength (I = 0.40 M), or a decrease in pH to 7.4 displaces this equilibrium toward the higher-molecular-weight forms of the enzyme, resulting in Mr values of 273,000, 254,000, and 257,000, respectively. This behavior partially explains the allosteric kinetics and inhibitor binding observed previously with this enzyme.  相似文献   

3.
The binding of phenylalanine to the allosteric site of chorismate mutase/prephenate dehydratase has been studied by steady-state dialysis. Under most of the experimental conditions examined positive co-operativity was observed for the binding of ligand up to 50% saturation and negative co-operativity above 50% saturation. In the presence of 0.4 M NaCl at pH 8.2 the co-operativity was positive at all phenylalanine concentrations and the maximal stoichiometry of 1 mol of phenylalanine/mol of enzyme subunit was observed. It was concluded that there is a single phenylalanine-binding site per subunit which is associated with the regulation of each of the mutase and dehydratase activities. The effects of enzyme concentration, NaCl, temperature and pH on the binding of phenylalanine have been investigated. Neither tyrosine nor tryptophan bound to the allosteric site of the enzyme. Enzyme that was desensitized to inhibition by phenylalanine following modification of three sulphydryl groups with 5,5'-dithio-bis (2-nitrobenzoic acid) did not bind phenylalanine. The mechanism of co-operativity, the binding of the enzyme to Sepharosyl-phenylalanine and the physiological significance of the inhibition of the enzyme by phenylalanine are discussed in terms of the results obtained.  相似文献   

4.
S-Carboxymethylated L-asparaginase was digested with trypsin and the resulting peptides were isolated by using gel filtration, ion exchange column chromatography and paper chromatography. Among the peptides thus isolated, 27 peptides were considered not to overlap and the sum of the amino acids from these 27 peptides is in good agreement with amino acid composition of the enzyme. The amino acid sequences of the peptides were determined by fragmentation with various enzymes and subtractive Edman degradation.  相似文献   

5.
The effects of phenylalanine, NaCl and pH on the conformation of chorismate mutase/prephenate dehydratase have been investigated, using measurements of far and near-ultraviolet circular dichroic spectra and ultraviolet difference spectra. At pH 8.2 in 20 mM Tris-Cl buffer the enzyme was found to contain 10-20% helix and 40-50% beta-structure. There was little or no change in these values on the addition of 1 mM phenylalanine (the allosteric effector) or 0.4 M NaCl or by decreasing the pH to 7.4. Both phenylalanine and NaCl caused significant changes in the conformation of the enzyme. The most prominent of these was the movement of a tryptophan residue into a more hydrophobic environment. There was also a slight perturbation of this tryptophan when the pH was decreased to 7.4. The conformational changes can explain sigmoidal kinetic behaviour observed previously [Gething et al. (1976) Eur. J. Biochem. 71, 317-325].  相似文献   

6.
The bifunctional enzyme chorismate mutase/prephenate dehydratase (EC 5.4.99.5/4.2.1.51), which is encoded by the pheA gene of Escherichia coli K-12, is subject to strong feedback inhibition by L-phenylalanine. Inhibition of the prephenate dehydratase activity is almost complete at concentrations of L-phenylalanine greater than 1 mM. The pheA gene was cloned, and the promoter region was modified to enable constitutive expression of the gene on plasmid pJN302. As a preliminary to sequence analysis, a small DNA insertion at codon 338 of the pheA gene unexpectedly resulted in a partial loss of prephenate dehydratase feedback inhibition. Four other mutations in the pheA gene were identified following nitrous acid treatment of pJN302 and selection of E. coli transformants that were resistant to the toxic phenylalanine analog beta-2-thienylalanine. Each of the four mutations was located within codons 304 to 310 of the pheA gene and generated either a substitution or an in-frame deletion. The mutations led to activation of both enzymatic activities at low phenylalanine concentrations, and three of the resulting enzyme variants displayed almost complete resistance to feedback inhibition of prephenate dehydratase by phenylalanine concentrations up to 200 mM. In all four cases the mutations mapped in a region of the enzyme that has not been implicated previously in feedback inhibition sensitivity of the enzyme.  相似文献   

7.
The bifunctional enzyme chorismate mutase/prephenate dehydratase (EC 5.4.99.5/4.2.1.51), which is encoded by the pheA gene of Escherichia coli K-12, is subject to strong feedback inhibition by L-phenylalanine. Inhibition of the prephenate dehydratase activity is almost complete at concentrations of L-phenylalanine greater than 1 mM. The pheA gene was cloned, and the promoter region was modified to enable constitutive expression of the gene on plasmid pJN302. As a preliminary to sequence analysis, a small DNA insertion at codon 338 of the pheA gene unexpectedly resulted in a partial loss of prephenate dehydratase feedback inhibition. Four other mutations in the pheA gene were identified following nitrous acid treatment of pJN302 and selection of E. coli transformants that were resistant to the toxic phenylalanine analog beta-2-thienylalanine. Each of the four mutations was located within codons 304 to 310 of the pheA gene and generated either a substitution or an in-frame deletion. The mutations led to activation of both enzymatic activities at low phenylalanine concentrations, and three of the resulting enzyme variants displayed almost complete resistance to feedback inhibition of prephenate dehydratase by phenylalanine concentrations up to 200 mM. In all four cases the mutations mapped in a region of the enzyme that has not been implicated previously in feedback inhibition sensitivity of the enzyme.  相似文献   

8.
The Escherichia coli bifunctional T-protein transforms chorismic acid to p-hydroxyphenylpyruvic acid in the l-tyrosine biosynthetic pathway. The 373 amino acid T-protein is a homodimer that exhibits chorismate mutase (CM) and prephenate dehydrogenase (PDH) activities, both of which are feedback-inhibited by tyrosine. Fifteen genes coding for the T-protein and various fragments thereof were constructed and successfully expressed in order to characterize the CM, PDH and regulatory domains. Residues 1-88 constituted a functional CM domain, which was also dimeric. Both the PDH and the feedback-inhibition activities were localized in residues 94-373, but could not be separated into discrete domains. The activities of cloned CM and PDH domains were comparatively low, suggesting some cooperative interactions in the native state. Activity data further indicate that the PDH domain, in which NAD, prephenate and tyrosine binding sites were present, was more unstable than the CM domain.  相似文献   

9.
Three classes of mutant strains of Escherichia coli K12 defective in pheA, the gene coding for chorismate mutase/prephenate dehydratase, have been isolated: (1) those lacking prephenate dehydratase activity, (2) those lacking chorismate mutase activity, and (3) those lacking both activities. Chorismate mutase/prephenate dehydratase from the second class of mutants was less sensitive to inhibition by phenylalanine than wild-type enzyme and, along with the defective enzyme from the third class of mutants, could not be purified by affinity chromatography on Sepharosyl-phenylalanine. Pure chorismate mutase/prephenate dehydratase protein was prepared from two strains belonging to the first class. The chorismate mutase activity of these enzymes is kinetically similar to that of the wild-type enzyme except for a two- to threefold increase in both the Ka for chorismate and the Kis for inhibition by prephenate. In both cases only one change in the tryptic fingerprint was detected, resulting from a substitution of the threonine residue in the peptide Gln·Asn·Phe·Thr·Arg. This suggests that this residue is catalytically or structurally essential for the dehydratase activity.  相似文献   

10.
11.
12.
A selective inhibitor of Escherichia coli prephenate dehydratase.   总被引:3,自引:0,他引:3  
To identify selective prephenate dehydratase (PDT) inhibitors, a series of substituted biphenic acid derivatives was synthesized using the Ullmann reaction. Screening experiments identified 18 as a promising new PDT inhibitor.  相似文献   

13.
Fragments of the tyrA gene of Escherichia coli, when suitably engineered, can express either the chorismate mutase activity or the prephenate dehydrogenase activity without the other.  相似文献   

14.
G S Hudson  V Wong  B E Davidson 《Biochemistry》1984,23(25):6240-6249
The bifunctional enzyme involved in tyrosine biosynthesis, chorismate mutase/prephenate dehydrogenase, has been isolated from extracts of a regulatory mutant of Escherichia coli K12. The pure enzyme is a homodimer of total molecular weight 78 000 and displays Michaelis-Menten kinetics for both activities. Fingerprinting and amino acid sequencing of tryptic and thermolytic peptides of the S-[14C]carboxymethylated enzyme allowed the identification of three unique cysteine-containing sequences per subunit. Chemical modification of the native enzyme with 5,5'-dithiobis(2-nitrobenzoate) or iodoacetamide showed that one sulfhydryl group per subunit was particularly reactive, and the integrity of this group was essential for both enzymic activities. This work supports previous proposals for a close spatial relationship between the active sites.  相似文献   

15.
16.
In order to get insights into the feedback regulation by tyrosine of the Escherichia coli chorismate mutase/prephenate dehydrogenase (CM/PDH), which is encoded by the tyrA gene, feedback-inhibition-resistant (fbr) mutants were generated by error-prone PCR. The tyrA(fbr) mutants were selected by virtue of their resistance toward m-fluoro-D,L-tyrosine, and seven representatives were characterized on the biochemical as well as on the molecular level. The PDH activities of the purified His6-tagged TyrA proteins exhibited up to 35% of the enzyme activity of TyrA(WT), but tyrosine did not inhibit the mutant PDH activities. On the other hand, CM activities of the TyrA(fbr) mutants were similar to those of the TyrA(WT) protein. Analyses of the DNA sequences of the tyrA genes revealed that tyrA(fbr) contained amino acid substitutions either at Tyr263 or at residues 354 to 357, indicating that these two sites are involved in the feedback inhibition by tyrosine.  相似文献   

17.
18.
Chorismate mutase and prephenate dehydratase from Alcaligenes autophus H16 were purified 470-fold with a yield of 24%. During the course of purification, including chromatography on diethylaminoethyl (DEAE)-cellulose, phenylalanine-substituted Sepharose, Sephadex G-200 and hydrogyapatite, both enzymes appeared in association. The ratio of their specific activities remained almost constant. The molecular weight of chorismate mutase-prephenast dehydratase varied from 144,000 to 187,000 due to the three different determination methods used. Treatment of electrophoretically homogeneous mutase-dehydratase with sodium dodecyl sulfate dissociated the enzyme into a single component of molecular weight 47,000, indicating a tetramer of identical subunits. The isoelectric point of the bifunctional enzyme was 5.8. Prephenate dehydrogenase was not associated with other enzyme activities; it was separated from mutasedehydratase by DEAE-cellulose chromatgraphy. Chromatography on DEAE Sephadex, Sephadex G-200, and hydroxyapatite resulted in a 740-fold purification with a yield of 10%. The molecular weight of the enzyme was 55,000 as determined by sucrose gradient centrifugation and 65,000 as determined by gel filtration or electrophoresis. Its isoelectric point was pH 6.6. In the overall conversion of chorismate to phenylpyruvate, free prephenate was formed which accumulated in the reaction mixture. The dissociation of prephenate allowed prephenate dehydrogenase to compete with prephenate dehydratase for the substrate.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号