首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triggering tumor necrosis factor receptor-1 (TNFR1) induces apoptosis in various cell lines. In contrast, stimulation of TNFR1 in L929sA leads to necrosis. Inhibition of HSP90, a chaperone for many kinases, by geldanamycin or radicicol shifted the response of L929sA cells to TNF from necrosis to apoptosis. This shift was blocked by CrmA but not by BCL-2 overexpression, suggesting that it occurred through activation of procaspase-8. Geldanamycin pretreatment led to a proteasome-dependent decrease in the levels of several TNFR1-interacting proteins including the kinases receptor-interacting protein, inhibitor of kappa B kinase-alpha, inhibitor of kappa B kinase-beta, and to a lesser extent the adaptors NF-kappaB essential modulator and tumor necrosis factor receptor-associated factor 2. As a consequence, NF-kappa B, p38MAPK, and JNK activation were abolished. No significant decrease in the levels of mitogen-activated protein kinases, adaptor proteins TNFR-associated death domain and Fas-associated death domain, or caspase-3, -8, and -9 could be detected. These results suggest that HSP90 client proteins play a crucial role in necrotic signaling. We conclude that inhibition of HSP90 may alter the composition of the TNFR1 complex, favoring the caspase-8-dependent apoptotic pathway. In the absence of geldanamycin, certain HSP90 client proteins may be preferentially recruited to the TNFR1 complex, promoting necrosis. Thus, the availability of proteins such as receptor-interacting protein, Fas-associated death domain, and caspase-8 can determine whether TNFR1 activation will lead to apoptosis or to necrosis.  相似文献   

2.
In HeLa cells, induction of apoptosis and nuclear factor kappaB (NF-kappaB) activation initiated by TRAIL/Apo2L or the agonistic Apo1/Fas-specific monoclonal antibody anti-APO-1 require the presence of cycloheximide (CHX). Inhibition of caspases prevented TRAIL/anti-APO-1-induced apoptosis, but not NF-kappaB activation, indicating that both pathways bifurcate upstream of the receptor-proximal caspase-8. Under these conditions, TRAIL and anti-APO-1 up-regulated the expression of the known NF-kappaB targets interleukin-6, cellular inhibitor of apoptosis 2 (cIAP2), and TRAF1 (TRAF, tumor necrosis factor receptor-associate factor). In the presence of CHX, the stable overexpression of a deletion mutant of the Fas-associated death domain molecule FADD comprising solely the death domain of the molecule but lacking its death effector domain (FADD-(80-208)) led to the same response pattern as TRAIL or anti-APO-1 treatment. Moreover, the ability of death receptors to induce NF-kappaB activation was drastically reduced in a FADD-deficient Jurkat cell line. TRAIL-, anti-APO-1-, and FADD-(80-208)-initiated gene induction was blocked by a dominant-negative mutant of TRAF2 or the p38 kinase inhibitor SB203580, similar to tumor necrosis factor receptor-1-induced NF-kappaB activation. CHX treatment rapidly down-regulated endogenous cFLIP protein levels, and overexpression of cellular FLICE inhibitory protein (cFLIP) inhibited death receptor-induced NF-kappaB activation. Thus, a novel functional role of cFLIP as a negative regulator of gene induction by death receptors became apparent.  相似文献   

3.
Interferons enhance the cellular antiviral response by inducing expression of protective proteins. Many of these proteins are activated by dsRNA, a typical by-product of viral infection. Here we show that type-I and type-II interferons can sensitize cells to dsRNA-induced cytotoxicity. In caspase-8- or FADD-deficient Jurkat cells dsRNA induces necrosis, instead of apoptosis. In L929sA cells dsRNA-induced necrosis involves high reactive oxygen species production. The antioxidant butylated hydroxyanisole protects cells from necrosis, but shifts the response to apoptosis. Treatment with the caspase inhibitor benzyloxycarbonyl-Val-Ala-DL-Asp(OMe)-fluoromethylketone or overexpression of Bcl-2 prevent this shift and promote necrosis. Our results suggest that a single stimulus can initiate different death-signaling pathways, leading to either necrotic or apoptotic cell death. Inhibition of key events in these signaling pathways, such as caspase activation, cytochrome c release or mitochondrial reactive oxygen species production, tips the balance between necrosis and apoptosis, leading to dominance of one of these death programs.  相似文献   

4.
Activation of NF-kappaB by FADD, Casper, and caspase-8   总被引:14,自引:0,他引:14  
Fas-associated death domain protein (FADD), caspase-8-related protein (Casper), and caspase-8 are components of the tumor necrosis factor receptor type 1 (TNF-R1) and Fas signaling complexes that are involved in TNF-R1- and Fas-induced apoptosis. Here we show that overexpression of FADD and Casper potently activates NF-kappaB. In the presence of caspase inhibitors, overexpression of caspase-8 also activates NF-kappaB. A caspase-inactive point mutant, caspase-8(C360S), activates NF-kappaB as potently as wild-type caspase-8, suggesting that caspase-8-induced apoptosis and NF-kappaB activation are uncoupled. NF-kappaB activation by FADD and Casper is inhibited by the caspase-specific inhibitors crmA and BD-fmk, suggesting that FADD- and Casper-induced NF-kappaB activation is mediated by caspase-8. FADD, Casper, and caspase-8-induced NF-kappaB activation are inhibited by dominant negative mutants of TRAF2, NIK, IkappaB kinase alpha, and IkappaB kinase beta. A dominant negative mutant of RIP inhibits FADD- and caspase-8-induced but not Casper-induced NF-kappaB activation. A mutant of Casper and the caspase-specific inhibitors crmA and BD-fmk partially inhibit TNF-R1-, TRADD, and TNF-induced NF-kappaB activation, suggesting that FADD, Casper, and caspase-8 function downstream of TRADD and contribute to TNF-R1-induced NF-kappaB activation. Moreover, activation of caspase-8 results in proteolytic processing of NIK, which is inhibited by crmA. When overexpressed, the processed fragments of NIK do not activate NF-kappaB, and the processed C-terminal fragment inhibits TNF-R1-induced NF-kappaB activation. These data indicate that FADD, Casper, and pro-caspase-8 are parts of the TNF-R1-induced NF-kappaB activation pathways, whereas activated caspase-8 can negatively regulate TNF-R1-induced NF-kappaB activation by proteolytically inactivating NIK.  相似文献   

5.
Death receptors are a subfamily of the tumor necrosis factor (TNF) receptor subfamily. They are characterized by a death domain (DD) motif within their intracellular domain, which is required for the induction of apoptosis. Fas-associated death domain protein (FADD) is reported to be the universal adaptor used by death receptors to recruit and activate the initiator caspase-8. CD95, TNF-related apoptosis-inducing ligand (TRAIL-R1), and TRAIL-R2 bind FADD directly, whereas recruitment to TNF-R1 is indirect through another adaptor TNF receptor-associated death domain protein (TRADD). TRADD also binds two other adaptors receptor-interacting protein (RIP) and TNF-receptor-associated factor 2 (TRAF2), which are required for TNF-induced NF-kappaB and c-Jun N-terminal kinase activation, respectively. Analysis of the native TNF signaling complex revealed the recruitment of RIP, TRADD, and TRAF2 but not FADD or caspase-8. TNF failed to induce apoptosis in FADD- and caspase-8-deficient Jurkat cells, indicating that these apoptotic mediators were required for TNF-induced apoptosis. In an in vitro binding assay, the intracellular domain of TNF-R1 bound TRADD, RIP, and TRAF2 but did not bind FADD or caspase-8. Under the same conditions, the intracellular domain of both CD95 and TRAIL-R2 bound both FADD and caspase-8. Taken together these results suggest that apoptosis signaling by TNF is distinct from that induced by CD95 and TRAIL. Although caspase-8 and FADD are obligatory for TNF-mediated apoptosis, they are not recruited to a TNF-induced membrane-bound receptor signaling complex as occurs during CD95 or TRAIL signaling, but instead must be activated elsewhere within the cell.  相似文献   

6.
The tumor necrosis factor receptor, p60 (TNF-R1), transduces death signals via the association of its cytoplasmic domain with several intracellular proteins. By screening a mammalian cDNA library using the yeast two-hybrid cloning technique, we isolated a ubiquitin-homology protein, DAP-1, which specifically interacts with the cytoplasmic death domain of TNF-R1. Sequence analysis reveals that DAP-1 shares striking sequence homology with the yeast SMT3 protein that is essential for the maintenance of chromosome integrity during mitosis (Meluh, P. B., and Koshland, D. (1995) Mol. Biol. Cell 6, 793-807). DAP-1 is nearly identical to PIC1, a protein that interacts with the PML tumor suppressor implicated in acute promyelocytic leukemia (Boddy, M. N., Howe, K., Etkin, L. D., Solomon, E., and Freemont, P. S. (1996) Oncogene 13, 971-982), and the sentrin protein, which associates with the Fas death receptor (Okura, T., Gong, L., Kamitani, T., Wada, T., Okura, I., Wei, C. F., Chang, H. M., and Yeh, E. T. (1996) J. Immunol. 157, 4277-4281). The in vivo interaction between DAP-1 and TNF-R1 was further confirmed in mammalian cells. In transient transfection assays, overexpression of DAP-1 suppresses NF-kappaB/Rel activity in 293T cells, a human kidney embryonic carcinoma cell line. Overexpression of either DAP-1 or sentrin causes apoptosis of TNF-sensitive L929 fibroblast cell line, as well as TNF-resistant osteosarcoma cell line, U2OS. Furthermore, the dominant negative Fas-associated death domain protein (FADD) protein blocks the cell death induced by either DAP-1 or FADD. Collectively, these observations highly suggest a role for DAP-1 in mediating TNF-induced cell death signaling pathways, presumably through the recruitment of FADD death effector.  相似文献   

7.
Metaxin is required for tumor necrosis factor-induced cell death   总被引:4,自引:1,他引:3       下载免费PDF全文
We used retrovirus insertion-mediated random mutagenesis and tumor necrosis factor (TNF) selection to generate TNF-resistant lines from L929 cells. The metaxin gene, which encodes a protein located on the outer membrane of mitochondria, was identified to be the gene disrupted in one of the resistant lines. The requirement of metaxin in TNF-induced cell death of L929 was confirmed by the restoration of TNF sensitivity after ectopic reconstitution of metaxin expression. Analysis of the cell death induced by other stimuli revealed that metaxin deficiency-mediated death resistance was selective to certain stimuli. Studies using deletion mutants of metaxin showed that mitochondrial association of metaxin is required for the function of metaxin. Over-expression of truncated metaxin lacking the mitochondria anchoring sequence mimicked metaxin deficiency in wild-type cells. Interfering with metaxin prevented TNF-induced necrotic cell death in L929 cells and apoptosis in MCF-7 cells. Our work has thus defined a novel component in the death pathway used by TNF and some other death stimuli.  相似文献   

8.
Agonist antibodies (Ab) to the two TNF receptors, TNF-R1 (55 kDa) and TNF-R2 (75 kDa), have been shown to signal many of the distinct functions induced by TNF-alpha. We have found that anti-TNF-R1, but not anti-TNF-R2, Ab trigger antiviral activity in human hepatoma Hep-G2 cells and enhance the antiviral activity of IFN-gamma in human lung fibroblast A549 cells. Likewise, anti-human-TNF-R1 Ab had antiviral enhancing activity on murine L929 cells engineered to express human TNF-R1. However, L929 cells that express human TNF-R1 lacking most of the intracellular domain fail to respond to anti-human-TNF-R1 Ab. This demonstrates that the intracellular domain of TNF-R1 is necessary to generate antiviral activity. TNF-R1 but not TNF-R2 also signals killing of virus-infected cells by TNF-alpha. Thus, all the known antiviral activities of TNF-alpha are mediated through TNF-R1.  相似文献   

9.
The generation of mice strains deficient for select members of the signaling complex of the 55-kDa tumor necrosis factor receptor (TNF-R55) has allowed the assignment of specific cellular responses to distinct TNF-R55-associated proteins. In particular, the TNF-R55-associated protein FADD seems to be responsible for recruitment and subsequent activation of caspase 8. In this report we demonstrate the requirement of FADD for TNF-induced activation of endosomal acid sphingomyelinase (A-SMase). In primary embryonic fibroblasts from FADD-deficient mice the activation of A-SMase by TNF-R55 ligation was almost completely impaired. This effect is specific in that other TNF responses like activation of NF-kappaB or neutral (N-)SMase remained unaffected. In addition, interleukin-1-induced activation of A-SMase in FADD-deficient cells was unaltered. In FADD-/- embryonic fibroblasts reconstituted by transfection with a FADD cDNA expression construct, the TNF responsiveness of A-SMase was restored. The results of this study suggest that FADD, in addition to its role in triggering a proapoptotic caspase cascade, is required for TNF-induced activation of A-SMase.  相似文献   

10.
We previously reported that docosahexaenoic acid (DHA) attenuated tumor necrosis factor (TNF)-induced apoptosis in human monocytic U937 cells (J. Nutr. 130: 1095-1101, 2000). In the present study, we examined the effects of DHA and other polyunsaturated fatty acids (PUFA) on TNF-induced necrosis, another mode of cell death, using L929 murine fibrosarcoma cells. After preincubation with PUFA conjugated with BSA for 24 h, cells were treated with TNF or TNF+actinomycin D (Act D). Preincubation of cells with DHA enriched this polyunsaturated acid in the phospholipids and attenuated cell death induced by either TNF or TNF+Act D. When cells were treated with TNF alone, DNA laddering was not detected, and cells were coincidently stained with both annexin V-FITC and propidium iodide, indicating that the death mode was necrotic. TNF+Act D predominantly induced necrosis, although concurrent apoptotic cell death was also observed in this case. Preincubation with oleic acid, linoleic acid or 20:3(n-3) did not affect TNF-induced necrosis. Conversely, supplementation with n-3 docosapentaenoic acid (DPAn-3) or eicosapentaenoic acid (EPA) reduced necrotic cell death, but to a lesser extent in comparison with DHA. Unlike the case of U937 cell apoptosis, arachidonic acid (AA) significantly attenuated L929 cell necrosis, and 20:3(n-6) or 22:4(n-6) showed similar or less activity, respectively. Statistical evaluation indicated that the order of effective PUFA activity was DHA>DPAn-3> or =EPA>AA approximately 20:3(n-6)> or =22:4(n-6). One step desaturation, C2 elongation or C2 cleavage within the n-6 or n-3 fatty acid group was probably very active in L929 cells, because AA, synthesized from 20:3(n-6) or 22:4(n-6), and C22 fatty acids, synthesized from AA or EPA, were preferentially retained in cellular phospholipids. These observations suggested that attenuation of TNF-induced necrosis by the supplementation of various C20 or C22 polyunsaturated fatty acids is mainly attributable to the enrichment of three kinds of polyunsaturated fatty acids, i.e., DHA, DPAn-3 or AA, in phospholipids. Among these fatty acids, DHA was the most effective in the reduction of L929 necrosis as observed in the case of U937 apoptosis. This suggests that DHA-enriched membranes can protect cell against TNF irrespective of death modes and that membranous DHA may abrogate the death signaling common to necrosis and apoptosis.  相似文献   

11.
12.
Death ligands not only induce apoptosis but can also trigger necrosis with distinct biochemical and morphological features. We recently showed that in L929 cells CD95 ligation induces apoptosis, whereas TNF elicits necrosis. Treatment with anti-CD95 resulted in typical apoptosis characterized by caspase activation and DNA fragmentation. These events were barely induced by TNF, although TNF triggered cell death to a similar extent as CD95. Surprisingly, whereas the caspase inhibitor zVAD prevented CD95-mediated apoptosis, it potentiated TNF-induced necrosis. Cotreatment with TNF and zVAD was characterized by ATP depletion and accelerated necrosis. To investigate the mechanisms underlying TNF-induced cell death and its potentiation by zVAD, we examined the role of poly(ADP-ribose)polymerase-1 (PARP-1). TNF but not CD95 mediated PARP activation, whereas a PARP inhibitor suppressed TNF-induced necrosis and the sensitizing effect of zVAD. In addition, fibroblasts expressing a noncleavable PARP-1 mutant were more sensitive to TNF than wild-type cells. Our results indicate that TNF induces PARP activation leading to ATP depletion and subsequent necrosis. In contrast, in CD95-mediated apoptosis caspases cause PARP-1 cleavage and thereby maintain ATP levels. Because ATP is required for apoptosis, we suggest that PARP-1 cleavage functions as a molecular switch between apoptotic and necrotic modes of death receptor-induced cell death.  相似文献   

13.
Two general pathways for cell death have been defined, apoptosis and necrosis. Previous studies in Jurkat cells have demonstrated that the Fas-associated death domain (FADD) is required for Fas-mediated signaling to apoptosis and necrosis. Here we developed L929rTA cell lines that allow Tet-on inducible expression and FK506-binding protein (FKBP)-mediated dimerization of FADD, FADD-death effector domain (FADD-DED), or FADD-death domain (FADD-DD). We show that expression and dimerization of FADD leads to necrosis. However, pretreatment of the cells with the Hsp90 inhibitor geldanamycin, which leads to proteasome-mediated degradation of receptor interacting protein 1 (RIP1), reverts FKBP-FADD-induced necrosis to apoptosis. Expression and dimerization of FADD-DD mediates necrotic cell death. We found that FADD-DD is able to bind RIP1, another protein necessary for Fas-mediated necrosis. Expression and dimerization of FADD-DED initiates apoptosis. Remarkably, in the presence of caspase inhibitors, FADD-DED mediates necrotic cell death. Coimmunoprecipitation studies revealed that FADD-DED in the absence procaspase-8 C/A is also capable of recruiting RIP1. However, when procaspase-8 C/A and RIP1 are expressed simultaneously, FADD-DED preferentially recruits procaspase-8 C/A.  相似文献   

14.
We describe the cloning and characterization of tumor necrosis factor receptor (TNF-R)-associated ubiquitous scaffolding and signaling protein (TRUSS), a novel TNF-R1-interacting protein of 90.7 kDa. TRUSS mRNA was ubiquitously expressed in mouse tissues but was enriched in heart, liver, and testis. Co-immunoprecipitation experiments showed that TRUSS was constitutively associated with unligated TNF-R1 and that the complex was relatively insensitive to stimulation with TNF-alpha. Deletion mutagenesis of TNF-R1 indicated that TRUSS interacts with both the membrane-proximal region and the death domain of TNF-R1. In addition, the N-terminal region of TRUSS (residues 1 to 440) contains sequences that permit association with the cytoplasmic domain of TNF-R1. Transient overexpression of TRUSS activated NF-kappaB and increased NF-kappaB activation in response to ligation of TNF-R1. In contrast, a COOH-terminal-deletion mutant of TRUSS (TRUSS(1-723)) was found to inhibit NF-kappaB activation by TNF-alpha. Co-precipitation and co-immunoprecipitation assays revealed that TRUSS can interact with TRADD, TRAF2, and components of the IKK complex. These findings suggest that TRUSS may serve as a scaffolding protein that interacts with TNF-R1 signaling proteins and may link TNF-R1 to the activation of IKK.  相似文献   

15.
In L929sAhFas cells, tumor necrosis factor (TNF) leads to necrotic cell death, whereas agonistic anti-Fas antibodies elicit apoptotic cell death. Apoptosis, but not necrosis, is correlated with a rapid externalization of phosphatidylserine and the appearance of a hypoploid population. During necrosis no cytosolic and organelle-associated active caspase-3 and -7 fragments are detectable. The necrotic process does not involve proteolytic generation of truncated Bid; moreover, no mitochondrial release of cytochrome c is observed. Bcl-2 overexpression slows down the onset of necrotic cell death. In the case of apoptosis, active caspases are released to the culture supernatant, coinciding with the release of lactate dehydrogenase. Following necrosis, mainly unprocessed forms of caspases are released. Both TNF-induced necrosis and necrosis induced by anti-Fas in the presence of the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone are prevented by the serine protease inhibitor N-tosyl-L-phenylalanine chloromethylketone and the oxygen radical scavenger butylated hydroxyanisole, while Fas-induced apoptosis is not affected.  相似文献   

16.
Tumor necrosis factor (TNF) contributes to insulin resistance by binding to the 55kDa TNF receptor (TNF-R55), resulting in serine phosphorylation of proteins such as insulin receptor (IR) substrate (IRS)-1, followed by reduced tyrosine phosphorylation of IRS-1 through the IR and, thereby, diminished IR signal transduction. Through independent receptor domains, TNF-R55 activates a neutral (N-SMase) and an acid sphingomyelinase (A-SMase), that both generate the sphingolipid ceramide. Multiple candidate kinases have been identified that serine-phosphorylate IRS-1 in response to TNF or ceramide. However, due to the fact that the receptor domain of TNF-R55 mediating inhibition of the IR has not been mapped, it is currently unknown whether TNF exerts these effects with participation of N-SMase or A-SMase. Here, we identify the death domain of TNF-R55 as responsible for the inhibitory effects of TNF on tyrosine phosphorylation of IRS-1, implicating ceramide generated by A-SMase as a downstream mediator of inhibition of IR signaling.  相似文献   

17.
Tumor necrosis factor (TNF)-induced cell death in the fibrosarcoma cell line L929 occurs independently of caspase activation and cytochrome c release. However, it is dependent on mitochondria and is characterized by increased production of reactive oxygen intermediates that are essential to the death process. To identify signaling molecules involved in this TNF-induced, reactive oxygen intermediate-dependent cell death pathway, we performed a comparative study by two-dimensional gel electrophoresis of phosphoproteins from a mitochondria-enriched fraction derived from TNF-treated and control cells. TNF induced rapid and persistent phosphorylation of the phosphorylation-responsive regulator of the microtubule (MT) dynamics, oncoprotein 18 (Op18). By using induced overexpression of wild type Op18 and phosphorylation site-deficient mutants S25A/S38A and S16A/S63A in L929 cells, we show that TNF-induced phosphorylation on each of the four Ser residues of Op18 promotes cell death and that Ser(16) and Ser(63) are the primary sites. This hyperphosphorylation of Op18 is known to completely turn off its MT-destabilizing activity. As a result, TNF treatment of L929 cells induced elongated and extremely tangled microtubules. These TNF-induced changes to the MT network were also observed in cells overexpressing wild type Op18 and, to a lesser extent, in cells overexpressing the S25A/S38A mutant. No changes in the MT network were observed upon TNF treatment of cells overexpressing the S16A/S63A mutant, and these cells were desensitized to TNF-induced cell death. These findings indicate that TNF-induced MT stabilization is mediated by hyperphosphorylation of Op18 and that this promotes cell death. The data suggest that Op18 and the MT network play a functional role in transduction of the cell death signal to the mitochondria.  相似文献   

18.
Protection of cells from necrosis would be important for many medical applications. Here, we show protein transduction domain (PTD)-FNK therapeutics based on protein transduction to prevent necrosis and acute hepatic injury with zonal death induced by carbon tetrachloride (CCl4). PTD-FNK is a fusion protein comprising the HIV/Tat PTD and FNK, a gain-of-function mutant of anti-apoptotic Bcl-x(L). PTD-FNK protected hepatoma HepG2 from necrotic death induced by CCl4, and additionally, increased the apoptotic population among cells treated with CCl4. A concomitant treatment with a pan-caspase inhibitor Z-VAD-FMK (N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone), which alone could not prevent the necrosis, protected these cells from the apoptosis. When pre-injected intraperitoneally, PTD-FNK markedly reduced zonal liver necrosis caused by CCl4. Moreover, injection of PTD-FNK accompanied by Z-VAD-FMK suppressed necrotic injury even after CCl4 administration. These results suggest that PTD-FNK has great potential for clinical applications to prevent cell death, whether from apoptosis or necrosis, and organ failure.  相似文献   

19.
To investigate the signaling mechanism of the 55-kDa tumor necrosis factor (TNF) receptor a functional transfection based assay was developed. The human 55-kDa TNF receptor, stably expressed in mouse L929 cells, was demonstrated to be activated specifically by agonist antibodies and to initiate a signal for cellular cytotoxicity. A deletion mutant of the human TNF receptor lacking most of the cytoplasmic domain was found to be completely defective in generating the signal for cytotoxicity. Additionally, expression of the truncated receptor substantially suppressed signaling by endogenous mouse TNF receptors in response to TNF, but not in response to specific anti-murine TNF receptor antibodies. These results suggest that aggregation of 55-kDa TNF receptor intracellular domains, which are not associated in the absence of ligand, is an important component of the signal for cellular toxicity. This work also provides an example of a dominant negative mutation in a transmembrane receptor that lacks a tyrosine kinase domain, and suggests a more general utility of dominant negative mutations in the investigation of cytokine receptor function.  相似文献   

20.
Tumor necrosis factor (TNF) alpha is a cytokine capable of inducing caspase-dependent (apoptotic) cell death in some cells and caspase-independent (necrosis-like) cell death in others. Here, using a mutagenesis screen for genes critical in TNF-induced death in L929 cells, we have found that H-ferritin deficiency is responsible for TNF resistance in a mutant line and that, upon treatment with TNF, this line fails to elevate levels of labile iron pool (LIP), critical for TNF-induced reactive oxygen species (ROS) production and ROS-dependent cell death. Since we found that TNF-induced LIP in L929 cells is primarily furnished by intracellular storage iron, the lesser induction of LIP in H-ferritin-deficient cells results from a reduction of intracellular iron storage caused by less H-ferritin. Different from some other cell lines, the H-ferritin gene in L929 cells is not TNF inducible; however, when H-ferritin is expressed in L929 cells under a TNF-inducible system, the TNF-induced LIP and subsequent ROS production and cell death were all prevented. Thus, LIP is a common denominator of ferritin both in the enhancement of cell death by basal steady-state H-ferritin and in protection against cell death by induced H-ferritin, thereby acting as a key determinant of TNF-induced cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号