首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We visualized the translocation of myristoylated alanine-rich protein kinase C substrate (MARCKS) in living Chinese hamster ovary-K1 cells using MARCKS tagged to green fluorescent protein (MARCKS-GFP). MARCKS-GFP was rapidly translocated from the plasma membrane to the cytoplasm after the treatment with phorbol ester, which translocates protein kinase C (PKC) to the plasma membrane. In contrast, PKC activation by hydrogen peroxide, which was not accompanied by PKC translocation, did not alter the intracellular localization of MARCKS-GFP. Non-myristoylated mutant of MARCKS-GFP was distributed throughout the cytoplasm, including the nucleoplasm, and was not translocated by phorbol ester or by hydrogen peroxide. Phosphorylation of wild-type MARCKS-GFP was observed in cells treated with phorbol ester but not with hydrogen peroxide, whereas non-myristoylated mutant of MARCKS-GFP was phosphorylated in cells treated with hydrogen peroxide but not with phorbol ester. Phosphorylation of both MARCKS-GFPs reduced the amount of F-actin. These findings revealed that PKC targeting to the plasma membrane is required for the phosphorylation of membrane-associated MARCKS and that a mutant MARCKS existing in the cytoplasm can be phosphorylated by PKC activated in the cytoplasm without translocation but not by PKC targeted to the membrane.  相似文献   

2.
Phosphatidylinositol phosphates (PIPs) are known to regulate epithelial sodium channels (ENaC). Lipid binding assays and coimmunoprecipitation showed that the amino-terminal domain of the β- and γ-subunits of Xenopus ENaC can directly bind to phosphatidylinositol 4,5-bisphosphate (PIP(2)), phosphatidylinositol 3,4,5-trisphosphate (PIP(3)), and phosphatidic acid (PA). Similar assays demonstrated various PIPs can bind strongly to a native myristoylated alanine-rich C-kinase substrate (MARCKS), but weakly or not at all to a mutant form of MARCKS. Confocal microscopy demonstrated colocalization between MARCKS and PIP(2). Confocal microscopy also showed that MARCKS redistributes from the apical membrane to the cytoplasm after PMA-induced MARCKS phosphorylation or ionomycin-induced intracellular calcium increases. Fluorescence resonance energy transfer studies revealed ENaC and MARCKS in close proximity in 2F3 cells when PKC activity and intracellular calcium concentrations are low. Transepithelial current measurements from Xenopus 2F3 cells treated with PMA and single-channel patch-clamp studies of Xenopus 2F3 cells treated with a PKC inhibitor altered Xenopus ENaC activity, which suggest an essential role for MARCKS in the regulation of Xenopus ENaC activity.  相似文献   

3.
MARCKS (myristoylated alanine-rich C-kinase substrate) is known to interact with calmodulin, actin filaments, and anionic phospholipids at a central basic domain which is also the site of phosphorylation by protein kinase C (PKC). In the present study, cytochalasin D (CD) and calmodulin antagonists were used to examine the influence of F-actin and calmodulin on membrane interaction of MARCKS in C6 glioma cells. CD treatment for 1 h disrupted F-actin filaments, increased membrane bound immunoreactive MARCKS (from 51% to 62% of total), yet markedly enhanced the amount of MARCKS translocated to the cytosolic fraction in response to the phorbol ester 4β-12-O-tetradecanoylphorbol 13-acetate. In contrast, CD treatment had no effect on phorbol ester-stimulated phosphorylation of MARCKS or on translocation of PKCα to the membrane fraction. Staurosporine also increased membrane association of MARCKS in a PKC-independent manner, as no change in MARCKS phosphorylation was noted and bis-indolylmaleimide (a more specific PKC inhibitor) did not alter MARCKS distribution. Staurosporine inhibited the phorbol ester-induced translocation of MARCKS but not of PKCα in both CD pretreated and untreated cells. Calmodulin antagonists (trifluoperazine, calmidazolium) had little effect on the cellular distribution or phosphorylation of MARCKS, but were synergistic with phorbol ester in translocating MARCKS from the membrane without a further increase in its phosphorylation. We conclude that cytoskeletal integrity is not required for phosphorylation and translocation of MARCKS in response to activated PKC, but that interaction with both F-actin and calmodulin might serve to independently modulate PKC-regulated localization and function of MARCKS at cellular membranes.  相似文献   

4.
Role of MARCKS in regulating endothelial cell proliferation   总被引:2,自引:0,他引:2  
Myristoylated alanine-rich C kinase substrate (MARCKS), as a specificprotein kinase C (PKC) substrate, mediates PKC signaling through itsphosphorylation and subsequent modification of its association withfilamentous actin (F-actin) and calmodulin (CaM). PKC has long beenimplicated in cell proliferation, and recent studies have suggestedthat MARCKS may function as a cell growth suppressor. Therefore, in thepresent study, we investigated MARCKS protein expression, distribution,and phosphorylation in preconfluent and confluent bovine pulmonarymicrovascular endothelial cells (BPMEC) in the presence or absence ofthe vascular endothelial growth factor (VEGF). In addition, we examinedfunctional alterations of MARCKS in these cells by studying theassociation of MARCKS with F-actin and CaM-dependent myosin light chain(MLC) phosphorylation. Our results indicate that MARCKS protein isdownregulated during BPMEC proliferation. Decreased MARCKSassociation with F-actin, increased actin polymerization, andCaM-dependent MLC phosphorylation appear to mediate cell shape changesand motility during BPMEC growth. In contrast, VEGF stimulated MARCKSphosphorylation without alteration of protein expression during BPMECproliferation, which may result in reduced interaction between MARCKSand actin or CaM, leading to actin reorganization and MLCphosphorylation. Our data suggest a regulatory role of MARCKS duringendothelial cell proliferation.

  相似文献   

5.
Engineered overexpression of protein kinase Cα (PKCα) was previously shown to endow nonmotile MCF-10A human breast cells with aggressive motility. A traceable mutant of PKCα (Abeyweera, T. P., and Rotenberg, S. A. (2007) Biochemistry 46, 2364–2370) revealed that α6-tubulin is phosphorylated in cells expressing traceable PKCα and in vitro by wild type PKCα. Gain-of-function, single site mutations (Ser → Asp) were constructed at each PKC consensus site in α6-tubulin (Ser158, Ser165, Ser241, and Thr337) to simulate phosphorylation. Following expression of each construct in MCF-10A cells, motility assays identified Ser165 as the only site in α6-tubulin whose pseudophosphorylation reproduced the motile behavior engendered by PKCα. Expression of a phosphorylation-resistant mutant (S165N-α6-tubulin) resulted in suppression of MCF-10A cell motility stimulated either by expression of PKCα or by treatment with PKCα-selective activator diacylglycerol-lactone. MCF-10A cells treated with diacylglycerol-lactone showed strong phosphorylation of endogenous α-tubulin that could be blocked when S165N-α6-tubulin was expressed. The S165N mutant also inhibited intrinsically motile human breast tumor cells that express high endogenous PKCα levels (MDA-MB-231 cells) or lack PKCα and other conventional isoforms (MDA-MB-468 cells). Comparison of Myc-tagged wild type α6-tubulin and S165N-α6-tubulin expressed in MDA-MB-468 cells demonstrated that Ser165 is also a major site of phosphorylation for endogenously active, nonconventional PKC isoforms. PKC-stimulated motility of MCF-10A cells was nocodazole-sensitive, thereby implicating microtubule elongation in the mechanism. These findings support a model in which PKC phosphorylates α-tubulin at Ser165, leading to microtubule elongation and motility.  相似文献   

6.
In the bovine corpus luteum (CL) phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) protein in response to prostaglandin F2alpha (PGF2alpha) is correlated with the secretion of oxytocin. The present study was conducted to 1) examine the intracellular translocation characteristics of wild-type and mutant forms of a green fluorescent protein (GFP)-conjugated MARCKS (MARCKS-GFP) after PGF2alpha treatment and 2) evaluate PGF2alpha-induced temporal changes in MARCKS-GFP and actin cortex associated with exocytosis of oxytocin. In experiment 1, cells of the bovine CL were cultured on coverslips overnight. Then, wild-type and mutant MARCKS-GFP constructs were transfected separately into cells and expression was detected through fluorescence microscopy. Forty-eight hours after transfection, cells were treated with vehicle, PGF2alpha (56 nM), or a phorbol ester (12-O-tetradecanoylphorbol-13-acetate [TPA], 1 microM). Treatment of cells expressing wild-type MARCKS-GFP with PGF2alpha and TPA resulted in translocation of MARCKS from the plasma membrane to the cytoplasm within 2.5 min. Phosphorylation mutant MARCKS-GFP (m3) protein was localized on the plasma membrane, and treatments did not cause its translocation to the cytoplasm. Myristoylation mutant MARCKS-GFP (G2A) was observed solely in the cytoplasm, and no changes were detected in the intracellular location of this mutant MARCKS after treatment. In experiment 2, luteal cells were transfected with one of the three MARCKS-GFP constructs. Cells were then fixed and probed sequentially for oxytocin and filamentous actin. Results revealed that only wild-type MARCKS-GFP transfected large luteal cells contained advanced signs of exocytosis (peripheral movement of oxytocin vesicles; shorter actin filaments) with translocation of MARCKS-GFP from membrane to cytoplasm in response to PGF2alpha treatment. These data demonstrate that phosphorylation of membrane-bound MARCKS protein is requisite for exocytosis of oxytocin to occur in bovine large luteal cells.  相似文献   

7.
Cdc42 effector protein-4 (CEP4) was recently identified by our laboratory to be a substrate of multiple PKC isoforms in non-transformed MCF-10A human breast cells. The significance of phosphorylated CEP4 to PKC-stimulated motility of MCF-10A cells was evaluated. Single site mutants at Ser residues embedded in potential PKC consensus sites (Ser18, Ser77, Ser80, and Ser86) were individually replaced with Asp residues to simulate phosphorylation. Following expression in weakly motile MCF-10A cells, the S18D and S80D mutants each promoted increased motility, and the double mutant (S18D/S80D) produced a stronger effect. MS/MS analysis verified that Ser18 and Ser80 were directly phosphorylated by PKCα in vitro. Phosphorylation of CEP4 severely diminished its affinity for Cdc42 while promoting Rac activation and formation of filopodia (microspikes). In contrast, the phosphorylation-resistant double mutant S18A/S80A-CEP4 blocked CEP4 phosphorylation and inhibited motility of MCF-10A cells that had been stimulated with PKC activator diacylglycerol lactone. In view of the dissociation of phospho-CEP4 from Cdc42, intracellular binding partners were explored by expressing each CEP4 double mutant from a tandem affinity purification vector followed by affinity chromatography, SDS-PAGE, and identification of protein bands evident only with S18D/S80D-CEP4. One binding partner was identified as tumor endothelial marker-4 (TEM4; ARHGEF17), a guanine nucleotide exchange factor that is involved in migration. In motile cells expressing S18D/S80D-CEP4, knockdown of TEM4 inhibited both Rac activation and motility. These findings support a model in which PKC-mediated phosphorylation of CEP4 at Ser18 and Ser80 causes its dissociation from Cdc42, thereby increasing its affinity for TEM4 and producing Rac activation, filopodium formation, and cell motility.  相似文献   

8.
Neurulation involves a complex coordination of cellular movements that are in great part based on the modulation of the actin cytoskeleton. MARCKS, an F‐actin‐binding protein and the major substrate for PKC, is necessary for gastrulation and neurulation morphogenetic movements in mice, frogs, and fish. We previously showed that this protein accumulates at the apical region of the closing neural plate in chick embryos, and here further explore its role in this process and how it is regulated by PKC phosphorylation. PKC activation by PMA caused extensive neural tube closure defects in cultured chick embryos, together with MARCKS phosphorylation and redistribution to the cytoplasm. This was concomitant with an evident disruption of neural plate cell polarity and extensive apical cell extrusion. This effect was not due to actomyosin hypercontractility, but it was reproduced upon MARCKS knockdown. Interestingly, the overexpression of a nonphosphorylatable form of MARCKS was able to revert the cellular defects observed in the neural plate after PKC activation. Altogether, these results suggest that MARCKS function during neurulation would be to maintain neuroepithelial polarity through the stabilization of subapical F‐actin, a function that appears to be counteracted by PKC activation.  相似文献   

9.
Abstract: The expression of MARCKS, a major protein kinase C (PKC) substrate, was examined in the immortalized hippocampal cell line HN33, following differentiation using phorbol esters or retinoic acid. In cells exposed to phorbol esters, MARCKS protein levels were reduced through an apparent PKC-dependent mechanism. Exposure to 1 µ M phorbol 12-myristate 13-acetate (PMA) for 10 min resulted in a rapid loss of PKC activity in the soluble fraction with a concurrent increase in membrane-associated PKC activity. PKC activity was reduced to <20% of control values in both soluble and membrane fractions following 1 h of PMA exposure. Significant reductions in MARCKS protein levels were initially observed in membrane and soluble fractions following PMA exposure for 4 and 8 h, respectively. The reduction in MARCKS protein levels was maximal following 24 h of PMA exposure. MARCKS protein expression was also down-regulated in a dose-dependent manner on exposure of HN33 cells to retinoic acid. In cells exposed to 10 µ M retinoic acid, the MARCKS protein level was reduced in the membrane fraction within 4 h. Reduction of MARCKS protein levels was maximal (>90%) by 12 h with no evidence for any alteration in PKC activity. Reduced levels of MARCKS protein were also observed in the soluble fraction of retinoic acid-exposed cells, but to a significantly lesser extent. Addition of the PKC inhibitor GF109203X blocked the down-regulation of MARCKS protein in PMA-treated cultures but not in retinoic acid-treated cells. These findings suggest that the down-regulation of MARCKS may play an important role in both phorbol ester- and retinoic acid-induced differentiation in cells of neuronal origin.  相似文献   

10.
L A Allen  A Aderem 《The EMBO journal》1995,14(6):1109-1121
MARCKS is a protein kinase C (PKC) substrate that is phosphorylated during neurosecretion, phagocyte activation and growth factor-dependent mitogenesis. MARCKS binds calcium/calmodulin and crosslinks F-actin, and both these activities are regulated by PKC-dependent phosphorylation. We present evidence here that PKC-dependent phosphorylation also regulates the cycling of MARCKS between the plasma membrane and Lamp-1-positive lysosomes. Immuno-fluorescence and immunoelectron microscopy, and subcellular fractionation, demonstrated that MARCKS was predominantly associated with the plasma membrane of resting fibroblasts. Activation of PKC resulted in MARCKS phosphorylation and its displacement from the plasma membrane to Lamp-1-positive lysosomes. MARCKS phosphorylation is required for its translocation to lysosomes since mutating either the serine residues phosphorylated by PKC (phos-) or the PKC inhibitor staurosporine, prevented MARCKS phosphorylation, its release from the plasma membrane, and its subsequent association with lysosomes. In the presence of lysosomotropic agents or nocodazole, MARCKS accumulated on lysosomes and returned to the plasma membrane upon drug removal, further suggesting that the protein cycles between the plasma membrane and lysosomes. In contrast to wild-type MARCKS, the phos- mutant did not accumulate on lysosomes in cells treated with NH4Cl, suggesting that basal phosphorylation of MARCKS promotes its constitutive cycling between these two compartments.  相似文献   

11.
The ruminant corpus luteum, in addition to producing progesterone, synthesizes and secretes oxytocin (OT) during the estrous cycle. Secretion of oxytocin occurs by exocytosis of membrane-encapsulated granules of this hormone. Exocytosis of oxytocin involves transport of granules through a cytoskeletal matrix including an actin cortex closely associated with the plasma membrane (PM). Actin filaments crosslinked by various proteins give rise to the structural integrity of the cortex. Myristoylated alanine-rich C kinase substrate (MARCKS), a protein specifically phosphorylated by protein kinase C (PKC), crosslinks actin filaments and anchors the actin network to the inner leaflet of the PM. There is evidence that the intact actin cortex may serve as a barrier, precluding fusion of transport vesicles with the PM. In some secretory cells, phosphorylation of MARCKS has resulted in its translocation from the PM to the cytoplasm with an associated disassembly of the actin cortex. Prostaglandin F(2alpha) (PGF(2alpha)) stimulation of the bovine corpus luteum during the midluteal phase of the estrous cycle activates PKC, which is associated with an increase in OT secretion in vivo and in vitro. Data are presented demonstrating that stimulation of bovine luteal cells with PGF(2alpha) on Day 8 of the cycle promotes rapid phosphorylation of MARCKS protein and causes its translocation from the PM to the cytoplasm and concomitant, enhanced exocytosis of OT. These data are consistent with the premise that MARCKS plays a role in the exocytotic process.  相似文献   

12.
A recently cloned mouse cDNA designated F52 encodes a putative protein with striking sequence similarity to the MARCKS protein, a major cellular substrate for protein kinase C (PKC). Major regions of sequence similarity include the amino-terminal myristoylation consensus sequence and the central calmodulin-binding/PKC phosphorylation site domain. The F52 protein was expressed in Escherichia coli with apparent M(r) 50,000; it was a substrate for PKC and comigrated on two-dimensional electrophoresis with a myristoylated protein whose phosphorylation was stimulated by phorbol 12-myristate 13-acetate in mouse neuroblastoma cells. The F52 protein also was myristoylated in E. coli by co-expression with N-myristoyltransferase. A 24-amino acid peptide derived from the protein's phosphorylation site domain was a good substrate for PKC; like the cognate MARCKS peptide, it was phosphorylated with high affinity (S0.5 = 173 nM) and positive cooperativity (KH = 5.4). The F52 peptide also bound calmodulin with high affinity (Kd = less than 3 nM); this binding could be disrupted by phosphorylation of the peptide with PKC, with a half-time of 8 min. The F52 protein is clearly a member of the MARCKS family as defined by primary sequence; in addition, the two proteins share several key attributes that may be functionally important.  相似文献   

13.
Myristoylated alanine-rich protein kinase c substrate (MARCKS) has been suggested to be implicated in cell adhesion, secretion, motility and mitogenesis through regulation of the actin cytoskeletal structure. In the present study, a possible link between MARCKS and the platelet-derived growth factor (PDGF) signaling pathway was investigated in activated human hepatic stellate cells (hHSC), critical regulators of hepatic fibrogenesis. PDGF-BB stimulation resulted in a bi-directional movement of MARCKS that coincided with the phosphorylation of MARCKS and the activation of both PKCepsilon and PKCalpha. Biochemical inhibition of PKC kinase activity and small interfering RNA (siRNA) against PKCepsilon demonstrated that PKCepsilon is indispensable for PDGF-BB-induced MARCKS phosphorylation and cell migration. Immunoprecipitation studies revealed an association between MARCKS and the PDGFbeta-receptor, while the PDGFbeta-receptor and PKCalpha associated with focal adhesion kinase (FAK). Transient transfection with MARCKS DNA plasmid remarkably reduced PDGF-BB stimulated cell motility. In contrast, siRNA against MARCKS increased cell migration in RNAi treated cells in comparison to the scrambled control cells. In conclusion, the present study indicates that MARCKS play a major key role in PDGF-BB-induced chemotaxis in activated hHSC.  相似文献   

14.
VEGF-KDR/Flk-1 signal utilizes the phospholipase C-gamma-protein kinase C (PKC)-Raf-MEK-ERK pathway as the major signaling pathway to induce gene expression and cPLA2 phosphorylation. However, the spatio-temporal activation of a specific PKC isoform induced by VEGF-KDR signal has not been clarified. We used HEK293T (human embryonic kidney) cells expressing transiently KDR to examine the activation mechanism of PKC. PKC specific inhibitors and human PKCdelta knock-down using siRNA method showed that PKCdelta played an important role in VEGF-KDR-induced ERK activation. Myristoylated alanine-rich C-kinase substrate (MARCKS) translocates from the plasma membrane to the cytoplasm depending upon phosphorylation by PKC. Translocation of MARCKS-GFP induced by VEGF-KDR stimulus was blocked by rottlerin, a PKCdelta specific inhibitor, or human PKCdelta siRNA. VEGF-KDR stimulation did not induce ERK phosphorylation in human PKCdelta-knockdown HEK293T cells, but co-expression of rat PKCdelta-GFP recovered the ERK phosphorylation. Y311/332F mutant of rat PKCdelta-GFP which cannot be activated by tyrosine-phosphorylation but activated by DAG recovered the ERK phosphorylation, while C1B-deletion mutant of rat PKCdelta-GFP, which can be activated by tyrosine-phosphorylation but not by DAG, failed to recover the ERK phosphorylation in human PKCdelta-knockdown HEK293T cell. These results indicate that PKCdelta is involved in VEGF-KDR-induced ERK activation via C1B domain.  相似文献   

15.
MARCKS (Myristoylated Alanine-Rich C Kinase Substrate) is a peripheral membrane protein, especially abundant in the nervous system, and functionally related to actin organization and Ca-calmodulin regulation depending on its phosphorylation by PKC. However, MARCKS is susceptible to be phosphorylated by several different kinases and the possible interactions between these phosphorylations have not been fully studied in intact cells. In differentiating neuroblasts, as well as some neurons, there is at least one cell-type specific phosphorylation site: serine 25 (S25) in the chick. We demonstrate here that S25 is included in a highly conserved protein sequence which is a Cdk phosphorylatable region, located far away from the PKC phosphorylation domain. S25 phosphorylation was inhibited by olomoucine and roscovitine in neuroblasts undergoing various states of cell differentiation in vitro. These results, considered in the known context of Cdks activity in neuroblasts, suggest that Cdk5 is the enzyme responsible for this phosphorylation. We find that the phosphorylation by PKC at the effector domain does not occur in the same molecules that are phosphorylated at serine 25. The in situ analysis of the subcellular distribution of these two phosphorylated MARCKS variants revealed that they are also segregated in different protein clusters. In addition, we find that a sustained stimulation of PKC by phorbol-12-myristate-13-acetate (PMA) provokes the progressive disappearance of phosphorylation at serine 25. Cells treated with PMA, but in the presence of several Ser/Thr phosphatase (PP1, PP2A and PP2B) inhibitors indicated that this dephosphorylation is achieved via a phosphatase 2A (PP2A) form. These results provide new evidence regarding the existence of a novel consequence of PKC stimulation upon the phosphorylated state of MARCKS in neural cells, and propose a link between PKC and PP2A activity on MARCKS.  相似文献   

16.
17.
Engineered overexpression of protein kinase Cα (PKCα) is known to phosphorylate Ser165 in α-tubulin resulting in stimulated microtubule dynamics and cell motility, and activation of an epithelial-mesenchymal transition (EMT) in non-transformed human breast cells. Here it is shown that endogenous phosphorylation of native α-tubulin in two metastatic breast cell lines, MDA-MB-231-LM2–4175 and MDA-MB-468 is detected at PKC phosphorylation sites. α-Tubulin mutants that simulated phosphorylated (S165D) or non-phosphorylated (S165 N) states were stably expressed in MDA-MB-231-LM2–4175 cells. The S165D-α-tubulin mutant engendered expression of the EMT biomarker N-cadherin, whereas S165 N-α-tubulin suppressed N-cadherin and induced E-cadherin expression, revealing a ‘cadherin switch’. S165 N-α-tubulin engendered more rapid passage through the cell cycle, induced shorter spindle fibers and exhibited more rapid proliferation. In nude mice injected with MDA-MB-231-LM2–4175 cells, cells expressing S165 N-α-tubulin (but not the S165D mutant) produced hyper-proliferative lung tumors with increased tumor incidence and higher Ki67 expression. These results implicate the phosphorylation state of Ser165 in α-tubulin as a PKC-regulated molecular switch that causes breast cells to exhibit either EMT characteristics or hyper-proliferation. Evaluation of genomic databases of human tumors strengthens the clinical significance of these findings.  相似文献   

18.
Myristoylated alanine-rich C kinase substrate (MARCKS) is a widely distributed specific protein kinase C (PKC) substrate and has been implicated in membrane trafficking, cell motility, secretion, cell cycle, and transformation. We found that amyloid beta protein (A beta) (25-35) and A beta (1-40) phosphorylate MARCKS in primary cultured rat microglia. Treatment of microglia with A beta (25-35) at 10 nM or 12-O-tetradecanoylphorbol 13-acetate (1.6 nM) led to phosphorylation of MARCKS, an event inhibited by PKC inhibitors, staurosporine, calphostin C, and chelerythrine. The A beta (25-35)-induced phosphorylation of MARCKS was inhibited by pretreatment with the tyrosine kinase inhibitors genistein and herbimycin A, but not with pertussis toxin. PKC isoforms alpha, delta, and epsilon were identified in microglia by immunocytochemistry and western blots using isoform-specific antibodies. PKC-delta was tyrosine-phosphorylated by the treatment of microglia for 10 min with A beta (25-35) at 10 nM. Other PKC isoforms alpha and epsilon were tyrosine-phosphorylated by A beta (25-35), but only to a small extent. We propose that a tyrosine kinase-activated PKC pathway is involved in the A beta (25-35)-induced phosphorylation of MARCKS in rat microglia.  相似文献   

19.
Myristoylated alanine-rich C kinase substrate (MARCKS) is a calmodulin (CaM)- and actin-binding protein and prominent protein kinase C (PKC) substrate. In vitro phosphorylation of MARCKS by PKC has been shown to induce the release of both CaM and actin, leading to the suggestion that MARCKS may regulate CaM availability during agonist-induced signalling. In support of this hypothesis we previously demonstrated that thrombin-induced MARCKS phosphorylation in endothelial cells (EC) parallels activation of myosin light chain kinase, a CaM-dependent enzyme. To test this theory further, we transfected CHO cells, which normally do not express significant levels of MARCKS, with a MARCKS cDNA. The thrombin-stimulated phosphorylation of myosin light chains and the sensitivity to CaM antagonists in the MARCKS overexpressing cells was the same as that in control CHO cells. MARCKS associated with the actin cytoskeleton in EC was markedly increased upon treatment with the PKC activator, PMA, but only modestly enhanced by thrombin treatment. Similarly, colocalisation of MARCKS with actin was enhanced when the EC were challenged with PMA but not thrombin. These data may be partially explained by PKC-independent phosphorylation of MARCKS in response to thrombin stimulation.  相似文献   

20.
To survive, neurons and other eukaryotic cells must rapidly repair (seal) plasmalemmal damage. Such repair occurs by an accumulation of intracellular vesicles at or near the plasmalemmal disruption. Diacylglycerol (DAG)-dependent and cAMP-dependent proteins are involved in many vesicle trafficking pathways. Although recent studies have implicated the signaling molecule cAMP in sealing, no study has investigated how DAG and DAG-dependent proteins affect sealing. By means of dye exclusion to assess Ca2+-dependent vesicle-mediated sealing of transected neurites of individually identifiable rat hippocampal B104 cells, we now report that, compared to non-treated controls, sealing probabilities and rates are increased by DAG and cAMP analogs that activate PKC and Munc13-1 and PKA. Sealing is decreased by inhibiting DAG-activated novel protein kinase C isozymes ?? (nPKC??) and ?? (nPKC??) and Munc13-1, the PKC effector myristoylated alanine rich PKC substrate (MARCKS) or phospholipase C (PLC). DAG-increased sealing is prevented by inhibiting MARCKS or protein kinase A (PKA). Sealing probability is further decreased by simultaneously inhibiting nPKC??, nPKC??, and PKA. Extracellular Ca2+, DAG, or cAMP analogs do not affect this decrease in sealing. These and other data suggest that DAG increases sealing through MARCKS and that nPKC??, nPKC??, and PKA are all required to seal plasmalemmal damage in B104 and likely all eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号