首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypothermia for myocardial protection or storage of vascular grafts may damage the endothelium and impair vascular function upon reperfusion/rewarming. Catalytic iron pools and oxidative stress are important mediators of cold-induced endothelial injury. Because endothelial cells are highly adaptive, we hypothesized that hypothermic preconditioning (HPC) protects cells at 0°C by a heme oxygenase-1 (HO-1) and ferritin-dependent mechanism. Storage of human coronary artery endothelial cells at 0°C caused the release of lactate dehydrogenase, increases in bleomycin-detectible iron (BDI), and increases in the ratio of oxidized/reduced glutathione, signifying oxidative stress. Hypoxia increased injury at 0°C but did not increase BDI or oxidative stress further. HPC at 25°C for 15–72 h attenuated these changes by an amount achievable by pretreating cells with 10–20 μM deferoxamine, an iron chelator, and protected cell viability. Treating cells with hemin chloride at 37°C transiently increased intracellular heme, HO-1, BDI, and ferritin. Elevated heme/iron sensitized cells to 0°C but ferritin was protective. HPC increased iron maximally after 2 h at 25°C and ferritin levels peaked after 15 h. HO-1 was not induced. When HPC-mediated increases in ferritin were blocked by deferoxamine, protection at 0°C was diminished. We conclude that HPC-mediated endothelial protection from hypothermic injury is an iron- and ferritin-dependent process.  相似文献   

2.
Abstract: Heme oxygenase (HO), which catalyzes the degradation of heme, has two isozymes (HO-1 and HO-2). In brain the noninducible HO-2 isoform is predominant, whereas the inducible HO-1 is a marker of oxidative stress. Because brain oxidative stress might be present in prion-related encephalopathies (PREs), as in other neurodegenerative diseases, we investigated whether HO-1 mRNA was induced in neuronal and astroglial cell cultures by a peptide corresponding to residue 106–126 of human prion protein (PrP). This peptide is amyloidogenic, and when added in vitro to cultured cells it reproduces the neuronal death and astroglial proliferation and hypertrophy occurring in PREs. HO-1 mRNA did not accumulate in rat cultured neurons from hippocampus or cortex exposed to PrP 106–126 (50 µ M for 5 days). PrP 106–126 induced HO-1 mRNA accumulation in rat astroglial cultures depending on the exposure time and concentration, being maximal (33-fold) after 7 days of exposure at 50 µ M . The nonamyloidogenic amidated or amidated-acetylated PrP 106–126 was ineffective, as was a scrambled peptide used as control. N -Acetylcysteine reduced (50%) the accumulation of HO-1 mRNA in astroglial cells after PrP 106–126 (25 µ M ) given for 5 days. Thus, oxidative stress is apparently a feature of the toxicity of PrP 106–126, and it might also occur in PREs; induction of HO-1 could contribute to the greater resistance of astrocytes compared with neurons to PrP 106–126 toxicity.  相似文献   

3.
D M Suttner  P A Dennery 《FASEB journal》1999,13(13):1800-1809
It is often postulated that the cytoprotective nature of heme oxygenase (HO-1) explains the inducible nature of this enzyme. However, the mechanisms by which protection occurs are not verified by systematic evaluation of the physiological effects of HO. To explain how induction of HO-1 results in protection against oxygen toxicity, hamster fibroblasts (HA-1) were stably transfected with a tetracycline response plasmid containing the full-length rat HO-1 cDNA construct to allow for regulation of gene expression by varying concentrations of doxycycline (Dox). Transfected cells were exposed to hyperoxia (95% O(2)/5% CO2) for 24 h and several markers of oxidative injury were measured. With varying concentrations of Dox, HO activity was regulated between 3- and 17-fold. Despite cytoprotection with low (less than fivefold) HO activity, high levels of HO-1 expression (greater than 15-fold) were associated with significant oxygen cytotoxicity. Levels of non-heme reactive iron correlated with cellular injury in hyperoxia whereas lower levels of heme were associated with cytoprotection. Cellular levels of cyclic GMP and bilirubin were not significantly altered by modification of HO activity, precluding a substantial role for activation of guanylate cyclase by carbon monoxide or for accumulation of bile pigments in the physiological consequences of HO-1 overexpression. Inhibition of HO activity or chelation of cellular iron prior to hyperoxic exposure decreased reactive iron levels in the samples and significantly reduced oxygen toxicity. We conclude that there is a beneficial threshold of HO-1 overexpression related to the accumulation of reactive iron released in the degradation of heme. Therefore, despite the ready induction of HO-1 in oxidant stress, accumulation of reactive iron formed makes it unlikely that exaggerated expression of HO-1 is a cytoprotective response.  相似文献   

4.
Two isoforms of heme oxygenase, designated as HO-1 and HO-2, were identified in rat spleen. The most abundant form was HO-1, wherein a relative ratio of about 5:1 of HO-1 to HO-2 was detected. The splenic HO-1 and HO-2 were immunochemically similar to the purified isoforms obtained from the liver and the testis. Moreover, the elution properties of splenic HO-1 as well as those of the constitutive liver HO-1 and the hematin-induced liver HO-1 on a DEAE-sephacel column were similar. However, the splenic HO-1 activity could not be induced by hematin. It is suggested that in the spleen heme oxygenase activity is maintained in the induced state as the result of constant exposure to hemoglobin released in the course of disruption of senescent erythrocytes.  相似文献   

5.
The heme oxygenase (HO) enzymes catalyze the rate-limiting step of heme breakdown. Prior studies have demonstrated that the vulnerability of neurons and astrocytes to hemoglobin is modified in cells lacking HO-2, the constitutive isoform. The present study assessed the effect of the inducible isoform, HO-1. Wild-type astrocytes treated for 3-5 days with 3-30 microM hemoglobin sustained no loss of viability, as quantified by LDH and MTT assays. The same treatment resulted in death of 25-50% of HO-1 knockout astrocytes, and a 4-fold increase in protein oxidation. Cell injury was attenuated by transfer of the HO-1 gene, but not by bilirubin, the antioxidant heme breakdown product. Conversely, neuronal protein oxidation and cell death after hemoglobin exposure were similar in wild-type and HO-1 knockout cultures. These results suggest that HO-1 induction protects astrocytes from the oxidative toxicity of Hb, but has no effect on neuronal injury.  相似文献   

6.
Earlier observations indicate that free heme is selectively toxic to cells lacking heme oxygenase-1 (HO-1) but how this enzyme prevents heme toxicity remains unexplained. Here, using A549 (human lung cancer) and immortalized human bronchial epithelial cells incubated with exogenous heme, we find knock-down of HO-1 using siRNA does promote the accumulation of cell-associated heme and heme-induced cell death. However, it appears that the toxic effects of heme are exerted by “loose” (probably intralysosomal) iron because cytotoxic effects of heme are lessened by pre-incubation of HO-1 deficient cells with desferrioxamine (which localizes preferentially in the lysosomal compartment). Desferrioxamine also decreases lysosomal rupture promoted by intracellularly generated hydrogen peroxide. Supporting the importance of endogenous oxidant production, both chemical and siRNA inhibition of catalase activity predisposes HO-1 deficient cells to heme-mediated killing. Importantly, it appears that HO-1 deficiency somehow blocks the induction of ferritin; control cells exposed to heme show ~10-fold increases in ferritin heavy chain expression whereas in heme-exposed HO-1 deficient cells ferritin expression is unchanged. Finally, overexpression of ferritin H chain in HO-1 deficient cells completely prevents heme-induced cytotoxicity. Although two other products of HO-1 activity–CO and bilirubin–have been invoked to explain HO-1-mediated cytoprotection, we conclude that, at least in this experimental system, HO-1 activity triggers the induction of ferritin and the latter is actually responsible for the cytoprotective effects of HO-1 activity.  相似文献   

7.
The catabolism of heme is carried out by members of the heme oxygenase (HO) family. The products of heme catabolism by HO-1 are ferrous iron, biliverdin (subsequently converted to bilirubin), and carbon monoxide. In addition to its function in the recycling of hemoglobin iron, this microsomal enzyme has been shown to protect cells in various stress models. Implicit in the reports of HO-1 cytoprotection to date are its effects on the cellular handling of heme/iron. However, the limited amount of uncommitted heme in non-erythroid cells brings to question the source of substrate for this enzyme in non-hemolytic circumstances. In the present study, HO-1 was induced by either sodium arsenite (reactive oxygen species producer) or hemin or overexpressed in the murine macrophage-like cell line, RAW 264.7. Both of the inducers elicited an increase in active HO-1; however, only hemin exposure caused an increase in the synthesis rate of the iron storage protein, ferritin. This effect of hemin was the direct result of the liberation of iron from heme by HO. Cells stably overexpressing HO-1, although protected from oxidative stress, did not display elevated basal ferritin synthesis. However, these cells did exhibit an increase in ferritin synthesis, compared with untransfected controls, in response to hemin treatment, suggesting that heme levels, and not HO-1, limit cellular heme catabolism. Our results suggest that the protection of cells from oxidative insult afforded by HO-1 is not due to the catabolism of significant amounts of cellular heme as thought previously.  相似文献   

8.
Heme oxygenase cleaves heme to form biliverdin, carbon monoxide (CO), and iron, and consists of two structurally related isozymes, HO-1 and HO-2. HO-2 is also known as a potential oxygen sensor. Here we show that the relative CO content in arterial blood, which reflects the total amount of endogenous heme degradation, dynamically changes in mice during acclimatization to normobaric hypoxia (10% O2), with the two peaks at 1 day and 21 days of hypoxia. The expression levels of HO-1 and HO-2 proteins were decreased by 20% and 40%, respectively, in the mouse liver at 7 days of hypoxia, which returned to the basal levels at 14 days. On the other hand, HO-1 and HO-2 proteins were increased 2-fold and 1.3-fold, respectively, in the heart at 28 days of hypoxia. Thus, hypoxia induces or represses the expression of HO-1 and HO-2 in vivo, depending on cellular microenvironments.  相似文献   

9.
The inducible form of heme oxygenase (HO-1) is increased during oxidative injury and HO-1 is believed to be an important defense mechanism against such injury. Arachidonic acid (AA) and l-buthionine-(S,R)-sulfoximine (BSO), which lowers GSH levels, cause cytochrome P450 2E1 (CYP2E1)-dependent oxidative injuries in HepG2 cells (E47 cells). Treatment of E47 cells with 50 microM AA or 100 microM BSO for 48 h was recently shown to increase HO-1 mRNA, protein, and activity. The possible functional significance of this increase in protecting against CYP2E1-dependent toxicity was evaluated in the current study. The treatment with AA and BSO caused loss of cell viability (40 and 50%, respectively) in E47 cells. Chromium mesoporphyrin (CrMP), an inhibitor of HO activity, significantly potentiated this cytotoxicity. ROS production, lipid peroxidation, and the decline in mitochondrial membrane potential produced by AA and BSO were also enhanced in the presence of CrMP in E47 cells. Infection with an adenovirus expressing rat HO-1 protected E47 cells from AA toxicity, increasing cell viability and reducing LDH release. HO catalyzes formation of CO, bilirubin, and iron from the oxidation of heme. Bilirubin was not protective whereas iron catalyzed the AA toxicity. The carbon monoxide (CO) scavenger hemoglobin enhanced AA toxicity in E47 cells analogous to CrMP, whereas exposure to exogenous CO partially reduced AA toxicity and the enhanced AA toxicity by CrMP. Addition of exogenous CO to the cells inhibited CYP2E1 catalytic activity, as did overexpression of the rat HO-1 adenovirus. These results suggest that induction of HO-1 protects against CYP2E1-dependent toxicity and this protection may be mediated in part via production of CO and CO inhibition of CYP2E1 activity.  相似文献   

10.
Heme oxygenase (HO) activity in tissue adjacent to an intracerebral hematoma may modulate cellular vulnerability to heme-mediated oxidative injury. Although HO-1 is induced after experimental intracerebral hemorrhage (ICH), the time course of this induction, its effect on tissue HO activity, and its association with oxidative injury markers has not been defined. We therefore quantified HO activity, HO-1 expression, tissue heme content, and protein carbonylation for 8 days after injection of autologous blood into the mouse striatum. Increased striatal HO-1 protein was observed within 24 h, peaked on day 5 at a level that was 10-fold greater than baseline, and returned to baseline by day 8; HO-2 expression was not altered. HO activity increased by only 1.6-fold at its peak on day 5, and had also returned to baseline by day 8. A significant increase in protein carbonylation was observed at 3–5 days, which also was markedly attenuated by 8 days, concomitant with a return of tissue heme to near-normal levels. These results suggest that the increase in HO activity in tissue surrounding an experimental ICH is considerably less than would be predicted based on an analysis of HO-1 expression per se . As HO-1 expression is temporally associated with increased tissue heme and increased protein carbonylation, it may be more useful as a marker of heme-mediated oxidative stress in ICH models, rather than as an index of HO activity.  相似文献   

11.
12.
We have examined changes in the expression of heme oxygenase-1 (HO-1), an inducible isoform and HO-2, a constitutive isoform, in the liver of Long-Evans with a Cinnamon-like color (LEC) rat, a mutant strain which spontaneously develops acute hepatitis and hepatoma. HO-1 expression was highly enhanced in the LEC rat livers with jaundice, and then decreased slightly, but overall remained at a higher level than in the Long-Evans with Agouti color (LEA) control rats, as judged by Northern blotting analysis of the whole liver extract. The high expression of HO-1 in the LEC rat liver was, however, not due to the actual cancer lesion but, rather, due to the surrounding uninvolved tissues including hepatocytes. Immunohistochemical analysis also supported this conclusion. Among normal tissues, the expression of HO-1 but not HO-2 was high in only the spleen of both LEC and LEA rats.

The high expression observed in the stage of acute hepatitis and hepatoma stages in the LEC rat is probably due to the oxidative stress caused by the accumulation of free copper and free iron levels which has been reported earlier by our group (Suzuki et al., Carcinogenesis, 1993,14, 1881-1884 and Koizumi et al., Free Radical Research, in press) as well as by free heme levels. The inflammatory cytokines produced by the surrounding tissue at the hepatoma stage would also be expected to play a role in the induction mechanism. The physiological relevance of HO-1 induction might be an adaptive response to oxidative stress and vasodilatory effect of carbon monoxide on sinusoidal circulation.  相似文献   

13.
Heme oxygenase (HO) is the rate-limiting enzyme in the degradation of heme; its inducible isozyme HO-1 protects against some types of acute tissue injury. The expression and functional role of HO-1 in rats with renal injury induced by potassium dichromate (K(2)Cr(2)O(7)) was investigated in this work. Rats were studied 24 h after a single injection of K(2)Cr(2)O(7). To address the possible protective effect of HO-1 in this experimental model, this enzyme was induced by an injection of stannous chloride (SnCl(2)) 12 h before K(2)Cr(2)O(7) administration. The functional role of HO-1 in K(2)Cr(2)O(7) + SnCl(2)-treated animals was tested by inhibiting HO activity with an injection of zinc (II) protoporphyrin IX (ZnPP) 18 h before K(2)Cr(2)O(7). In K(2)Cr(2)O(7)-treated rats: (i) renal HO-1 content, measured by Western blot, increased 2.6-fold; and, (ii) renal nitrotyrosine and protein carbonyl content, markers of oxidative stress, increased 3.5- and 1.36-fold, respectively. Renal damage and oxidative stress were ameliorated and HO-1 content was increased in the K(2)Cr(2)O(7) + SnCl(2) group. The attenuation of renal injury and oxidative stress was lost by the inhibition of HO activity in K(2)Cr(2)O(7) + SnCl(2) + ZnPP-treated animals. Our data suggest that HO-1 overexpression induced by SnCl(2) is responsible for the attenuation of renal damage and oxidative stress induced by K(2)Cr(2)O(7).  相似文献   

14.
Redox regulation and oxidant activation of heme oxygenase-1   总被引:4,自引:0,他引:4  
The ultraviolet A (UVA, 320-400 nm) component of sunlight has the potential to generate an oxidative stress in cells and tissue so that antioxidants (both endogenous and exogenous) strongly influence the biological effects of UVA. The expression of several genes (including heme oxygenase-1, HO-1; collagenase; the CL100 phosphatase and the nuclear oncogenes, c-fos and c-jun) is induced following physiological doses of UVA to cells and this effect can be strongly enhanced by removing intracellular glutathione or enhancing singlet oxygen lifetime. We have observed that heme is released from microsomal heme-containing proteins by UVA and other oxidants and that activation of HO-1 expression by UVA correlates with levels of heme release. UVA radiation also leads to an increase in labile iron pools (either directly or via HO-1) and eventual increases in ferritin levels. The role of heme oxygenase in protection of skin fibroblasts is probably an emergency inducible defense pathway to remove heme liberated by oxidants. The slower increase in ferritin levels is an adaptive response which serves to keep labile iron pools low and thereby reduce Fenton chemistry and oxidant-induced chain reactions involving lipid peroxidation. In keratinocytes, the primary target of UVA radiation, heme oxygenase levels are constitutively high (because of HO-2 expression). Since there is a corresponding increase in basal levels of ferritin the epidermis appears to be well protected constitutively against the oxidative stress generated by UVA.  相似文献   

15.
The ultraviolet A (UVA, 320–400 nm) component of sunlight has the potential to generate an oxidative stress in cells and tissue so that antioxidants (both endogenous and exogenous) strongly influence the biological effects of UVA. The expression of several genes (including heme oxygenase-1, HO-1; collagenase; the CL100 phosphatase and the nuclear oncogenes, c-fos and c-jun) is induced following physiological doses of UVA to cells and this effect can be strongly enhanced by removing intracellular glutathione or enhancing singlet oxygen lifetime. We have observed that heme is released from microsomal heme-containing proteins by UVA and other oxidants and that activation of HO-1 expression by UVA correlates with levels of heme release. UVA radiation also leads to an increase in labile iron pools (either directly or via HO-1) and eventual increases in ferritin levels. The role of heme oxygenase in protection of skin fibroblasts is probably an emergency inducible defense pathway to remove heme liberated by oxidants. The slower increase in ferritin levels is an adaptive response which serves to keep labile iron pools low and thereby reduce Fenton chemistry and oxidant-induced chain reactions involving lipid peroxidation. In keratinocytes, the primary target of UVA radiation, heme oxygenase levels are constitutively high (because of HO-2 expression). Since there is a corresponding increase in basal levels of ferritin the epidermis appears to be well protected constitutively against the oxidative stress generated by UVA.  相似文献   

16.
17.
18.
Heme oxygenase (HO) isozymes, HO-1 and HO-2, catalyze the conversion of heme to iron, carbon monoxide, and biliverdin. The present study was aimed at elucidating the role of the HO system in iron accumulation and oxidative stress in the liver. We have also studied the regulation of an iron exporter, ferroportin-1 (FPN-1), as an adaptive response mechanism to increased iron levels. Sprague-Dawley rats were treated with HO inducer hemin or HO inhibitor tin-protoporphyrin IX (SnPPIX) for 1 month. A portion of liver tissues was subjected to RT-PCR for HO-1, HO-2, and FPN-1 gene expression as well as an HO activity assay. Paraffin-embedded tissues were stained for iron with Prussian blue. Hepatic iron concentration was measured by High Resolution-Inductively Coupled Plasma-Mass Spectrometry. 8-hydroxy-2'-deoxyguanosine (8-OHdG) stain, a sensitive and specific marker of oxidative DNA damage, was performed to assess oxidative stress. Hemin treatment led to augmented HO expression and activity in association with increased iron accumulation and oxidative stress. FPN-1 expression was also found to be upregulated. SnPPIX treatment reduced HO activity, intracellular iron levels, and oxidative stress as compared to controls. Our data provides evidence of increased HO activity as an important pro-oxidant mechanism leading to iron accumulation in the liver.  相似文献   

19.
Increased expression of heme oxygenase-1 (HO-1) increases NO resistance in several cell types, although the biochemical mechanism for this protection is unknown. To address this issue, we have measured different molecular markers of nitrosative stress in three stably transfected cell lines derived from the human lung epithelial line A549: two lines that overexpress rat HO-1 (L1 and A4), and a control line with the empty vector (Neo). Compared with the control Neo cells, L1 and A4 cells had, respectively, 5.8- and 3.8-fold greater HO activity accompanied by increased resistance to NO-induced necrosis. Compared with the Neo control, the HO-1-overexpressing cells also showed significantly less lipid peroxide formation and decreased perturbation of transition metal oxidation and coordination states following a cytotoxic NO exposure. These effects were blocked by the HO-1 inhibitors Zn- and Sn-protoporphyrin IX. In contrast, HO-1 overexpression did not significantly affect total reactive oxygen or nitrogen species, the levels of the nucleobase deamination products in DNA (xanthine, inosine, and uracil) following NO exposure, or NO-induced protein nitration. While increased HO-1 activity prevented NO-induced fluctuations in transition metal homeostasis, addition of an iron chelator decreased NO toxicity only slightly. Our results indicate that lipid peroxidation is a significant cause of NO-induced necrosis in human lung epithelial cells, and that the increased NO survival of L1 cells is due at least in part to decreased lipid peroxidation mediated by HO-1-generated biliverdin or bilirubin.  相似文献   

20.
Metallothioneins (MTs) are cysteine-rich metal-binding proteins that exert cytoprotective effects against metal toxicity and external stimuli including ionizing or ultraviolet B irradiation. Since 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known to cause an exaggerated oxidative stress response in animals and in different organs, we have studied possible involvement of MT in the oxidative responses induced by TCDD. Female Sprague-Dawley (SD) rats (6-week old) were administered a single oral dose of TCDD that varied from 1.0 to 4.0 microg/kg body weight. The serum and tissues were collected 7 days after dosing. Indicators of oxidative damage were assessed. Significant increases in serum 8-hydroxydeoxyguanosine (8-OHdG) levels were observed in the rats dosed with 2.0 and 4.0 microg TCDD/kg bw. Only 4.0 microg TCDD/kg bw produced a decrease in reduced glutathione concentration in the liver. Immunohistochemical staining revealed a TCDD-induced increase in heme oxygenase-1 (HO-1) expression in the hepatic macrophages (Kupffer cells). Under these conditions, MT protein as well as the mRNAs of MT-I and MT-II, were dose-dependently induced in the liver by TCDD doses from 1.0 microg/kg bw. TCDD-induced MT was found to localize in the parenchymal cells of the liver. Serum concentrations of cytokines (TNF-alpha, IL-1beta and IL-6) were not affected by TCDD. The hepatic concentrations of Cu, Zn and Fe were all increased significantly by TCDD administration. Our results suggest that MT levels are increased in the liver upon exposure to TCDD, perhaps by TCDD-generated reactive oxygen species, and that it may play a protective role in TCDD-induced oxidative stress responses as an antioxidant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号