Neurochemical Research - Subarachnoid hemorrhage (SAH) is a form of stroke associated with high mortality and morbidity. Despite advances in treatment for SAH, the prognosis remains poor. We have... 相似文献
Constitutive activation of the Rearranged during Transfection (RET) proto-oncogene leads to the development of MEN2A medullary thyroid cancer (MTC). The relatively clear genotype/phenotype relationship seen with RET mutations and the development of MEN2A is unusual in the fact that a single gene activity can drive the progression towards metastatic disease. Despite knowing the oncogene responsible for MEN2A, MTC, like most tumors of neural crest origin, remains largely resistant to chemotherapy. Constitutive activation of RET in a SK-N-MC cell line model reduces cell sensitivity to chemotherapy. In an attempt to identify components of the machinery responsible for the observed RET induced chemoresistance, we performed a proteomic screen of histones and associated proteins in cells with a constitutively active RET signaling pathway. The proteomic approach identified DNA-PKcs, a DNA damage response protein, as a target of the RET signaling pathway. Active DNA-PKcs, which is phosphorylated at site serine 2056 and localized to chromatin, was elevated within our model. Treatment with the RET inhibitor RPI-1 significantly reduced s2056 phosphorylation in RET cells as well as in a human medullary thyroid cancer cell line. Additionally, inhibition of DNA-PKcs activity diminished the chemoresistance observed in both cell lines. Importantly, we show that activated DNA-PKcs is elevated in medullary thyroid tumor samples and that expression correlates with expression of RET in thyroid tumors. These results highlight one mechanism by which RET signaling likely primes cells for rapid response to DNA damage and suggests DNA-PKcs as an additional target in MTC. 相似文献
Recent advances in reconstruction and analytical methods for signaling networks have spurred the development of large-scale models that incorporate fully functional and biologically relevant features. An extended reconstruction of the human Toll-like receptor signaling network is presented herein. This reconstruction contains an extensive complement of kinases, phosphatases, and other associated proteins that mediate the signaling cascade along with a delineation of their associated chemical reactions. A computational framework based on the methods of large-scale convex analysis was developed and applied to this network to characterize input–output relationships. The input–output relationships enabled significant modularization of the network into ten pathways. The analysis identified potential candidates for inhibitory mediation of TLR signaling with respect to their specificity and potency. Subsequently, we were able to identify eight novel inhibition targets through constraint-based modeling methods. The results of this study are expected to yield meaningful avenues for further research in the task of mediating the Toll-like receptor signaling network and its effects. 相似文献
Recent evidence suggests that an altered mammalian (mechanistic) target of rapamycin (mTOR) signaling pathway and its pharmacological modulation might be implicated in several neurological diseases including epileptogenesis. mTOR is a molecular sensor, which regulates protein synthesis, enhancing mRNA translation of genes involved in the regulation of cell proliferation and survival, working as part of two distinct multimeric complexes known as mTORC1 and mTORC2. mTOR is an evolutionarily highly conserved serine/threonine kinase belonging to the phosphoinositide 3-kinase-related kinase family and represents one of the most recently studied pathways in relation to epilepsy and epileptogenesis, due to its suggested pivotal role in many aspects of cellular proliferation and growth also including neurodegeneration, neurogenesis, and synaptic plasticity. In this review, we report the cellular and molecular features of mTOR and related pathways, analyze their function in the brain including all current related evidence of their role, and finally, discuss the possible involvement of mTOR signaling in epileptogenesis and epilepsy, giving further consideration to future developments in this area. 相似文献
Substantial evidence has shown that elevated circulating corticosteroids or chronic stress contributes to neuronal cell death, cognitive and mental disorders. However, the underlying mechanism is still unclear. Taurine is considered to protect neuronal cells from apoptotic cell death in neurodegenerative diseases and neuropsychiatric disorders. In the present study, the protective effects of taurine against corticosterone (CORT)-induced oxidative damage in SK-N-SH neuronal cells were investigated. The results showed that CORT significantly induced cell death, which was blocked by pretreatment with taurine. Similarly, pretreatment with taurine suppressed CORT-induced apoptotic cell death decreasing the levels of intracellular reactive oxygen species and improving mitochondrial function. Pretreatment with taurine increased the expression of phosphorylated extracellular regulated protein kinases (ERK) as well as the nuclear translocation of nuclear factor (erythroid 2-derived)-like 2 (Nrf2) in the CORT rich environment. Furthermore, administration of the ERK inhibitor U0126 or transient (siRNA) silencing of Nrf2 blocked the protective effects of taurine on cell viability and expression levels of Nrf2 and heme oxygenase-1 (HO-1) in the CORT model of neuronal damage. These results suggest that the Nrf2 signaling pathway may play a role in the protection mechanism of taurine against CORT-induced neuronal oxidative damage. 相似文献
Environmental chemicals have been proposed to impact endocrine or retinoid pathways, causing developmental abnormalities in humans and other vertebrates. Presented evidence shows that exposure of zebrafish embryos to sunlight-induced photolytic products of the pesticide methoprene results in developmental defects in the head, heart, pectoral fins, and somites, and in spinal motor and optic nerve axons. Exposed embryos are phenocopies of zebrafish you-type mutants and, as in the mutant sonic-you, show underexpression of the signaling protein sonic hedgehog. Reduced expression of sonic hedgehog is also displayed in embryos treated with the retinoic acid synthesis inhibitor citral. This study identifies citral-related compounds as embryonic signaling disruptors of potential environmental concern. 相似文献
Russian Journal of Plant Physiology - Brassinosteroids (BRs) are plant hormones which promote plant growth and development. Their biosynthetic pathway and signal transduction pathway have been well... 相似文献
Neurochemical Research - Spinal cord injury (SCI) can cause secondary brain changes, leading to hypomyelination in the dorsolateral prefrontal cortex (dlPFC). Some studies have shown that notch... 相似文献
Highlights? JNK/AP-1 signaling and DAF-16 play a central role in fasting-stimulus responses ? AP-1 and DAF-16 mediate induction of fasting genes that play key roles in life-span extension ? The SCF E3 ubiquitin ligase complex is a target of fasting-responsive signaling ? Fasting enhances protein ubiquitination, causing a reduction in protein carbonylation 相似文献
Resiniferatoxin (RTX) is a metabolite extracted from Euphorbia resinifera. RTX is a potent capsaicin analog with specific biological activities resulting from its agonist activity with the transient receptor potential channel vanilloid subfamily member 1 (TRPV1). RTX has been examined as a pain reliever, and more recently, investigated for its ability to desensitize cardiac sensory fibers expressing TRPV1 to improve chronic heart failure (CHF) outcomes using validated animal models. Caenorhabditis elegans (C. elegans) expresses orthologs of vanilloid receptors activated by capsaicin, producing antinociceptive effects. Thus, we used C. elegans to characterize the antinociceptive properties and performed proteomic profiling to uncover specific signaling networks. After exposure to RTX, wild-type (N2) and mutant C. elegans were placed on petri dishes divided into quadrants for heat stimulation. The thermal avoidance index was used to phenotype each tested C. elegans experimental group. The data revealed for the first time that RTX can hamper the nocifensive response of C. elegans to noxious heat (32 – 35 °C). The effect was reversed 6 h after RTX exposure. Additionally, we identified the RTX target, the C. elegans transient receptor potential channel OCR-3. The proteomics and pathway enrichment analysis results suggest that Wnt signaling is triggered by the agonistic effects of RTX on C. elegans vanilloid receptors.
The interaction between the nucleus and the different organelles is important in the physiology of the plant. Reactive oxygen species (ROS) are a by-product of the oxidation of organic molecules to obtain energy by the need to carry out the electron transfer between the different enzymatic complexes. However, they also have a role in the generation of what is known as retrograde signaling. This signal comes from the different organelles in which the oxidation of molecules or the electron transference is taking place such as mitochondria and chloroplasts. Furthermore, ROS can also induce the release of signals from the apoplast. It seems that these signals plays a role communicating to the nucleus the current status of the different parts of the plant cell to induce a changes in gene expression. In this review, the molecular mechanism of ROS retrograde signaling is described.