首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work by others suggests that there is a strain-dependent variation in the susceptibility to inflammatory lung injury in mice. Specifically, the 129/J mice appear to be more resistant to asbestos-induced pulmonary fibrosis than the C57BL/6 strain. A separate line of evidence suggests that extracellular superoxide dismutase (ecSOD) may play an important role in protecting the lung from such injuries. We have recently reported that the 129/J strain of mice has an ecSOD genotype and phenotype distinctly different from those of the C57BL/6 mice. In order to identify ecSOD as a potential "asbestos-injury resistance" gene, we bred congenic mice, on the C57BL/6 background, carrying the wild type (sod3wt) or the 129/J (sod3129) allele for ecSOD. This allowed us to examine the role of ecSOD polymorphism in susceptibility to lung injury in an otherwise identical genetic background. Interestingly, asbestos treatment induces a significant (~40%) increase in plasma ecSOD activity in the sod3129 mice, but not in the sod3wt mice. Asbestos administration results in a loss of ecSOD activity and protein from lung tissue of both congenic strains, but the lung ecSOD activity remains significantly higher in sod3129 mice. As expected, asbestos treatment results in a significant recovery of ecSOD protein in bronchoalveolar lavage fluid (BALF). The BALF of sod3129 mice also have significantly lower levels of proteins and inflammatory cells, especially neutrophils, accompanied by a significantly lower extent of lung injury, as measured by a pathology index score or hydroxyproline content. Immunohistochemistry reveals a significant loss of ecSOD from the tips of the respiratory epithelial cells in response to asbestos treatment and that the loss of immunodetectable ecSOD is compensated for by enzyme expression by infiltrating cells, especially in the sod3wt mice. Our studies thus identify ecSOD as an important anti-inflammatory gene, responsible for most, if not all of the resistance to asbestos-induced lung injury reported for the 129/J strain of mice. The data further suggest allele-specific differences in the regulation of ecSOD expression. These congenic mice therefore represent a very useful model to study the role of this enzyme in all inflammatory diseases. Polymorphisms in human ecSOD have also been reported and it appears logical to assume that such variations may have a profound effect on disease susceptibility.  相似文献   

2.
The FX locus encodes an essential enzyme in the de novo pathway of GDP-fucose biosynthesis. Mice homozygous for a targeted mutation of the FX gene manifest a host of pleiotropic abnormalities including a lethal phenotype that is almost completely penetrant in heterozygous intercrosses on a mixed genetic background. Here we have investigated genetic suppression of FX-mediated lethality. Reduced recovery of heterozygous mice was observed while backcrossing the null FX allele to C57BL/6J (B6), but was less dramatic in an outcross to CASA/Rk and absent in an outcross to 129S1/SvImJ, indicating that genetic background modifies survival of FX+/- progeny. Substantial strain-specific differences in pre- and postnatal survival of FX-/- progeny were also detected in heterozygous crosses of C57BL/6J congenic, 129S1B6F1, and B6CASAF1 mice. Specifically, intrauterine survival of FX-/- mice was greatly increased during a heterozygous intercross on a uniform C57BL/6J genetic background compared with survival on a hybrid genetic background consisting of a mixture of C57BL/6J and 129S2/SvPas. In addition, statistically significant clustering of FX-/- progeny into litters and specific breeding cages was noted during a B6CASAF1 FX+/- intercross, suggesting a rare mechanism for modifier gene action in which parentally expressed genes define the phenotype, in this case the survival potential, of mutant offspring. Our results disclose that lethality in FX mutant mice is determined by one or more strain-specific modifier loci.  相似文献   

3.
4.
Previous studies have indicated that androgen regulation of certain gene products in murine kidney is genetically controlled. In the present work, the expression of renal ornithine decarboxylase (ODC) gene(s) was used as a biological marker to study androgen responsiveness of eight inbred strains of mice (A/J, C57BR/cdJ, 129/J, C57L/J, BALB/cJ, SM/J, RF/J, and C57BL/6J). Kidneys of untreated females from these strains did not have significantly different basal ODC activities or ODC mRNA concentrations. However, renal enzyme concentrations in intact male mice exhibited marked strain-dependent variation; three strains (RF/J, SM/J, and C57BR/cdJ) had 5- to 20-fold higher activities than the other five strains. Renal ODC mRNA content showed similar genetic variability in the male mice; animals with highest enzyme activity had higher mRNA levels than those with low activity. These results could not be explained by differences in either serum testosterone levels or renal nuclear androgen receptor content, suggesting that the animals were differentially sensitive to endogenous androgens. To evaluate further the androgen regulation of ODC gene expression, female mice were treated with testosterone-releasing implants for 5-7 days. The two strains (A/J and C57BL/6J) that had low enzyme activity in response to endogenous testosterone in male mice also showed blunted responses to exogenous androgen administration, as measured by the induction of ODC and its mRNA. The relative distribution of the two mRNA species coding for ODC (2.2 and 2.7 kb in size) exhibited strain-dependent variation that did not, however, correlate with the androgen responsiveness. Studies of the mRNA levels in reciprocal F1 hybrids of C57BR/cdJ and C57BL/6J mice suggested that androgen sensitivity of ODC gene expression, at least in these crosses, was inherited in an autosomal dominant manner.  相似文献   

5.
C57BL/6J (B6) mice containing the Mus domesticus poschiavinus Y chromosome, YPOS, develop ovarian tissue, whereas testicular tissue develops in DBA/2J or 129S1/SvImJ (129) mice containing the YPOS chromosome. To identify genes involved in sex determination, we used a congenic strain approach to determine which chromosomal regions from 129Sl/SvImJ provide protection against sex reversal in XYPOS mice of the C57BL/6J.129-YPOS strain. Genome scans using microsatellite and SNP markers identified a chromosome 11 region of 129 origin in C57BL/6J.129-YPOS mice. To determine if this region influenced testis development in XYPOS mice, two strains of C57BL/6J-YPOS mice were produced and used in genetic experiments. XYPOS adults homozygous for the 129 region had a lower incidence of sex reversal than XYPOS adults homozygous for the B6 region. In addition, many homozygous 129 XYPOS fetuses developed normal-appearing testes, an occurrence never observed in XYPOS mice of the C57BL/6J-YPOS strain. Finally, the amount of testicular tissue observed in ovotestes of heterozygous 129/B6 XYPOS fetuses was greater than the amount observed in ovotestes of homozygous B6 XYPOS fetuses. We conclude that a chromosome 11 locus derived from 129Sl/SvImJ essentially protects against sex reversal in XYPOS mice. A number of genes located in this chromosome 11 region are discussed as potential candidates.  相似文献   

6.
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disorder in which complex genetic factors play an important role. Several strains of gene-targeted mice have been reported to develop SLE, implicating the null genes in the causation of disease. However, hybrid strains between 129 and C57BL/6 mice, widely used in the generation of gene-targeted mice, develop spontaneous autoimmunity. Furthermore, the genetic background markedly influences the autoimmune phenotype of SLE in gene-targeted mice. This suggests an important role in the expression of autoimmunity of as-yet-uncharacterised background genes originating from these parental mouse strains. Using genome-wide linkage analysis, we identified several susceptibility loci, derived from 129 and C57BL/6 mice, mapped in the lupus-prone hybrid (129 × C57BL/6) model. By creating a C57BL/6 congenic strain carrying a 129-derived Chromosome 1 segment, we found that this 129 interval was sufficient to mediate the loss of tolerance to nuclear antigens, which had previously been attributed to a disrupted gene. These results demonstrate important epistatic modifiers of autoimmunity in 129 and C57BL/6 mouse strains, widely used in gene targeting. These background gene influences may account for some, or even all, of the autoimmune traits described in some gene-targeted models of SLE.  相似文献   

7.
Restriction enzyme and Southern gel analyses were used to determine the number and location of endogenous ecotropic retroviruses in the germ line of several mouse strains congenic at the Fv-2 gene locus. A new endogenous ecotropic provirus was observed in the germ line of B6.S (Fv-2ss) mice, in addition to the resident provirus found in its congenic partner C57BL/6 (Fv-2rr). This new provirus was similar in structure to the C57BL provirus. The SIM strain of mice, the donors of the Fv-2s allele in B6.S mice, does not contain ecotropic proviruses, suggesting that the new provirus in the B6.S mouse strain arose by germ-line reintegration during the construction of this strain. Mendelian segregation analysis indicated that this new provirus was linked to the Fv-2 gene locus on chromosome 9. In three other Fv-2s congenic mouse strains--B10.C (47N), B6.C (H-7b), and C57BL/6J Trfa, Bgsd--no additional ecotropic endogenous viruses were detected, suggesting that the reinsertion event that occurred during the construction of B6.S is not essential for the acquisition of the Fv-2s phenotype in the C57BL genetic background. Although numerous reports of germ-line reinsertions of ecotropic virus in high-virus mouse strains have been received, the present results provide definitive evidence that similar germ-line amplifications of endogenous ecotropic virus can occur in a low-virus mouse strain.  相似文献   

8.
The protective efficacy of mAbs to Cryptococcus neoformans glucuronoxylomannan depends on Ab isotype. Previous studies in A/JCr and C57BL/6J mice showed relative protective efficacy of IgG1, IgG2a > IgG3. However, we now report that in C57BL/6J x 129/Sv mice, IgG3 is protective while IgG1 is not protective, with neither isotype being protective in 129/Sv mice. IgG1, IgG2a, and IgG3 had different effects on IFN-gamma expression in infected C57BL/6J x 129/Sv mice. IgG1-treated C57BL/6J x 129/Sv mice had significantly more pulmonary eosinophilia than IgG2a- and IgG3-treated C57BL/6J x 129/Sv mice. C. neoformans infection and Ab administration had different effects on FcgammaRI, FcgammaRII, and FcgammaRIII expression in C57BL/6J, 129/Sv, and C57BL/6J x 129/Sv mice. Our results indicate that the relative efficacy of Ab isotype function against C. neoformans is a function of the genetic background of the host and that IgG3-mediated protection in C57BL/6J x 129/Sv mice was associated with lower levels of IFN-gamma and fewer pulmonary eosinophils. The dependence of isotype efficacy on host genetics underscores a previously unsuspected complex relationship between the cellular and humoral arms of the adaptive immune response.  相似文献   

9.
The levels of apolipoprotein A-IV (apoA-IV) mRNA are regulated by dietary lipid in the liver of both the mouse and rat. Thirteen different inbred mouse strains were fed a high lipid diet, and the effect on apoA-IV liver mRNA levels was examined. It was found that each strain responded in one of two ways. Mice of four strains had higher liver apoA-IV mRNA levels as compared with syngeneic mice fed a normal chow diet. Mice of the other nine strains had decreased liver apoA-IV mRNA levels as compared with syngeneic mice fed a normal chow diet. Using F1 hybrids between mice from BALB/c, C3H, and C57BL/6 and between 129 and C57BL/6, as well as recombinant inbred strains derived from a cross between BALB/c and C57BL/6, we have shown that both the normal level of liver apoA-IV mRNA in the chow-fed mice and the lipid-dependent regulation of apoA-IV mRNA levels are controlled by cis-acting genetic elements. The apoA-IV mRNA levels in mice fed a normal diet varied dramatically among strains, with the largest difference (90-fold) being between the 129/J inbred strain and the C57BL/6J strain. In addition, we have examined the expression of apoA-IV during mouse development. ApoA-IV mRNA is expressed early in mouse liver (16 days postcoitum), whereas others have shown previously that rat liver apoA-IV mRNA is undetectable until 14 days after birth. ApoA-IV mRNA levels in the intestine and apoA-I mRNA levels in the liver and intestine, by contrast, mirror the pattern seen in the rat.  相似文献   

10.
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disorder in which complex genetic factors play an important role. Several strains of gene-targeted mice have been reported to develop SLE, implicating the null genes in the causation of disease. However, hybrid strains between 129 and C57BL/6 mice, widely used in the generation of gene-targeted mice, develop spontaneous autoimmunity. Furthermore, the genetic background markedly influences the autoimmune phenotype of SLE in gene-targeted mice. This suggests an important role in the expression of autoimmunity of as-yet-uncharacterised background genes originating from these parental mouse strains. Using genome-wide linkage analysis, we identified several susceptibility loci, derived from 129 and C57BL/6 mice, mapped in the lupus-prone hybrid (129 × C57BL/6) model. By creating a C57BL/6 congenic strain carrying a 129-derived Chromosome 1 segment, we found that this 129 interval was sufficient to mediate the loss of tolerance to nuclear antigens, which had previously been attributed to a disrupted gene. These results demonstrate important epistatic modifiers of autoimmunity in 129 and C57BL/6 mouse strains, widely used in gene targeting. These background gene influences may account for some, or even all, of the autoimmune traits described in some gene-targeted models of SLE.  相似文献   

11.
Extensive evidence indicates that genetic predisposition is a central element in susceptibility to systemic lupus erythematosus both in humans and animals. We have previously shown that a congenic line carrying a 129-derived chromosome 1 interval on the C57BL/6 background developed humoral autoimmunity. To further dissect the contribution to autoimmunity of this 129 interval, we have created six subcongenic strains carrying fractions of the original 129 region and analyzed their serological and cellular phenotypes. At 1 year of age the congenic strain carrying a 129 interval between the microsatellites D1Mit15 (87.9 cM) and D1Mit115 (99.7 cM) (B6.129chr1b) had high levels of autoantibodies, while all the other congenic lines were not significantly different from the C57BL/6 controls. The B6.129chr1b strain displayed only mild proliferative glomerulonephritis despite high levels of IgG and C3 deposited in the kidneys. FACS analysis of the spleens revealed that the B6.129chr1b mice had a marked increase in the percentage of activated T cells associated with a significant reduction in the proportion of CD4(+)CD25(high) regulatory T cells. Moreover, this analysis showed a significantly reduced percentage of marginal zone B cells that preceded autoantibody production. Interestingly the 129chr1b-expressing bone marrow-derived macrophages displayed an impaired uptake of apoptotic cells in vitro. Collectively, our data indicate that the 129chr1b segment when recombined on the C57BL/6 genomic background is sufficient to induce loss of tolerance to nuclear Ags. These findings have important implication for the interpretation of the autoimmune phenotype associated with gene-targeted models.  相似文献   

12.
The induction of null mutations by means of homologous recombination is a powerful technique for clarifying the biological activities of target genes. However, the problems of the genetic background and flanking genes should be borne in mind. Here we employed a breeding strategy to compare three lines of mice deficient in the basigin (Bsg)/CD147 gene. The first line was F2 from F1 hybrid offspring of the 129/SV chimera and C57BL/6J. The second one was from a C57BL/6J congenic line. Both lines showed high embryonic lethality, sterility, and blindness. The third one was 'reverse F2' from 'reverse F1' hybrid offspring of the C57BL/6J congenic line and 129/SV. Surprisingly, this line showed a normal birth rate, while sterility and blindness persisted. Our results clearly separate the effects of the induced null mutation from those of flanking genes and the genetic background, and provide a useful means of investigating the biological functions of Bsg.  相似文献   

13.
Most mixed strain progeny from gene-knockout experiments typically originate from C57BL/6J and one of the 129 substrains, frequently 129S6/SvEvTac. The results of this behavioral survey suggest that C57BL/6J:129S6/SvEvTac mixed strain mice are amenable to behavioral testing. The variability in behavioral tasks for subjects arising from this mixed strain genetic background does not preclude screening with a battery of behavioral tests. With clues provided by a screen of mixed strain subjects, follow-up analyses with isogenic, congenic, or F1 hybrid animals may be targeted to specific behavioral themes.  相似文献   

14.
The levels of circulating IFN in mice infected with Newcastle disease virus (NDV) are regulated by the If-1 locus. In this study we show that in NDV-infected C57BL/6 mice, which carry the If-1h allele and produce high levels of IFN, high levels of both IFN-alpha and -beta mRNA can be detected in the spleen. In contrast, only very low levels of IFN mRNA could be detected in spleens of infected BALB/c mice containing the If-1l allele and producing low levels of IFN or in B6.C-H28c mice that are congenic for the If-1l allele. The relative levels of all individual IFN-alpha 1, alpha 4, and alpha 6 mRNA in spleens of infected BALB/c were lower than in spleens of infected C57BL/6 mice, indicating that the If-1 locus affects the expression of all IFN-alpha subtypes and is not associated with the deletion or inactivation of a specific IFN gene. The relative levels of IFN regulatory factor-1 mRNA in infected mice carrying the If-1l and If-1h loci were comparable, suggesting that the If-1 regulation is not associated with the altered expression of the IFN regulatory factor-1 gene. Quantitative difference in the expression of IFN-alpha and -beta genes was also observed in in vitro-infected peritoneal macrophages isolated from either C57BL/6 or BALB/c mice. A surprise finding was that the If-1 locus also affected the NDV-induced expression of two other cytokine genes, TNF-alpha and IL-6. Priming of the macrophage cultures with murine IFN enhanced the expression of all cytokine genes, and the relative levels of IFN, TNF-alpha, and IL-6 mRNA induced by NDV in macrophages derived from C57BL/6 and BALB/c mice were comparable. We propose that the If-1 locus affects the early stages of a signal transduction pathway which are common to the virus-mediated induction of IFN, TNF-alpha, and IL-6 genes.  相似文献   

15.
An interaction between free fatty acids and UCP1 (uncoupling protein-1) leading to de-energization of mitochondria was assumed to be a key event for triggering heat production in brown fat. Recently, Matthias et al., finding indistinguishable de-energization of isolated brown fat mitochondria by fatty acids in UCP1-deficient mice and control mice, challenged this assumption (Matthias, A., Jacobsson, A., Cannon, B., and Nedergaard, J. (1999) J. Biol. Chem. 274, 28150-28160). Since their results were obtained using UCP1-deficient and control mice on an undefined genetic background, we wanted to determine unambiguously the phenotype of UCP1 deficiency with the targeted Ucp1 allele on congenic C57BL/6J and 129/SvImJ backgrounds. UCP1-deficient congenic mice have a very pronounced cold-sensitive phenotype; however, deficient mice on the F1 hybrid background were resistant to cold. We propose that heterosis provides a mechanism to compensate for UCP1 deficiency. Contrary to the results of Matthias et al., we found a significant loss of fatty acid-induced de-energization, as reflected by membrane potential and oxygen consumption, in brown fat mitochondria from UCP1-deficient mice. Unlike cold sensitivity, fatty acid-induced uncoupling of mitochondria was independent of the genetic background of UCP1-deficient mice. We propose that intracellular free fatty acids directly regulate uncoupling activity of UCP1 in a manner consistent with models described in the literature.  相似文献   

16.
Two new haplotypes of the [Gus] gene complex have been characterized following their transfer from Mus musculus castaneus, where they were found, to a C57BL/6J genetic background. The [GUS]CS haplotype carries a new structural allele, Gus-scs, coding for enzyme with decreased thermolability and lacking an antigenic site present in other beta-glucuronidase allozymes. The [Gus]CL haplotype carries another new structural allele, Gus-scl, that codes for enzyme with increased thermolability and possessing the antigenic site. Both CS and CL beta-glucuronidase have the same catalytic activity/molecule as the standard B allozyme from C57BL/6J mice. Mice carrying either the [Gus]CS or [Gus]CL haplotype have reduced enzyme activity in all tissues examined at all stages of development. The reduced enzyme activity is partially accounted for by reduced rates of enzyme synthesis, and the remainder probably results from increased rates of enzyme turnover. beta-Glucuronidase mRNA levels in these mice were not reduced suggesting that the observed reduction in enzyme synthesis is due to a decreased efficiency of translation for CS and CL mRNA.  相似文献   

17.
We have previously reported suggestive evidence for a locus on Chromosome (Chr) 7 that affects adiposity in F2 mice from a CAST/Ei × C57BL/6J intercross fed a high-fat diet. Here we characterize the effect of a high-fat (32.6 Kcal% fat) diet on male and female congenic mice with a C57BL/6J background and a CAST/Ei-derived segment on Chr 7. Adiposity index (AI) and weights of certain fat pads were approximately 50% lower in both male and female congenic mice than in control C57BL/6J mice, and carcass fat content was significantly reduced. The reduction of fat depot weights was not seen, however, in congenic animals fed a low-fat chow diet (12 Kcal% fat). The congenic segment is approximately 25 cM in length, extending from D7Mit213 to D7Mit41, and includes the tub, Ucp2, and Ucp3, genes, all of which are candidate genes for this effect. Some polymorphisms have been found on comparing c-DNA sequences of the Ucp2 gene from C57BL/6J and CAST/Ei mice. These results suggest that one or more genes present in the congenic segment modulate the susceptibility to fat deposition on feeding a high-fat diet. We were unable to show any significant difference between the energy intakes of the congenic and the control C57BL/6J mice on the high-fat diet. Also, measurements of energy expenditure in male mice at 6 weeks of age, during the first 2 weeks of exposure to the high-fat diet, failed to show any differences between control and congenic animals. Received: 30 September 1998 / Accepted: 22 December 1998  相似文献   

18.
Tanabe LM  Martin C  Dauer WT 《PloS one》2012,7(2):e32245
DYT1 dystonia is a debilitating neurological disease characterized by involuntary twisting movements. The disease is caused by an in-frame deletion (GAG, "ΔE") mutation in the TOR1A gene that encodes the torsinA protein. Intriguingly, only 30% of mutation carriers exhibit motor symptoms despite the fact that functional brain imaging studies show abnormal brain metabolism in all carriers. Because genetic modifiers may be a determinant of this reduced penetrance, we examined the genetic contribution of three different inbred strains of mice on the DYT1 mutation in animals that are homozygous (Tor1a(ΔE/ΔE)) or heterozygous (Tor1a(ΔE/+); disease state) for the disease-causing ΔE mutation. We find that the DBA/2J, C57BL/6J, and CD1-ICR contribution of genes significantly alter lifespan in Tor1a(ΔE/ΔE) mice, which die during the first few days of life on the 129S6/SvEvTac (129) background. The C57BL/6J (B6) strain significantly decreases life expectancy of Tor1a(ΔE/ΔE) animals but, like 129S6/SvEvTac Tor1a(ΔE/+) mice, congenic C57BL/6J Tor1a(ΔE/+) mice do not exhibit any motor abnormalities. In contrast, the DBA/2J (D2) strain significantly increases life expectancy. This effect was not present in congenic DBA/2J Tor1a(ΔE/ΔE) mice, indicating that the extended lifespan of F2 129/D2 mice was due to a combination of homozygous and heterozygous allelic effects. Our observations suggest that genetic modifiers may alter the penetrance of the ΔE mutation, and that mapping these modifiers may provide fresh insight into the torsinA molecular pathway.  相似文献   

19.
Growth hormone (GH) and insulin-like growth factor (IGF) signaling regulates lifespan in mice. The modulating effects of genetic background gained much attention because it was shown that life-prolonging effects in Snell dwarf and GH receptor knockout vary between mouse strains. We previously reported that heterozygous IGF-1R inactivation (IGF-1R+/−) extends lifespan in female mice on 129/SvPas background, but it remained unclear whether this mutation produces a similar effect in other genetic backgrounds and which molecules possibly modify this effect. Here, we measured the life-prolonging effect of IGF-1R+/− mutation in C57BL/6J background and investigated the role of insulin/IGF signaling molecules in strain-dependent differences. We found significant lifespan extension in female IGF-1R+/− mutants on C57BL/6J background, but the effect was smaller than in 129/SvPas, suggesting strain-specific penetrance of longevity phenotypes. Comparing GH/IGF pathways between wild-type 129/SvPas and C57BL/6J mice, we found that circulating IGF-I and activation of IGF-1R, IRS-1, and IRS-2 were markedly elevated in 129/SvPas, while activation of IGF pathways was constitutively low in spontaneously long-lived C57BL/6J mice. Importantly, we demonstrated that loss of one IGF-1R allele diminished the level of activated IGF-1R and IRS more profoundly and triggered stronger endocrine feedback in 129/SvPas background than in C57BL/6J. We also revealed that acute oxidative stress entails robust IGF-1R pathway activation, which could account for the fact that IGF-1R+/− stress resistance phenotypes are fully penetrant in both backgrounds. Together, these results provide a possible explanation why IGF-1R+/− was less efficient in extending lifespan in C57BL/6J compared with 129/SvPas.  相似文献   

20.
To evaluate the effect of genetic background on high-density lipoprotein cholesterol (HDL) levels in Soat1(-/-) mice, we backcrossed sterol O-acyltransferase 1 (Soat1)(-/-) mice, originally reported to have elevated HDL levels, to C57BL/6 mice and constructed a congenic strain with only a small region (3.3Mb) of 129 alleles, specifically excluding the nearby apolipoprotein A-II (Apoa2) gene from 129. HDL levels in these Soat1(-/-) mice were no different from C57BL/6, indicating that the passenger gene Apoa2 caused the previously reported elevation of HDL in these Soat1(-/-) mice. Because many knockouts are made in strain 129 and then subsequently backcrossed into C57BL/6, it is important to identify quantitative trait loci (QTL) that differ between 129 and C57BL/6 so that one can guard against effects ascribed to a knockout but really caused by a passenger gene from 129. To provide such data, we generated 528 F(2) progeny from an intercross of 129S1/SvImJ and C57BL/6 and measured HDL concentrations in F(2) animals first fed chow and then atherogenic diet. A genome wide scan using 508 single-nucleotide polymorphisms (SNPs) identified 19 QTL, 2 of which were male specific and 2 were female specific. Using comparative genomics and haplotype analysis, we narrowed QTL on chromosomes 3, 5, 8, 17, and 18 to 0.5, 6.3, 2.6, 1.1, and 0.6 Mb, respectively. These data will serve as a reference for any effort to test the impact of candidate genes on HDL using a knockout strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号