首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BRCA1 is a tumor suppressor with several important nuclear functions. BRCA1 has no known cytoplasmic functions. We show here that the two previously identified nuclear localization signals (NLSs) are insufficient for nuclear localization of BRCA1 due to the opposing action of an NH2-terminal nuclear export signal. In transfected breast cancer cells, BRCA1 nuclear localization requires both the NLSs and NH2-terminal RING domain region; mutating either of these sequences shifts BRCA1 to the cytoplasm. The BRCA1 RING element mediates nuclear import via association with BARD1, and this is not affected by cancer-associated RING mutations. Moreover, BARD1 directly masks the BRCA1 nuclear export signal, and the resulting block to nuclear export is requisite for efficient import and nuclear localization of ectopic and endogenous BRCA1. Our results explain why BRCA1 exon 11 splice variants, which lack the NLSs but retain the RING domain, are frequently detected in the nucleus and in nuclear foci in vivo. In fact, co-expression of BARD1 promoted formation of DNA damage-induced nuclear foci comprising ectopic wild-type or NLS-deficient BRCA1, implicating BARD1 in nuclear targeting of BRCA1 for DNA repair. Our identification of BARD1 as a BRCA1 nuclear chaperone has regulatory implications for its reported effects on BRCA1 protein stability, ubiquitin ligase activity, and DNA repair.  相似文献   

2.
BRCA1 is an important mediator of the DNA damage response pathway. Previous studies have identified a number of proteins that associate with BRCA1 at nuclear foci after ionizing radiation (IR)-induced DNA damage. However, the co-localization patterns of BRCA1 and various DNA damage response proteins have not yet been systematically quantified and compared within the same experimental system. In this study, a new inducible human cell line was established to allow unambiguous detection of YFP–BRCA1 at nuclear foci. Quantitative 2-D microscopic analysis was performed to compare the intranuclear co-localization of YFP–BRCA1 with 10 cellular proteins and 4 cellular domains before and after IR. Intriguingly, YFP–BRCA1 displayed significantly better focal co-localization with BARD1, RAP80 and Abraxas than with the upstream foci-initiating proteins γH2AX and MDC1. In contrast to previous reports, we found that the co-localization between YFP–BRCA1 and 53BP1 foci was surprisingly weak. Quantitative analyses of 3-D confocal images showed that ~ 60% of 53BP1 foci were unrelated to YFP–BRCA1 foci, ~ 35% of foci were abutting and only ~ 5% of foci co-localized. The YFP–BRCA1 and 53BP1 nuclear foci were distinctively separated within the first 3 h after IR. In addition, in situ nuclear retention analysis revealed YFP–BRCA1 and BARD1 are less mobile than 53BP1 at IR-induced nuclear foci. Our findings indicate that BRCA1–BARD1 and 53BP1 are proximal but not overlapping at DNA break sites and are consistent with recent evidence for distinct roles of these proteins in the DNA damage response pathway.  相似文献   

3.
4.
BRCA1 is a DNA damage response protein and functions in the nucleus to stimulate DNA repair and at the centrosome to inhibit centrosome overduplication in response to DNA damage. The loss or mutation of BRCA1 causes centrosome amplification and abnormal mitotic spindle assembly in breast cancer cells. The BRCA1-BARD1 heterodimer binds and ubiquitinates γ-tubulin to inhibit centrosome amplification and promote microtubule nucleation; however regulation of BRCA1 targeting and function at the centrosome is poorly understood. Here we show that both N and C termini of BRCA1 are required for its centrosomal localization and that BRCA1 moves to the centrosome independently of BARD1 and γ-tubulin. Mutations in the C-terminal phosphoprotein-binding BRCT domain of BRCA1 prevented localization to centrosomes. Photobleaching experiments identified dynamic (60%) and immobilized (40%) pools of ectopic BRCA1 at the centrosome, and these are regulated by the nuclear export receptor CRM1 (chromosome region maintenance 1) and BARD1. CRM1 mediates nuclear export of BRCA1, and mutation of the export sequence blocked BRCA1 regulation of centrosome amplification in irradiated cells. CRM1 binds to undimerized BRCA1 and is displaced by BARD1. Photobleaching assays implicate CRM1 in driving undimerized BRCA1 to the centrosome and revealed that when BRCA1 subsequently binds to BARD1, it is less well retained at centrosomes, suggesting a mechanism to accelerate BRCA1 release after formation of the active heterodimer. Moreover, Aurora A binding and phosphorylation of BRCA1 enhanced its centrosomal retention and regulation of centrosome amplification. Thus, CRM1, BARD1 and Aurora A promote the targeting and function of BRCA1 at centrosomes.  相似文献   

5.
The breast cancer regulatory protein-1 (BRCA1)-associated RING domain 1 (BARD1) gene is mutated in a subset of breast/ovarian cancers. BARD1 functions as a heterodimer with BRCA1 in nuclear DNA repair. BARD1 also has a BRCA1-independent apoptotic activity. Here we investigated the link between cytoplasmic localization and apoptotic function of BARD1. We used immunofluorescence microscopy and deconvolution analysis to resolve BARD1 cytoplasmic staining patterns and detected endogenous BARD1 at mitochondria. BARD1 was also detected in mitochondrial cell fractions by immunoblotting. The targeting of BARD1 to mitochondria was modestly stimulated by DNA damage and did not require BRCA1 as indicated by RNA interference and peptide-competition experiments. Transiently expressed yellow fluorescence protein-BARD1 localized to mitochondria, and the targeting sequences were mapped to both the N and C terminus of BARD1. Ectopic yellow fluorescence protein-BARD1 induced apoptosis and loss of mitochondrial membrane potential in MCF-7 breast tumor cells. BARD1 apoptotic function was associated with stimulation of Bax oligomerization at mitochondria. This distinguishes it from BRCA1, which is pro-apoptotic but did not induce Bax oligomerization. The cancer-associated BARD1 splice-variant DeltaRIN (lacks the BRCA1 binding domain and ankyrin repeats) was recruited to mitochondria but did not stimulate apoptosis or alter membrane permeability. We propose that BARD1 has two main sites of action in its cellular response to DNA damage, the nucleus, where it promotes cell survival through DNA repair, and the mitochondria, where BARD1 regulates apoptosis.  相似文献   

6.
Nuclear targeting and cell cycle regulatory function of human BARD1   总被引:1,自引:0,他引:1  
The BARD1 gene is mutated in a subset of breast and ovarian cancers, implicating BARD1 as a potential tumor suppressor. BARD1 gains a ubiquitin E3 ligase activity when heterodimerized with BRCA1, but the only known BRCA1-independent BARD1 function is a p53-dependent proapoptotic activity stimulated by nuclear export to the cytoplasm. We described previously the nuclear-cytoplasmic shuttling of BARD1, and in this study, we identify the transport sequences that target BARD1 to the nucleus and show that they are essential for BARD1 regulation of the cell cycle. We used deletion mapping and mutagenesis to define two active nuclear localization signals (NLSs) present in human BARD1 that are not conserved in rodent BARD1. Site-directed mutagenesis of the primary bipartite NLS abolished BARD1 nuclear import and caused its cytoplasmic accumulation. Using flow cytometry and 5-bromo-2-deoxyuridine incorporation assays, we discovered that transiently expressed BARD1 can elicit a p53-independent cell cycle arrest in G1 phase, and that this was abrogated by mutation of the BARD1 NLS but not by mutation of the nuclear export signal. Thus, BARD1 regulation of the cell cycle is a nuclear event and may be linked to its induced expression during mitosis and its possible involvement in the DNA damage checkpoint.  相似文献   

7.
BARD1 heterodimerizes with BRCA1, forming an E3 ubiquitin ligase that functions at nuclear foci to repair DNA damage and the centrosome to regulate mitosis. We compared BARD1 recruitment at these structures using fluorescence recovery after photobleaching assays to measure YFP-BARD1 dynamics in live cells. In nuclei at ionizing radiation-induced foci, 20% of the BARD1 pool was immobile and 80% of slow mobility exhibiting a recovery time > 500 s. In contrast, at centrosomes 83% of BARD1 was rapidly mobile with extremely fast turnover (recovery time ~ 20 s). The ~ 25-fold faster exchange of BARD1 at centrosomes correlated with BRCA1-independent recruitment. We mapped key targeting sequences to a combination of the N and C-termini, and showed that mutation of the nuclear export signal reduced centrosome localization by 50%, revealing a role for CRM1. Deletion of the sequence 128-550 increased BARD1 turnover at the centrosome, consistent with a role in transient associations. Conversely, the cancer mutation Q564H reduced turnover by 25%. BARD1 is one of the most highly mobile proteins yet detected at the centrosome, and in contrast to its localization at DNA repair foci, which requires dimerization with BRCA1, targeting of BARD1 to the centrosome occurs prior to heterodimerization and its rapid turnover may provide a mechanism to regulate dimer formation.  相似文献   

8.
BRCA1 is a tumor suppressor involved in the maintenance of genome integrity. BRCA1 co-localizes with DNA repair proteins at nuclear foci in response to DNA double-strand breaks caused by ionizing radiation (IR). The response of BRCA1 to agents that elicit DNA single-strand breaks (SSB) is poorly defined. In this study, we compared chemicals that induce SSB repair and observed the most striking nuclear redistribution of BRCA1 following treatment with the alkylating agent methyl methanethiosulfonate (MMTS). In MCF-7 breast cancer cells, MMTS induced movement of endogenous BRCA1 into distinctive nuclear foci that co-stained with the SSB repair protein XRCC1, but not the DSB repair protein gamma-H2AX. XRCC1 did not accumulate in foci after ionizing radiation. Moreover, we showed by deletion mapping that different sequences target BRCA1 to nuclear foci induced by MMTS or by ionizing radiation. We identified two core MMTS-responsive sequences in BRCA1: the N-terminal BARD1-binding domain (aa1-304) and the C-terminal sequence aa1078-1312. These sequences individually are ineffective, but together they facilitated BRCA1 localization at MMTS-induced foci. Site-directed mutagenesis of two SQ/TQ motif serines (S1143A and S1280A) in the BRCA1 fusion protein reduced, but did not abolish, targeting to MMTS-inducible foci. This is the first report to describe co-localization of BRCA1 with XRCC1 at SSB repair foci. Our results indicate that BRCA1 requires BARD1 for targeting to different types of DNA lesion, and that distinct C-terminal sequences mediate selective recruitment to sites of double- or single-strand DNA damage.  相似文献   

9.
BRCA1 is involved in maintaining genomic integrity and, as a regulator of the G2/M checkpoint, contributes to DNA repair and cell survival. The overexpression of BRCA1 elicits diverse cellular responses including apoptosis due to the stimulation of specific signaling pathways. BRCA1 is normally regulated by protein turnover, but is stabilized by BARD1 which can recruit BRCA1 to the nucleus to form a ubiquitin E3 ligase complex involved in DNA repair or cell survival. Here, we identify BARD1 as a regulator of BRCA1-dependent apoptosis. Using transfected MCF-7 breast cancer cells, we found that BRCA1-induced apoptosis was independent of p53 and was stimulated by BRCA1 nuclear export. Conversely, BARD1 reduced BRCA1-dependent apoptosis by a mechanism involving nuclear sequestration. Regulation of apoptosis by BARD1 was reduced by BRCA1 cancer mutations that disrupt Ub ligase function. Transfection of BRCA1 N-terminal peptides that disrupted the cellular BRCA1-BARD1 interaction caused a loss of nuclear BRCA1 that correlated with increased apoptosis in single cell assays, but did not alter localization or expression of endogenous BARD1. Reducing BARD1 levels by siRNA caused a small increase in apoptosis. Our findings identify a novel apoptosis inhibitory function of BARD1 and suggest that nuclear retention of BRCA1-BARD1 complexes contributes to both DNA repair and cell survival.  相似文献   

10.

Background

The function of BRCA1 in response to ionizing radiation, which directly generates DNA double strand breaks, has been extensively characterized. However previous investigations have produced conflicting data on mutagens that initially induce other classes of DNA adducts. Because of the fundamental and clinical importance of understanding BRCA1 function, we sought to rigorously evaluate the role of this tumor suppressor in response to diverse forms of genotoxic stress.

Methodology/Principal Findings

We investigated BRCA1 stability and localization in various human cells treated with model mutagens that trigger different DNA damage signaling pathways. We established that, unlike ionizing radiation, either UVC or methylmethanesulfonate (MMS) (generating bulky DNA adducts or alkylated bases respectively) induces a transient downregulation of BRCA1 protein which is neither prevented nor enhanced by inhibition of PIKKs. Moreover, we found that the proteasome mediates early degradation of BRCA1, BARD1, BACH1, and Rad52 implying that critical components of the homologous recombinaion machinery need to be functionally abrogated as part of the early response to UV or MMS. Significantly, we found that inhibition of BRCA1/BARD1 downregulation is accompanied by the unscheduled recruitment of both proteins to chromatin along with Rad51. Consistently, treatment of cells with MMS engendered complete disassembly of Rad51 from pre-formed ionizing radiation-induced foci. Following the initial phase of BRCA1/BARD1 downregulation, we found that the recovery of these proteins in foci coincides with the formation of RPA and Rad51 foci. This indicates that homologous recombination is reactivated at later stage of the cellular response to MMS, most likely to repair DSBs generated by replication blocks.

Conclusion/Significance

Taken together our results demonstrate that (i) the stabilities of BRCA1/BARD1 complexes are regulated in a mutagen-specific manner, and (ii) indicate the existence of mechanisms that may be required to prevent the simultaneous recruitment of conflicting signaling pathways to sites of DNA damage.  相似文献   

11.
12.
The breast cancer associated gene 1 (BRCA1)‐A protein complex assembles at DNA damage‐induced nuclear foci to facilitate repair of double‐stranded breaks. Here, we describe the first systematic comparison of the dynamics, copy number and organization of its core components at foci. We show that the protein pools at individual foci generally comprise a small immobile fraction (~20%) and larger mobile fraction (~80%), which together occupy the same focal space but exist at different densities. In the mobile fraction, Abraxas (CCDC98) and the heterodimer BARD1–BRCA1 share similar rates of dynamic exchange (complete turnover in ~500 seconds). In contrast, RAP80, which is required for initial foci assembly, was more dynamic with 25‐fold faster turnover at mature foci. In addition, Abraxas, BARD1, BRCA1 and Merit40 (NBA1) were stably retained in the immobile fraction of foci under conditions causing loss of BRCC36 and RAP80, suggesting a shift to RAP80‐independent localization after foci formation. These results, combined with our finding that RAP80 (~1200 copies per focus) is twofold more abundant than Abraxas/BARD1/BRCA1 at foci, suggest new models defining the dynamic organization of BRCA1‐A complex at mature foci, wherein the unusually fast turnover of RAP80 may contribute to its regulation of BRCA1‐dependent DNA repair.  相似文献   

13.
14.
Although the breast cancer susceptibility gene 1 (BRCA1) protein is predominantly nuclear, its localization can vary during the cell cycle in response to cellular insults. For example, in S-phase cells, BRCA1 forms subnuclear foci and localizes to the perinuclear region in response to DNA damage. The present study provides evidence that BRCA1 is transiently excluded from the nucleus during the early part of S phase in the absence of DNA damage. The percentage of MCF-7 human breast cancer cells predominantly expressing nonnuclear BRCA1 significantly correlates with the percentage of cells within early S phase. This redistribution of BRCA1 is partially sensitive to leptomycin B, indicating that CRM-1-mediated nuclear export is involved. Similar results were observed with MCF-12A nonmalignant human mammary cells. The abilities of BAPTA-AM, an intracellular calcium chelator, to inhibit the change in BRCA1 localization, and of A23187, a calcium ionophore, and of thapsigargin to mimic nuclear exclusion of BRCA1, provide evidence for the involvement of calcium in this process. The calcium-mediated change in BRCA1 localization occurs in several cell lines, indicating that this effect is not cell line specific. BRCA2 localization is not affected by A23187. Furthermore, inhibition of calcium-calmodulin interaction and calcium-calmodulin dependent protein kinase II attenuates the calcium-mediated change in BRCA1 localization. These data suggest that BRCA1 nuclear export can be cell cycle-regulated by a calcium-dependent mechanism.  相似文献   

15.
16.
BRCA1 accumulates in nuclear foci during S-phase and reassembles into DNA repair-associated foci after DNA damage, reflecting its role in genome maintenance. BRCA1 comprises a RING domain at the N terminus and a BRCT domain at the C terminus, through which it associates with DNA repair proteins. The key sequences that target BRCA1 to DNA damage-induced foci have not been identified. Here, we mapped the BRCA1 foci-targeting domains of yellow fluorescence protein (YFP)-tagged BRCA1 in MCF-7 breast cancer cells exposed to ionizing radiation (IR). Cancer mutations specific to the BRCT domain, but not the RING domain, abolished BRCA1 recruitment to IR-induced foci. The YFP-BRCT domain itself, however, localized poorly at IR-induced foci, and the RING domain and other sequences were negative. We discovered that only when the RING and BRCT domains were combined was foci targeting restored to levels observed for wild-type BRCA1. The RING-BRCT fusion co-localized at foci with the MDC1 DNA damage response factor and inhibited entry of endogenous BRCA1 into nuclear foci. Our results explain why exon 11-deficient BRCA1 splice variants are targeted to IR-induced foci even though they are incapable of repairing DNA damage. We propose that both RING and BRCT domains together target BRCA1 to large focal assemblies at DNA double-stranded breaks.  相似文献   

17.
BRCA1 mutations strongly predispose affected individuals to breast and ovarian cancer, but the mechanism by which BRCA1 acts as a tumor suppressor is not fully understood. Homozygous deletion of exon 2 of the mouse Brca1 gene normally causes embryonic lethality, but we show that exon 2‐deleted alleles of Brca1 are expressed as a mutant isoform that lacks the N‐terminal RING domain. This “RING‐less” BRCA1 protein is stable and efficiently recruited to the sites of DNA damage. Surprisingly, robust RAD51 foci form in cells expressing RING‐less BRCA1 in response to DNA damage, but the cells nonetheless display the substantial genomic instability. Genomic instability can be rescued by the deletion of Trp53bp1, which encodes the DNA damage response factor 53BP1, and mice expressing RING‐less BRCA1 do not show an increased susceptibility to tumors in the absence of 53BP1. Genomic instability in cells expressing RING‐less BRCA1 correlates with the loss of BARD1 and a defect in restart of replication forks after hydroxyurea treatment, suggesting a role of BRCA1–BARD1 in genomic integrity that is independent of RAD51 loading.  相似文献   

18.
The tumor suppressor BRCA1 accumulates at sites of DNA damage in a ubiquitin‐dependent manner. In this work, we revisit the role of RAP80 in promoting BRCA1 recruitment to damaged chromatin. We find that RAP80 acts redundantly with the BRCA1 RING domain to promote BRCA1 recruitment to DNA damage sites. We show that that RNF8 E3 ligase acts upstream of both the RAP80‐ and RING‐dependent activities, whereas RNF168 acts uniquely upstream of the RING domain. BRCA1 RING mutations that do not impact BARD1 interaction, such as the E2 binding‐deficient I26A mutation, render BRCA1 unable to accumulate at DNA damage sites in the absence of RAP80. Cells that combine BRCA1 I26A and mutations that disable the RAP80–BRCA1 interaction are hypersensitive to PARP inhibition and are unable to form RAD51 foci. Our results suggest that in the absence of RAP80, the BRCA1 E3 ligase activity is necessary for recognition of histone H2A Lys13/Lys15 ubiquitylation by BARD1, although we cannot rule out the possibility that the BRCA1 RING facilitates ubiquitylated nucleosome recognition in other ways.  相似文献   

19.
20.
BRCA1 is a tumor suppressor involved in DNA repair and damage-induced checkpoint controls. In response to DNA damage, BRCA1 relocalizes to nuclear foci at the sites of DNA lesions. However, little is known about the regulation of BRCA1 relocalization following DNA damage. Here we show that mediator of DNA damage checkpoint protein 1 (MDC1), previously named NFBD1 or Kiaa0170, is a proximate mediator of DNA damage responses that regulates BRCA1 function. MDC1 regulates ataxia-telangiectasia-mutated (ATM)-dependent phosphorylation events at the site of DNA damage. Importantly down-regulation of MDC1 abolishes the relocalization and hyperphosphorylation of BRCA1 following DNA damage, which coincides with defective G(2)/M checkpoint control in response to DNA damage. Taken together these data suggest that MDC1 regulates BRCA1 function in DNA damage checkpoint control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号