首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DC—SIGN(DC—specificICAM-3-grabbingnonintegrin,CD209)系C型凝集素家族主要成员,具有模式识别受体和介导细胞黏附功能。DC-SIGN可通过分子中凝集素糖识别域,识别多种病原体的外源性和机体内源性抗原以及细胞表面黏附分子(ICAM-2,3)中甘露糖或岩藻糖的糖基团,并对话协调Toll样受体等,介导树突状细胞(DC)等参与病原体或肿瘤细胞的免疫逃逸;也可调节DC黏附迁移并在炎症启动中激活初始T细胞免疫应答。因而,作为天然免疫分子介导基础,DC.SIGN在DC参与的感染性和炎症性疾病等的正负免疫调节中发挥了关键作用。目前有关DC.SIGN免疫调节效应涉及的信号转导以及分子表达调控机制尚未完全阐明,就相关进展作一综述。  相似文献   

2.
Intercellular adhesion molecule-3 (ICAM-3) binds to the alpha(L)beta(2) integrin and mediates the contact between T cells and antigen-presenting cells. It has been suggested that dendritic cell-specific ICAM-3 grabbing nonintegrin (DC-SIGN), a C-type lectin of macrophages and DCs, is an additional ligand of ICAM-3. So far, the glycan structure mediating the interaction of native ICAM-3 with DC-SIGN is undefined. Here, we demonstrate that native ICAM-3 from human peripheral leukocytes binds recombinant DC-SIGN, is recognized by monoclonal Lewis x antibodies, and specifically interacts with DC-SIGN on immature DCs. The presence of Lewis x residues on ICAM-3 was confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy. Investigations on different peripheral blood cell populations revealed that only ICAM-3 from granulocytes bound DC-SIGN. Cotransfection studies demonstrated that fucosyltransferase (FUT) IX and, to a significantly lesser extent, FUT IV, but not FUTs III and VII, mediate the synthesis of Lewis x residues on ICAM-3. These findings indicate that FUT IX is the main FUT mediating the synthesis of Lewis x residues of ICAM-3 in cells of the myeloid lineage, and that these residues bind DC-SIGN. The results suggest that ICAM-3 assists in the interaction of granulocytes with DC-SIGN of DCs.  相似文献   

3.
Interactions between the oncogenic retrovirus human T-cell leukemia virus type 1 (HTLV-1) and dendritic cells (DCs) are poorly characterized. We show here that monocyte-derived DCs form syncytia and are infected upon coculture with HTLV-1-infected lymphocytes. We examined the role of DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), a C-type lectin expressed in DCs, in HTLV-1-induced syncytium formation. DC-SIGN is known to bind with high affinity to various viral envelope glycoproteins, including human immunodeficiency virus (HIV) and hepatitis C virus, as well as to the cellular receptors ICAM-2 and ICAM-3. After cocultivating DCs and HTLV-1-infected cells, we found that anti-DC-SIGN monoclonal antibodies (MAbs) were able to decrease the number and size of HTLV-1-induced syncytia. Moreover, expression of the lectin in epithelial-cell lines dramatically enhanced the ability to fuse with HTLV-1-positive cells. Interestingly, in contrast to the envelope (Env) glycoproteins of HIV and other viruses, that of HTLV-1 does not bind directly to DC-SIGN. The facilitating role of the lectin in HTLV-1 syncytium formation is mediated by its interaction with ICAM-2 and ICAM-3, as demonstrated by use of MAbs directed against these adhesion molecules. Altogether, our results indicate that DC-SIGN facilitates HTLV-1 infection and fusion of DCs through an ICAM-dependent mechanism.  相似文献   

4.
Dendritic cells (DCs) are professional antigen-presenting cells and have come to be appreciated as critical controllers of the immune response, especially T cell responses. Apart from presenting antigens to T cells, DCs carry out many other functions in regulating immunity. DC-specific intercellular adhesion molecule (ICAM)-3 grabbing non-integrin (DC-SIGN) is a novel receptor that plays an important role in DC migration and adhesion, the inflammatory response, T cell activation, initiating the immune response, and immune escape of pathogens and tumors. DC-SIGN mediates DC binding to ICAM-3 on the T cell surface and ICAM-2 on the endothelial cell (EC) surface, and takes part in the initial interaction between DC and T cells or vascular ECs. The procedure of systematic evolution of ligands by exponential enrichment (SELEX) is a method in which single-stranded oligonucleotides are selected from a wide variety of sequences, based on their interaction with a target molecule. In this study, we selected DNA aptamers against DC-SIGN protein by SELEX, and measured their binding affinity for DC-SIGN. Finally, an appropriate aptamer with high affinity for DC-SIGN was obtained, and it blocked DC adhesion to ECs as effectively as anti-DC-SIGN monoclonal antibody.  相似文献   

5.
6.
Contact between dendritic cells (DC) and resting T cells is essential to initiate a primary immune response. Here, we demonstrate that ICAM-3 expressed by resting T cells is important in this first contact with DC. We discovered that instead of the common ICAM-3 receptors LFA-1 and alphaDbeta2, a novel DC-specific C-type lectin, DC-SIGN, binds ICAM-3 with high affinity. DC-SIGN, which is abundantly expressed by DC both in vitro and in vivo, mediates transient adhesion with T cells. Since antibodies against DC-SIGN inhibit DC-induced proliferation of resting T cells, our findings predict that DC-SIGN enables T cell receptor engagement by stabilization of the DC-T cell contact zone.  相似文献   

7.
Human herpesvirus 8 (HHV-8) causes Kaposi's sarcoma and pleural effusion lymphoma. In this study, we show that dendritic cell-specific ICAM-3 grabbing nonintegrin (DC-SIGN; CD209) is a receptor for HHV-8 infection of myeloid DCs and macrophages. DC-SIGN was required for virus attachment to these cells and DC-SIGN-expressing cell lines. HHV-8 binding and infection were blocked by anti-DC-SIGN mAb and soluble DC-SIGN, and mannan, a natural ligand for DC-SIGN. Infection of DCs and macrophages with HHV-8 led to production of viral proteins, with little production of viral DNA, similar to HHV-8 infection of vascular endothelial cells. Infection of DCs resulted in down-regulation of DC-SIGN, a decrease in endocytic activity, and an inhibition of Ag stimulation of CD8+ T cells. We propose that DC-SIGN serves as a portal for immune dysfunction and oncogenesis caused by HHV-8 infection.  相似文献   

8.
The novel dendritic cell (DC)-specific human immunodeficiency virus type 1 (HIV-1) receptor DC-SIGN plays a key role in the dissemination of HIV-1 by DC. DC-SIGN is thought to capture HIV-1 at mucosal sites of entry, facilitating transport to lymphoid tissues, where DC-SIGN efficiently transmits HIV-1 to T cells. DC-SIGN is also important in the initiation of immune responses by regulating DC-T cell interactions through intercellular adhesion molecule 3 (ICAM-3). We have characterized the mechanism of ligand binding by DC-SIGN and identified the crucial amino acids involved in this process. Strikingly, the HIV-1 gp120 binding site in DC-SIGN is different from that of ICAM-3, consistent with the observation that glycosylation of gp120, in contrast to ICAM-3, is not crucial to the interaction with DC-SIGN. A specific mutation in DC-SIGN abrogated ICAM-3 binding, whereas the HIV-1 gp120 interaction was unaffected. This DC-SIGN mutant captured HIV-1 and infected T cells in trans as efficiently as wild-type DC-SIGN, demonstrating that ICAM-3 binding is not necessary for HIV-1 transmission. This study provides a basis for the design of drugs that inhibit or alter interactions of DC-SIGN with gp120 but not with ICAM-3 or vice versa and that have a therapeutic value in immunological diseases and/or HIV-1 infections.  相似文献   

9.
Dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM-3) grabbing nonintegrin (DC-SIGN), a recently discovered type II transmembrane protein on DCs with a C-type lectin extracellular domain, is capable of binding ICAM-3 on resting T cells in the secondary lymphoid organs, providing the initial contact between these cells during the establishment of cell-mediated immunity. DC-SIGN also binds the HIV-1 envelope glycoprotein gp120 but does not function as a receptor for viral entry into DCs. Instead, DC-SIGN allows DCs in the peripheral mucosa to carry HIV-1 through the lymphatics in a "Trojan horse" fashion, where it is eventually delivered to the T cells. Also, the period of infectivity of HIV-1 is increased by several days as a result of DC-SIGN-gp120 binding, allowing for efficient trans-infection of T cells on DC arrival. The discovery of a cluster of related genes colocalized with DC-SIGN on chromosome 19p13.2-3, all displaying complex alternative splicing patterns, has led to a reexamination of the mechanisms underlying both the interactions between antigen-presenting cells (APCs) and T cells and the pathogenesis of HIV-1 infection.  相似文献   

10.
DC-SIGN, a type II membrane protein with a C-type lectin binding domain that is highly expressed on mucosal dendritic cells (DCs) and certain macrophages in vivo, binds to ICAM-3, ICAM-2, and human and simian immunodeficiency viruses (HIV and SIV). Virus captured by DC-SIGN can be presented to T cells, resulting in efficient virus infection, perhaps representing a mechanism by which virus can be ferried via normal DC trafficking from mucosal tissues to lymphoid organs in vivo. To develop reagents needed to characterize the expression and in vivo functions of DC-SIGN, we cloned, expressed, and analyzed rhesus macaque, pigtailed macaque, and murine DC-SIGN and made a panel of monoclonal antibodies (MAbs) to human DC-SIGN. Rhesus and pigtailed macaque DC-SIGN proteins were highly similar to human DC-SIGN and bound and transmitted HIV type 1 (HIV-1), HIV-2, and SIV to receptor-positive cells. In contrast, while competent to bind virus, murine DC-SIGN did not transmit virus to receptor-positive cells under the conditions tested. Thus, mere binding of virus to a C-type lectin does not necessarily mean that transmission will occur. The murine and macaque DC-SIGN molecules all bound ICAM-3. We mapped the determinants recognized by a panel of 16 MAbs to the repeat region, the lectin binding domain, and the extreme C terminus of DC-SIGN. One MAb was specific for DC-SIGN, failing to cross-react with DC-SIGNR. Most MAbs cross-reacted with rhesus and pigtailed macaque DC-SIGN, although none recognized murine DC-SIGN. Fifteen of the MAbs recognized DC-SIGN on DCs, with MAbs to the repeat region generally reacting most strongly. We conclude that rhesus and pigtailed macaque DC-SIGN proteins are structurally and functionally similar to human DC-SIGN and that the reagents that we have developed will make it possible to study the expression and function of this molecule in vivo.  相似文献   

11.
To better understand the role of dendritic cells (DCs) in human immunodeficiency virus (HIV) transmission at mucosal surfaces, we examined the expressions of the HIV adhesion molecule, dendritic-cell-specific ICAM-3 grabbing nonintegrin (DC-SIGN), its closely related homologue DC-SIGNR, and HIV coreceptors by distinct DC populations in the intestinal and genital tracts of humans and rhesus macaques. We also developed monoclonal antibodies (MAbs) specific for DC-SIGN or DC-SIGNR. In the Peyer's patches, DC-SIGN expression was detected in the interfollicular regions and in clusters of cells in the subepithelial dome regions. DC-SIGN expression was not found on plasmacytoid DCs. DC-SIGNR expression was restricted to endothelial cells in approximately one-third of the capillaries in the terminal ileum. In the vaginal epithelium, Langerhans' cells did not express DC-SIGN, whereas subepithelial DCs in the lamina propria expressed moderate levels of DC-SIGN. Finally, the rectum contained cells that expressed high levels of DC-SIGN throughout the entire thickness of the mucosa, while solitary lymphoid nodules within the rectum showed very little staining for DC-SIGN. Triple-color analysis of rectal tissue indicated that CCR5(+) CD4(+) DC-SIGN(+) DCs were localized just beneath the luminal epithelium. These findings suggest that DC-SIGN(+) DCs could play a role in the transmission of primate lentiviruses in the ileum and the rectum whereas accessibility to DC-SIGN(+) cells is limited in an intact vaginal mucosa. Finally, we identified a MAb that blocked simian immunodeficiency virus interactions with rhesus macaque DC-SIGN. This and other specific MAbs may be used to assess the relevance of DC-SIGN in virus transmission in vivo.  相似文献   

12.
In the early events of human immunodeficiency virus type 1 (HIV-1) infection, immature dendritic cells (DCs) expressing the DC-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) receptor capture small amounts of HIV-1 on mucosal surfaces and spread viral infection to CD4(+) T cells in lymph nodes (22, 34, 45). RNA interference has emerged as a powerful tool to gain insight into gene function. For this purpose, lentiviral vectors that express short hairpin RNA (shRNA) for the delivery of small interfering RNA (siRNA) into mammalian cells represent a powerful tool to achieve stable gene silencing. In order to interfere with DC-SIGN function, we developed shRNA-expressing lentiviral vectors capable of conditionally suppressing DC-SIGN expression. Selectivity of inhibition of human DC-SIGN and L-SIGN and chimpanzee and rhesus macaque DC-SIGN was obtained by using distinct siRNAs. Suppression of DC-SIGN expression inhibited the attachment of the gp120 envelope glycoprotein of HIV-1 to DC-SIGN transfectants, as well as transfer of HIV-1 to target cells in trans. Furthermore, shRNA-expressing lentiviral vectors were capable of efficiently suppressing DC-SIGN expression in primary human DCs. DC-SIGN-negative DCs were unable to enhance transfer of HIV-1 infectivity to T cells in trans, demonstrating an essential role for the DC-SIGN receptor in transferring infectious viral particles from DCs to T cells. The present system should have broad applications for studying the function of DC-SIGN in the pathogenesis of HIV as well as other pathogens also recognized by this receptor.  相似文献   

13.
The arenavirus Lassa virus (LASV) causes a severe hemorrhagic fever with high mortality in humans. Antigen-presenting cells, in particular dendritic cells (DCs), are early and preferred targets of LASV, and their productive infection contributes to the virus-induced immunosuppression observed in fatal disease. Here, we characterized the role of the C-type lectin DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN) in LASV entry into primary human DCs using a chimera of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) expressing the LASV glycoprotein (rLCMV-LASVGP). We found that differentiation of human primary monocytes into DCs enhanced virus attachment and entry, concomitant with the upregulation of DC-SIGN. LASV and rLCMV-LASVGP bound to DC-SIGN via mannose sugars located on the N-terminal GP1 subunit of LASVGP. We provide evidence that DC-SIGN serves as an attachment factor for rLCMV-LASVGP in monocyte-derived immature dendritic cells (MDDC) and can accelerate the capture of free virus. However, in contrast to the phlebovirus Uukuniemi virus (UUKV), which uses DC-SIGN as an authentic entry receptor, productive infection with rLCMV-LASVGP was less dependent on DC-SIGN. In contrast to the DC-SIGN-mediated cell entry of UUKV, entry of rLCMV-LASVGP in MDDC was remarkably slow and depended on actin, indicating the use of different endocytotic pathways. In sum, our data reveal that DC-SIGN can facilitate cell entry of LASV in human MDDC but that its role seems distinct from the function as an authentic entry receptor reported for phleboviruses.  相似文献   

14.
DC-SIGN, a type II membrane-spanning C-type lectin that is expressed on the surface of dendritic cells (DC), captures and promotes human and simian immunodeficiency virus (HIV and SIV) infection of CD4(+) T cells in trans. To better understand the mechanism of DC-SIGN-mediated virus transmission, we generated and functionally evaluated a panel of seven monoclonal antibodies (MAbs) against DC-SIGN family molecules. Six of the MAbs reacted with myeloid-lineage DC, whereas one MAb preferentially bound DC-SIGNR/L-SIGN, a homolog of DC-SIGN. Characterization of hematopoietic cells also revealed that stimulation of monocytes with interleukin-4 (IL-4) or IL-13 was sufficient to induce expression of DC-SIGN. All DC-SIGN-reactive MAbs competed with intercellular adhesion molecule 3 (ICAM-3) for adhesion to DC-SIGN and blocked HIV-1 transmission to T cells that was mediated by THP-1 cells expressing DC-SIGN. Similar but less efficient MAb blocking of DC-mediated HIV-1 transmission was observed, indicating that HIV-1 transmission to target cells via DC may not be dependent solely on DC-SIGN. Attempts to neutralize DC-SIGN capture and transmission of HIV-1 with soluble ICAM-3 prophylaxis were limited in success, with a maximal inhibition of 60%. In addition, disrupting DC-SIGN/ICAM-3 interactions between cells with MAbs did not impair DC-SIGN-mediated HIV-1 transmission. Finally, forced expression of ICAM-3 on target cells did not increase their susceptibility to HIV-1 transmission mediated by DC-SIGN. While these findings do not discount the role of intercellular contact in facilitating HIV-1 transmission, our in vitro data indicate that DC-SIGN interactions with ICAM-3 do not promote DC-SIGN-mediated virus transmission.  相似文献   

15.
The CEA-related cell adhesion molecule 1, CEACAM1, is a glycoprotein expressed on the surface of human granulocytes and lymphocytes, endothelia, and many epithelia. CEACAM1 is involved in the regulation of important biological processes, such as tumor growth, angiogenesis, and modulation of the immune response. CEACAM1, a member of the immunoglobulin superfamily carries several Lewis x (Lex) structures as we recently demonstrated by mass spectrometry of native CEACAM1 from human granulocytes. Since Lex residues of pathogens bind to the C-type lectin dendritic cell-specific ICAM-3 grabbing nonintegrin (DC-SIGN) expressed on human DCs, we hypothesized that Lex glycans of CEACAM1 are recognized by DC-SIGN. Here, we demonstrate that CEACAM1, the major carrier of Lex residues in human granulocytes, is specifically recognized by DC-SIGN via Lex residues mediating the internalization of CEACAM1 into immature DCs. Expression studies with CEACAM1 in combination with different fucosyltransferases (FUTs) revealed that FUTIX plays a key role in the synthesis of Lex groups of CEACAM1. As Lex groups on CEACAM1 are selectively attached and specifically interact with DC-SIGN, our findings suggest that CEACAM1 participates in immune regulation in physiological conditions and in pathological conditions, such as inflammation, autoimmune disease, and cancer.  相似文献   

16.
Recent studies have shown that both Leishmania and HIV type-1 (HIV-1) hijack dendritic cell (DC) functions to escape immune surveillance using an array of elaborate strategies. Leishmania has developed a variety of adaptations to disrupt cellular defense mechanisms, whereas HIV-1 targets DCs to achieve a more efficient dissemination. The capacity of Leishmania and HIV-1 to target DCs through a common cell-surface molecule, namely DC-SIGN (dendritic cell specific ICAM-3-grabbing non-integrin), points to a possible dangerous liaison between these two pathogens. This review explores our knowledge of how Leishmania and HIV-1 interact dynamically with DCs, and how they exploit this cell type for their reciprocal benefit.  相似文献   

17.
Measles virus targets DC-SIGN to enhance dendritic cell infection   总被引:8,自引:0,他引:8       下载免费PDF全文
Dendritic cells (DCs) are involved in the pathogenesis of measles virus (MV) infection by inducing immune suppression and possibly spreading the virus from the respiratory tract to lymphatic tissues. It is becoming evident that DC function can be modulated by the involvement of different receptors in pathogen interaction. Therefore, we have investigated the relative contributions of different MV-specific receptors on DCs to MV uptake into and infection of these cells. DCs express the MV receptors CD46 and CD150, and we demonstrate that the C-type lectin DC-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) is a novel receptor for laboratory-adapted and wild-type MV strains. The ligands for DC-SIGN are both MV glycoproteins F and H. In contrast to CD46 and CD150, DC-SIGN does not support MV entry, since DC-SIGN does not confer susceptibility when stably expressed in CHO cells. However, DC-SIGN is important for the infection of immature DCs with MV, since both attachment and infection of immature DCs with MV are blocked in the presence of DC-SIGN inhibitors. Our data demonstrate that DC-SIGN is crucial as an attachment receptor to enhance CD46/CD150-mediated infection of DCs in cis. Moreover, MV might not only target DC-SIGN to infect DCs but may also use DC-SIGN for viral transmission and immune suppression.  相似文献   

18.
Dengue virus (DV) is a mosquito-borne flavivirus that causes hemorrhagic fever in humans. In the natural infection, DV is introduced into human skin by an infected mosquito vector where it is believed to target immature dendritic cells (DCs) and Langerhans cells (LCs). We found that DV productively infects DCs but not LCs. We show here that the interactions between DV E protein, the sole mannosylated glycoprotein present on DV particles, and the C-type lectin dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) are essential for DV infection of DCs. Binding of mannosylated N-glycans on DV E protein to DC-SIGN triggers a rapid and efficient internalization of the viral glycoprotein. However, we observed that endocytosis-defective DC-SIGN molecules allow efficient DV replication, indicating that DC-SIGN endocytosis is dispensable for the internalization step in DV entry. Together, these results argue in favor of a mechanism by which DC-SIGN enhances DV entry and infection in cis. We propose that DC-SIGN concentrates mosquito-derived DV particles at the cell surface to allow efficient interaction with an as yet unidentified entry factor that is ultimately responsible for DV internalization and pH-dependent fusion into DCs.  相似文献   

19.
Hepatitis C virus (HCV) is a major health problem. However, the mechanism of hepatocyte infection is largely unknown. We demonstrate that the dendritic cell (DC)-specific C-type lectin DC-SIGN and its liver-expressed homologue L-SIGN/DC-SIGNR are important receptors for HCV envelope glycoproteins E1 and E2. Mutagenesis analyses demonstrated that both HCV E1 and E2 bind the same binding site on DC-SIGN as the pathogens human immunodeficiency virus type 1 (HIV-1) and mycobacteria, which is distinct from the cellular ligand ICAM-3. HCV virus-like particles are efficiently captured and internalized by DCs through binding of DC-SIGN. Antibodies against DC-SIGN specifically block HCV capture by both immature and mature DCs, demonstrating that DC-SIGN is the major receptor on DCs. Interestingly, internalized HCV virus-like particles were targeted to nonlysosomal compartments within immature DCs, where they are protected from lysosomal degradation in a manner similar to that demonstrated for HIV-1. Lewis X antigen, another ligand of DC-SIGN, was internalized to lysosomes, demonstrating that the internalization pathway of DC-SIGN-captured ligands may depend on the structure of the ligand. Our results suggest that HCV may target DC-SIGN to "hide" within DCs and facilitate viral dissemination. L-SIGN, expressed by THP-1 cells, internalized HCV particles into similar nonlysosomal compartments, suggesting that L-SIGN on liver sinusoidal endothelial cells may capture HCV from blood and transmit it to hepatocytes, the primary target for HCV. We therefore conclude that both DCs and liver sinusoidal endothelial cells may act as reservoirs for HCV and that the C-type lectins DC-SIGN and L-SIGN, as important HCV receptors, may represent a molecular target for clinical intervention in HCV infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号