首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Abstract

The epithelium comprises an important tissue that lines the internal and external surfaces of metazoan organs. In order to organize sheets of epithelial cells into three-dimensional tissues, it requires the coordination of basic cellular processes such as polarity, adhesion, growth, and differentiation. Moreover, as a primary barrier to the external environment, epithelial tissues are often subjected to physical forces and damage. This critical barrier function dictates that these fundamental cellular processes are continually operational in order to maintain tissue homeostasis in the face of almost constant trauma and stress. A protein that is largely responsible for the organization and maintenance of epithelial tissues is the transmembrane protein, E-cadherin, found at the surface of epithelial cells. Though originally investigated for its essential role in mediating intercellular cohesion, its impact on a wide array of physiological processes underscores its fundamental contributions to tissue development and its perturbation in a variety of common diseases.  相似文献   

4.
卵母细胞是雌性动物的生殖细胞,其质量决定雌性动物的繁殖能力.卵母细胞含有丰富的脂质,大部分以甘油三酯的形式储存在脂滴中.脂滴的大小、颜色以及分布模式与卵母细胞的发育能力相关.卵母细胞中甘油三酯可以脂解为脂肪酸,脂肪酸的β-氧化是卵母细胞和早期胚胎发育的重要能量来源.卵母细胞中脂质沉积过多会增加活性氧的含量(reacti...  相似文献   

5.
Reactive oxygen species (ROS) and reactive nitrogen species, particularly NO, are key components of diverse signaling networks in animals and plants. We have recently shown that epidermal cells of stigmas from a range of different angiosperms accumulate relatively large amounts of ROS, principally H2O2, whereas pollen produces NO. Importantly, ROS/H2O2 levels appeared reduced in stigma cells supporting developing pollen grains compared to cells without pollen grains attached. To explore a possible link between pollen NO production and reduced levels of stigmatic ROS/H2O2, we supplied stigmas with NO and observed an overall reduction in levels of stigmatic ROS/H2O2. These new and unexpected data suggest a potential new signaling role for ROS/H2O2 and NO in pollen-stigma recognition processes.Key Words: stigma, pollen, reactive oxygen species, hydrogen peroxide, nitric oxide, signaling, defense  相似文献   

6.
7.
Wnt信号转导途径是调控细胞形状、运动、黏附、增殖、分化、癌变及机体发育等过程的主要途径之一.Axin(轴蛋白)是一个体轴发育抑制因子,作为构架蛋白在Wnt信号转导途径中起着关键的作用.Axin通过不同的机制调节β连环蛋白的磷酸化和稳定性.它通过与APC、GSK-3β、β连环蛋白和CKIα结合形成复合体促进β连环蛋白的降解,还通过同源二聚化、核质穿梭、自身磷酸化和稳定性的调控来调节β连环蛋白的稳定性.Axin通过Wnt信号转导途径参与了一系列生物学效应的调控,如体轴发育、细胞死亡、神经元的分化等.作为一个新发现的肿瘤抑制因子,axin将为癌症的诊断和治疗提供新的有效的手段.  相似文献   

8.
Notch家族是一组进化上高度保守的跨膜蛋白,可以广泛调节细胞的发育和分化.越来越多的研究发现,Notch信号通路可以通过调节多种免疫细胞的发育和功能来调节机体的免疫功能.本文综述了Notch家族的组成,其调控因素及其靶基因,Notch信号通路对造血干细胞、固有免疫细胞和适应性免疫细胞的调节作用以及Notch信号通路参与的免疫相关疾病.Notch信号通路对造血干细胞、巨噬细胞、树突状细胞、肥大细胞、T和B淋巴细胞的发育和功能的发挥都有重要的调节作用,并参与肿瘤、病毒感染、炎症反应和自身免疫疾病等免疫相关疾病的发生.  相似文献   

9.
Feng Li  Wei Xu  Shimin Zhao 《遗传学报》2013,40(7):367-374
Mounting evidence suggests that cellular metabolites, in addition to being sources of fuel and macromolecular substrates, are actively involved in signaling and epigenetic regulation. Many metabolites, such as cyclic AMP, which regulates phosphorylation/dephosphorylation, have been identified to modulate DNA and histone methylation and protein stability. Metabolite-driven cellular regulation occurs through two distinct mechanisms: proteins allosterically bind or serve as substrates for protein signaling pathways, and metabolites covalently modify proteins to regulate their functions. Such novel protein metabolites include fumarate, succinyl-CoA, propionyl-CoA, butyryl-CoA and crontonyl-CoA. Other metabolites, including α-ketoglutarate, succinate and fumarate, regulate epigenetic processes and cell signaling via protein binding. Here, we summarize recent progress in metabolite-derived post-translational protein modification and metabolite-binding associated signaling regulation. Uncovering metabolites upstream of cell signaling and epigenetic networks permits the linkage of metabolic disorders and human diseases, and suggests that metabolite modulation may be a strategy for innovative therapeutics and disease prevention techniques.  相似文献   

10.
The Toll-like receptor (TLR) 3 plays a critical role in mammalian innate immune response against viral attacks by recognizing double-stranded RNA (dsRNA) or its synthetic analog polyinosinic-polycytidylic acid (poly (I∶C)). This leads to the activation of MAP kinases and NF-κB which results in the induction of type I interferons and proinflammatory cytokines to combat the viral infection. To understand the complex interplay of the various intracellular signaling molecules in the regulation of NF-κB and MAP kinases, we developed a computational TLR3 model based upon perturbation-response approach. We curated literature and databases to determine the TLR3 signaling topology specifically for murine macrophages. For initial model creation, we used wildtype temporal activation profiles of MAP kinases and NF-κB and, for model testing, used TRAF6 KO and TRADD KO data. From dynamic simulations we predict i) the existence of missing intermediary steps between extracellular poly (I∶C) stimulation and intracellular TLR3 binding, and ii) the presence of a novel pathway which is essential for JNK and p38, but not NF-κB, activation. Our work shows activation dynamics of signaling molecules can be used in conjunction with perturbation-response models to decipher novel signaling features of complicated immune pathways.  相似文献   

11.
巨噬细胞免疫调变信号——PKA与PKC对MAPK信号通路的调节   总被引:7,自引:0,他引:7  
以前的研究工作表明,细菌脂多糖(LPS)可以调变抑制性巨噬细胞为增强T、B淋巴细胞及NK细胞活性,同时又能保持或增强其抗肿瘤效应。忆报道了在这一复杂的免疫调变过程中伴随有蛋白激酶C(PKC)和促分裂原活化蛋白激酶(MAPK)信号转导通路的激活。为了探索免疫调变过程中其他信号对MAPK通路的影响,以LPS调变小鼠腹腔抑制性巨噬细胞为模型,研究了cAMP/PKA和佛波酯(PMA)/PKC信号对MAPK  相似文献   

12.
Hepcidin is an antimicrobial peptide, which also negatively regulates iron in circulation by controlling iron absorption from dietary sources and iron release from macrophages. Hepcidin is synthesized mainly in the liver, where hepcidin is regulated by iron loading, inflammation and hypoxia. Recently, we have demonstrated that bone morphogenetic protein (BMP)-hemojuvelin (HJV)-SMAD signaling is central for hepcidin regulation in hepatocytes. Hepcidin is also expressed by macrophages. Studies have shown that hepcidin expression by macrophages increases following bacterial infection, and that hepcidin decreases iron release from macrophages in an autocrine and/or paracrine manner. Although previous studies have shown that lipopolysaccharide (LPS) can induce hepcidin expression in macrophages, whether hepcidin is also regulated by BMPs in macrophages is still unknown. Therefore, we examined the effects of BMP signaling on hepcidin expression in RAW 264.7 and J774 macrophage cell lines, and in primary peritoneal macrophages. We found that BMP4 or BMP6 alone did not have any effect on hepcidin expression in macrophages although they stimulated Smad1/5/8 phosphorylation and Id1 expression. In the presence of LPS, however, BMP4 and BMP6 were able to stimulate hepcidin expression in macrophages, and this stimulation was abolished by the NF-κB inhibitor Ro1069920. These results suggest that hepcidin expression is regulated differently in macrophages than in hepatocytes, and that BMPs regulate hepcidin expression in macrophages in a LPS-NF-κB dependent manner.  相似文献   

13.
14.
Highlights? Perivascular niche nitric oxide activates Notch in PDGF-induced gliomas ? Notch signaling drives tumor stem-like characteristics and reduces survival ? Loss of eNOS activity decreases tumor stem-like characteristics ? Suppressing eNOS activity prolongs survival in glioma-bearing mice  相似文献   

15.
16.
Macrophages participate pivotally in the pathogenesis of many chronic inflammatory diseases including atherosclerosis. Adiponectin, a vasculoprotective molecule with insulin-sensitizing and anti-atherogenic properties, suppresses pro-inflammatory gene expression in macrophages by mechanisms that remain incompletely understood. This study investigated the effects of adiponectin on major pro-inflammatory signaling pathways in human macrophages. We demonstrate that pretreatment of these cells with adiponectin inhibits phosphorylation of nuclear factor κB inhibitor (IκB), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK), induced by either lipopolysaccharide (LPS) or tumor necrosis factor (TNF) α, as well as STAT3 phosphorylation induced by interleukin-6 (IL6). Antagonism of IL10 by either neutralizing antibodies or siRNA-mediated silencing did not abrogate the anti-inflammatory actions of adiponectin, indicating that the ability of adiponectin to render human macrophages tolerant to various pro-inflammatory stimuli does not require this cytokine. A systematic search for adiponectin-inducible genes with established anti-inflammatory properties revealed that adiponectin augmented the expression of A20, suppressor of cytokine signaling (SOCS) 3, B-cell CLL/lymphoma (BCL) 3, TNF receptor-associated factor (TRAF) 1, and TNFAIP3-interacting protein (TNIP) 3. These results suggest that adiponectin triggers a multifaceted response in human macrophages by inducing the expression of various anti-inflammatory proteins that act at different levels in concert to suppress macrophage activation.Adipose tissue, long considered a lipid storage depot, has now gained recognition as an endocrine organ that produces various bioactive molecules with local and systemic functions, collectively known as adipokines (1, 2). Among them, adiponectin has emerged as a key vasculoprotective molecule with insulin-sensitizing, anti-inflammatory, and anti-atherogenic properties (35). Numerous (but not all) clinical studies have correlated hypoadiponectinemia with incidence of coronary artery disease, insulin resistance, type 2 diabetes, and hypertension. Experimental studies have demonstrated anti-inflammatory and anti-atherogenic properties of adiponectin by showing that its in vivo overexpression reversed abnormal neointimal thickening in adiponectin-deficient mice, alleviated atherosclerotic lesions in apolipoprotein E-deficient mice, and improved endothelial vasodilator dysfunction and hypertension in obese mice. Cell-based studies demonstrated various potentially anti-atherogenic functions of adiponectin in the major cell types found in atheroma: endothelial cells, smooth muscle cells, and macrophages (35).Adiponectin circulates in the plasma at concentrations of 3–30 μg/ml, forming three major oligomeric complexes with distinct biological functions: trimer, hexamer, and high molecular mass form (35). A bioactive proteolytic product that includes the adiponectin C1q-like globular domain also exists in plasma, albeit at very low concentrations (6), and in cell culture medium conditioned by THP-1 or U937 cells stimulated with phorbol esters (7).Macrophages contribute critically to the pathogenesis of many chronic inflammatory processes including atherogenesis, and thus comprise key targets for the anti-inflammatory action of adiponectin. Adiponectin inhibits lipopolysaccharide (LPS)2-induced pro-inflammatory gene expression in pig and human macrophages, rat Kupffer cells, and RAW264.7 cells by mechanisms that remain incompletely understood but that involve suppression of LPS-induced nuclear factor κB (NFκB) activation (811). Adiponectin induces expression of interleukin-10 (IL10), an immunomodulatory cytokine with potent anti-inflammatory activity, in leukocytes (12, 13). Park et al. (14) recently showed that IL10 generated after treating RAW 264.7 cells with globular adiponectin figures essentially in rendering macrophages tolerant to LPS.We have recently reported that full-length adiponectin inhibits expression of T-lymphocyte-active CXC chemokine receptor 3 (CXCR3) chemokine ligands in human macrophages stimulated by LPS, a process that involves inhibition of interferon (IFN) regulatory factor 3 (IRF3) activation (15). The present study investigated in detail the effects of adiponectin on signaling pathways elicited by the potent pro-inflammatory stimulants LPS, TNFα, and IL6 in human macrophages, and addressed in particular the role of IL10 as a potential mediator of adiponectin function. Our results indicate that adiponectin-induced anti-inflammation in primary human macrophages occurs primarily independently of IL10 and likely involves the concerted action of a group of adiponectin-induced anti-inflammatory molecules that include A20, suppressor of cytokine signaling (SOCS) 3, B-cell CLL/lymphoma (BCL) 3, and TNF receptor-associated factor (TRAF) 1.  相似文献   

17.
Our previous studies have shown that nutritional zinc restriction exacerbates airway inflammation accompanied by an increase in caspase-3 activation and an accumulation of apoptotic epithelial cells in the bronchioles of the mice. Normally, apoptotic cells are rapidly cleared by macrophage efferocytosis, limiting any secondary necrosis and inflammation. We therefore hypothesized that zinc deficiency is not only pro-apoptotic but also impairs macrophage efferocytosis. Impaired efferocytic clearance of apoptotic epithelial cells by alveolar macrophages occurs in chronic obstructive pulmonary disease (COPD), cigarette-smoking and other lung inflammatory diseases. We now show that zinc is a factor in impaired macrophage efferocytosis in COPD. Concentrations of zinc were significantly reduced in the supernatant of bronchoalveolar lavage fluid of patients with COPD who were current smokers, compared to healthy controls, smokers or COPD patients not actively smoking. Lavage zinc was positively correlated with AM efferocytosis and there was decreased efferocytosis in macrophages depleted of Zn in vitro by treatment with the membrane-permeable zinc chelator TPEN. Organ and cell Zn homeostasis are mediated by two families of membrane ZIP and ZnT proteins. Macrophages of mice null for ZIP1 had significantly lower intracellular zinc and efferocytosis capability, suggesting ZIP1 may play an important role. We investigated further using the human THP-1 derived macrophage cell line, with and without zinc chelation by TPEN to mimic zinc deficiency. There was no change in ZIP1 mRNA levels by TPEN but a significant 3-fold increase in expression of another influx transporter ZIP2, consistent with a role for ZIP2 in maintaining macrophage Zn levels. Both ZIP1 and ZIP2 proteins were localized to the plasma membrane and cytoplasm in normal human lung alveolar macrophages. We propose that zinc homeostasis in macrophages involves the coordinated action of ZIP1 and ZIP2 transporters responding differently to zinc deficiency signals and that these play important roles in macrophage efferocytosis.  相似文献   

18.
We have proposed the novel concept that the macrophage ubiquitin-proteasome pathway functions as a key regulator of Lipopolysaccharide (LPS)-induced inflammation signaling. These findings suggest that proteasome-associated protease subunits X, Y, and Z are replaced by LMP subunits after LPS treatment of RAW 264.7 cells. The objective here was to determine the contribution of selective LMP proteasomal subunits to LPS-induced nitric oxide (NO) and TNF-α production in primary murine macrophages. Accordingly, thioglycollate-elicited macrophages from LMP7, LMP2, LMP10 (MECL-1), and LMP7/MECL-1 double knockout mice were stimulated in vitro with LPS, and were found to generate markedly reduced NO levels compared to wild-type (WT) mice, whereas TNF-α levels responses were essentially unaltered relative to wild-type responses. The recent studies suggest that the TRIF/TRAM pathway is defective in LMP knockouts which may explain why iNOS/NO are not robustly induced in LPS-treated macrophages from knockouts. Treating these macrophages with IFN-γ and LPS, however, reverses this defect, leading to robust NO induction. TNF-α is induced by LPS in the LMP knockout macrophages because IκB and IRAK are degraded normally via the MyD88 pathway. Collectively, these findings strongly support the concept that LMP7/MECL-1 proteasomes subunits actively function to regulate LPS-induced NO production by affecting the TRIF/TRAM pathway.  相似文献   

19.
Perivascular macrophages (PVMs) constitute a subpopulation of resident macrophages in the central nervous system (CNS). They are located at the blood-brain barrier and can contribute to maintenance of brain functions in both health and disease conditions. PVMs have been shown to respond to particle substances administered during the prenatal period, which may alter their phenotype over a long period. We aimed to investigate the effects of maternal exposure to ultrafine carbon black (UfCB) on PVMs and astrocytes close to the blood vessels in offspring mice. Pregnant mice were exposed to UfCB suspension by intranasal instillation on gestational days 5 and 9. Brains were collected from their offspring at 6 and 12 weeks after birth. PVM and astrocyte phenotypes were examined by Periodic Acid Schiff (PAS) staining, transmission electron microscopy and PAS-glial fibrillary acidic protein (GFAP) double staining. PVM granules were found to be enlarged and the number of PAS-positive PVMs was decreased in UfCB-exposed offspring. These results suggested that in offspring, “normal” PVMs decreased in a wide area of the CNS through maternal UfCB exposure. The increase in astrocytic GFAP expression level was closely related to the enlargement of granules in the attached PVMs in offspring. Honeycomb-like structures in some PVM granules and swelling of astrocytic end-foot were observed under electron microscopy in the UfCB group. The phenotypic changes in PVMs and astrocytes indicate that maternal UfCB exposure may result in changes to brain blood vessels and be associated with increased risk of dysfunction and disorder in the offspring brain.  相似文献   

20.
The CLCA gene family produces both secreted and membrane-associated proteins that modulate ion-channel function, drive mucus production and have a poorly understood pleiotropic effect on airway inflammation. The primary up-regulated human CLCA ortholog in airway inflammation is hCLCA1. Here we show that this protein can activate airway macrophages, inducing them to express cytokines and to undertake a pivotal role in airway inflammation. In a U-937 airway macrophage–monocyte cell line, conditioned media from HEK 293 cells heterologously expressing hCLCA1 (with or without fetal bovine serum) increased the levels of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and IL-8). This effect was independent of the metalloprotease domain of hCLCA1. Primary porcine alveolar macrophages were similarly activated, demonstrating the effect was not cell line dependent. Similarly, immuno-purified hCLCA1 at physiologically relevant concentration of ~100 pg/mL was able to activate macrophages and induce pro-inflammatory response. This cytokine response increased with higher concentration of immuno-purified hCLCA1. These findings demonstrate the ability of hCLCA1 to function as a signaling molecule and activate macrophages, central regulators of airway inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号