首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Early pregnancy associated protein-1 (Epap-1), a 90 kDa glycoprotein present in first trimester placental tissue, inhibits HIV-1 entry through interaction with HIV-1 gp120 at V3 and C5 regions. In the present study, we have identified the specific 32 mer region of Epap-1 that can interact with V3 loop. This was achieved by docking between Epap-1 molecular model and gp120 and studying the interaction of peptides with gp120 in vitro. Out of four peptides analyzed, two peptides (P-2 and P-3) showed significant interaction with V3 domain (N = 8; N = 7) of gp120. In the studies conducted using soluble gp120 and virus, peptide P-2 has shown conserved interaction at V3 loop regions recognized by 257D and F425 antibodies and higher anti-viral activity. Also, P-2 inhibited cell fusion mediated dye transfer between gp120 expressing HL2/3 and CD4 expressing Sup T1 cells suggesting its inhibition of viral entry, which is further confirmed by its action on HIV infection mediated by Tat activated beta gal expression in TZM-bl cells. Further optimization of P-2 peptide showed that the anti-viral activity and gp120 interaction residues lie in the N-terminal region of the peptide. These results together suggest that P-2 inhibits viral entry through specific interaction at V3 loop region.  相似文献   

2.
The effects of bio-regulators salicylic acid (SA) and 24-epibrassinolide (EBL) as seed soaking treatment on the growth traits, content of photosynthetic pigments, proline, relative water content (RWC), electrolyte leakage percent (EC%), antioxidative enzymes and leaf anatomy of Zea mays L. seedlings grown under 60 or 120 mM NaCl saline stress were studied. A greenhouse experiment was performed in a completely randomized design with nine treatments [control (treated with tap water); 60 mM NaCl; 120 mM NaCl; 10 4 M SA; 60 mM NaCl + 10 4 M SA; 120 mM NaCl + 10 4 M SA; 10 μM EBL; 60 mM NaCl + 10 μMEBL or 120 mM NaCl + 10 μM EBL] each with four replicates. The results indicated that NaCl stress significantly reduced plant growth traits, leaf photosynthetic pigment, soluble sugars, RWC%, and activities of catalase (CAT), peroxidase (POX) as well as leaf anatomy. However, the application of SA or EBL mitigated the toxic effects of NaCl stress on maize seedlings and considerably improved growth traits, photosynthetic pigments, proline, RWC%, CAT and POX enzyme activities as well as leaf anatomy. This study highlights the potential ameliorative effects of SA or EBL in mitigating the phytotoxicity of NaCl stress in seeds and growing seedlings.  相似文献   

3.
Nucleotide-excision repair (NER) is important for the maintenance of genomic integrity and to prevent the onset of carcinogenesis. Oxidative stress was previously found to inhibit NER in vitro, and dietary antioxidants could thus protect DNA not only by reducing levels of oxidative DNA damage, but also by protecting NER against oxidative stress-induced inhibition. To obtain further insight in the relation between oxidative stress and NER activity in vivo, oxidative stress was induced in newborn piglets by means of intra-muscular injection of iron (200 mg) at day 3 after birth. Indeed, injection of iron significantly increased several markers of oxidative stress, such as 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) levels in colon DNA and urinary excretion of 8-oxo-7,8-dihydroguanine (8-oxoGua). In parallel, the influence of maternal supplementation with an antioxidant-enriched diet was investigated in their offspring. Supplementation resulted in reduced iron concentrations in the colon (P = 0.004) at day 7 and a 40% reduction of 8-oxodG in colon DNA (P = 0.044) at day 14 after birth. NER capacity in animals that did not receive antioxidants was significantly reduced to 32% at day 7 compared with the initial NER capacity on day 1 after birth. This reduction in NER capacity was less pronounced in antioxidant-supplemented piglets (69%). Overall, these data indicate that NER can be reduced by oxidative stress in vivo, which can be compensated for by antioxidant supplementation.  相似文献   

4.
Muscle insulin resistance is linked to oxidative stress and decreased mitochondrial function. However, the exact cause of muscle insulin resistance is still unknown. Since offspring of patients with type 2 diabetes mellitus (T2DM) are susceptible to developing insulin resistance, they are ideal for studying the early development of insulin resistance. By using primary muscle cells derived from obese non-diabetic subjects with (FH +) or without (FH ?) a family history of T2DM, we aimed to better understand the link between mitochondrial function, oxidative stress, and muscle insulin resistance. Insulin-stimulated glucose uptake and glycogen synthesis were normal in FH + myotubes. Resting oxygen consumption rate was not different between groups. However, proton leak was higher in FH + myotubes. This was associated with lower ATP content and decreased mitochondrial membrane potential in FH + myotubes. Surprisingly, mtDNA content was higher in FH + myotubes. Oxidative stress level was not different between FH + and FH ? groups. Reactive oxygen species content was lower in FH + myotubes when differentiated in high glucose/insulin (25 mM/150 pM), which could be due to higher oxidative stress defenses (SOD2 expression and uncoupled respiration). The increased antioxidant defenses and mtDNA content in FH + myotubes suggest the existence of compensatory mechanisms, which may provisionally prevent the development of insulin resistance.  相似文献   

5.
IntroductionIschemic preconditioning (IPreC) can render the brain more tolerant to a subsequent potential lethal ischemic injury. Hyperglycemia has been shown to increase the size of ischemic stroke and worsen the clinical outcome following a stroke, thus exacerbating oxidative stress. Adropin has a significant association with cardiovascular disease, especially with diabetes. In this study, we aimed to evaluate the role of the IPreC due to modulating the expression of adropin and oxidative damage markers against stroke by induced transient middle cerebral artery occlusion (MCAo) in streptozotocin (STZ)-induced diabetic rats.Material-method72 male Spraque Dawley rats were allocated to 8 groups. In order to evaluate alterations of anti/oxidative status and adropin level, we induced transient MCAo seven days after STZ-induced diabetes. Also we performed IPreC 72 h before transient MCAo to assess whether IPreC could have a neuroprotective effect against ischemia-reperfusion injury.ResultsThe general characteristics of STZ-treated rats (STZ) included reduced body weight and elevated blood glucose levels compared to non-diabetic ones. Ischemic preconditioning before cerebral ischemia significantly reduced infarction size compared with the other groups [IPreC + MCAo (27 ± 11 mm3) vs. MCAo (109 ± 17 mm3) p < 0.001; STZ + IPreC + MCAo (38 ± 10 mm3) vs. STZ + MCAo (165 ± 45 mm3) p < 0.001, respectively]. The mean total antioxidant status level in IPreC groups was higher than other groups (p  0.05). Moreover, IPreC considerably decreased mean adropin levels compared with other groups (p  0.05).ConclusionThe study results supported the neuroprotective effects of ischemic preconditioning in MCA infarcts correlated with the level of oxidative damage markers and adropin.  相似文献   

6.
80 rats, randomly selected, were divided into 3 treatment groups: pre-, co- and post-treatment; consisting of 6 sub-groups each (5 rats per sub-group): baseline, normal saline (2 mL), α-lipoic acid (20 mg/kg body weight), 200 mg/kg, 400 mg/kg or 800 mg/kg body weight Theobroma cacao stem bark aqueous extract (TCAE). All rats except for baseline group were intoxicated with 20 mg/kg body weight doxorubicin (DOX) intraperitoneally. The animals in pre- or post-treatment group received a single dose of DOX (20 mg/kg body weight) intraperitoneally 24 h before or after 7 days’ oral administration with TCAE respectively while those in co-treatment group were co-administered 2.86 mg/kg body weight of DOX with either normal saline, α- lipoic acid or TCAE orally for 7 days. Animals were sacrificed (pre- and post- treatment groups were sacrificed on the ninth day while the co-treatment group sacrificed on the 8th day). Brain and heart tissue samples were harvested for enzyme markers of toxicity, oxidative stress and histopathological examinations. DOX intoxication caused significant decrease in activities of LDH and ACP, and increase in γGT and ALP activities in brain tissues while causing a significant increase in LDH, ACP, γGT activities and decrease in ALP activity in the cardiac tissues. DOX intoxication caused a significant increase in concentrations of H2O2 generated, MDA and PC, XO, MPx and NOX activities with concomitant decrease in CAT, SOD, GPx and GST activities, and in concentrations of GSH, AsA and α-Toc in brain and cardiac tissues. Pre-, co- and post-treatment with TCAE at either 200 mg/kg, 400 mg/kg or 800 mg/kg body weight significantly reversed the oxidative damage to the organs induced by DOX-intoxication. The result affirmed that T. cacao stem bark aqueous extract protected against DOX induced oxidative damage in brain and cardiac tissues of experimental rats.  相似文献   

7.
This study investigated possible mechanisms for cardioprotective effects of lipoic acid (LA), quercetin (Q) and resveratrol (R) on oxidative stress related to thyroid hormone alterations in long-term obesity. Female C57BL/6 mice were fed on high-fat diet (HFD), HFD + LA, HFD + R, HFD + Q and normal diet for 26 weeks. Body weight, blood pressure, thyroid hormones, oxidative stress markers, angiotensin converting enzyme (ACE), nitric oxide synthase (NOS) and ion pump activities were measured, and expression of cardiac genes was analyzed by real-time polymerase chain reaction. HFD induced marked increase (P < .05) in body weight, blood pressure and oxidative stress, while plasma triidothyronine levels reduced. ACE activity increased (P < .05) in HFD mice (0.69 ± 0.225 U/mg protein) compared with controls (0.28 ± 0.114 U/mg protein), HFD + LA (0.231 ± 0.02 U/mg protein) and HFD + Q (0.182 ± 0.096 U/mg protein) at 26 weeks. Moreover, Na+/K+-ATPase and Ca2 +-ATPase activities increased in HFD mice whereas NOS reduced. A 1.5-fold increase in TRα1 and reduction in expression of the deiodinase iodothyronine DIO1, threonine protein kinase and NOS3 as well as up-regulation of AT1α, ACE, ATP1B1, GSK3β and Cja1 genes also occurred in HFD mice. Conversely, LA, Q and R inhibited weight gain; reduced TRα1 expression as well as increased DIO1; reduced ACE activity and AT1α, ATP1B1 and Cja1 gene expression as well as inhibited GSK3β; increased total antioxidant capacity, GSH and catalase activity; and reduced blood pressure. In conclusion, LA, resveratrol and quercetin supplementation reduces obesity thereby restoring plasma thyroid hormone levels and attenuating oxidative stress in the heart and thus may have therapeutic potential in heart diseases.  相似文献   

8.
The present study was aimed at investigating the therapeutic efficacy of vitamin E on oxidative injury in brain and liver of Newcastle disease virus (NDV) challenged chickens. We have analyzed the xanthine oxidase (XOD) activity; uric acid (UA) levels and superoxide radical generation by using electron spin resonance spectroscopy. Further, protein oxidation, nitration and apoptosis were evaluated in the brain and liver of the control, NDV-infected and NDV + Vit. E treated groups. A significant elevation was observed in XOD activity and UA levels in brain (p < 0.001) and liver (p < 0.05) of NDV infected birds when compared to controls. Further, significant increase in the production of superoxides, enhanced intracellular protein carbonyls and nitrates were observed in the brain and liver of NDV-infected birds over healthy subjects. Apoptosis studies also suggested that a larger number of TUNEL positive cells were observed in brain and a moderately in liver of NDV-infected chickens. However, all these perturbations were significantly ameliorated in NDV + Vit. E treated chickens as compared to NDV-infected birds. Taken together, our results suggested that NDV-induced neuronal and hepatic damage at least in part mediates oxidative stress and on the other hand, supplementation of vitamin E mitigates NDV-induced oxidative damage thereby protects brain and liver of chickens. These findings could provide new insights into the understanding of NDV pathogenesis and therapeutic effects of dietary antioxidants.  相似文献   

9.
We have previously identified exosomes as the paracrine factor secreted by mesenchymal stem cells. Recently, we found that the key features of reperfusion injury, namely loss of ATP/NADH, increased oxidative stress and cell death were underpinned by proteomic deficiencies in ischemic/reperfused myocardium, and could be ameliorated by proteins in exosomes. To test this hypothesis in vivo, mice (C57Bl6/J) underwent 30 min ischemia, followed by reperfusion (I/R injury). Purified exosomes or saline was administered 5 min before reperfusion. Exosomes reduced infarct size by 45% compared to saline treatment. Langendorff experiments revealed that intact but not lysed exosomes enhanced viability of the ischemic/reperfused myocardium. Exosome treated animals exhibited significant preservation of left ventricular geometry and contractile performance during 28 days follow-up. Within an hour after reperfusion, exosome treatment increased levels of ATP and NADH, decreased oxidative stress, increased phosphorylated-Akt and phosphorylated-GSK-3β, and reduced phosphorylated-c-JNK in ischemic/reperfused hearts. Subsequently, both local and systemic inflammation were significantly reduced 24 h after reperfusion. In conclusion, our study shows that intact exosomes restore bioenergetics, reduce oxidative stress and activate pro-survival signaling, thereby enhancing cardiac function and geometry after myocardial I/R injury. Hence, mesenchymal stem cell-derived exosomes are a potential adjuvant to reperfusion therapy for myocardial infarction.  相似文献   

10.
The purpose of this study, carried out on male Wistar rats, was to evaluate the beneficial effects of supplementation with ascorbic acid (Vit C) and α-tocopherol (Vit E) or with Mg and Zn upon lindane-induced damages in liver and brain. Under our experimental conditions, lindane poisoning (5 mg/kg body weight per day for 3 days) resulted in (1) an increased level of plasma glucose, cholesterol and triglycerides, (2) an increased activity of LDH, ALP, AST, ALT, (3) an oxidative stress in liver and brain as revealed by an increased level of lipids peroxidation (TBARS) and a decrease of glutathione-peroxidase, superoxide dismutase and catalase activities in liver and brain. In conclusion, both Vit C + E or Mg + Zn treatments display beneficial effects upon oxidative stress induced by lindane treatment in liver and brain.  相似文献   

11.
A study quantifying the effect of NaCl on growth and Cd accumulation of Spartina alterniflora subjected to Cd stress was conducted. Seedlings were cultivated in the presence of 1 or 3 mM Cd alone, or combined with NaCl (50 or 100 mM). The results showed that NaCl magnified the phytotoxicity of moderate Cd stress (1 mM Cd) on plants due to reduced levels of plant biomass, plant height, and chlorophyll a + b, while no synergistic effects were recorded under severe Cd stress (3 mM Cd). Proline and Ca2 + accumulated along with additional NaCl under moderate Cd stress, instead of reduced or unchanged levels under severe Cd stress owing to different adoption strategies caused by NaCl under different Cd stresses. NaCl reduced the oxidative stress in Cd-treated plants through increasing levels of antioxidative enzymes (catalase (CAT) and peroxidase (POD)) under moderate Cd stress. With NaCl addition, Cd2 + contents in S. alterniflora increased and reduced under moderate and severe Cd stress, respectively. However, total Cd2 + amounts increased with increasing NaCl concentration due to biological dilution. NaCl improved the increase of Cd2 + translocation factor (TF) under moderate Cd stress, indicating that NaCl might improve Cd2 + uptake and translocation from roots to shoots, and enhance the phytoextraction of S. alterniflora on Cd; while phytostabilization of Cd under severe Cd stress may be possible due to the reduced TF. Thus, NaCl alleviated phytotoxicity caused by Cd stress through improved management of osmotic solutes and oxidative status, and affected Cd accumulations in S. alterniflora differently under moderate and severe Cd stresses.  相似文献   

12.
Nitric oxide (NO), an endogenous signaling molecule in plants and animals, mediates responses to abiotic and biotic stresses. This study was conducted in nutrient solution to investigate the effects of exogenous sodium nitroprusside (SNP), an NO donor, on plant growth and free polyamine content in cucumber leaves and roots under NaCl stress. The results showed that 100 μM SNP in solution significantly improved the growth of cucumber seedlings under NaCl stress for 8 days, as indicated by increased, plant height, stem thickness, fresh weight and increased dry matter accumulation. Further analysis demonstrated that the content of free polyamines and the activity of polyamine oxidase (PAO) in cucumber seedling leaves and roots initially increased dramatically under NaCl stress, although they decreased over a longer period of stress. Throughout the treatment period, the value of (spermine + spermidine)/putrescine [(Spd + Spm)/Put] also decreased under NaCl stress compared to the control. In contrast, the application of 100 μM SNP in the nutrient solution decreased the content of free Put, Spd, total free polyamines and PAO activity under NaCl stress. It also caused an increase in the content of Spm and the value of (Spd + Spm)/Put, adjusted the ratio of three kinds of free polyamines (Put, Spd, Spm) in cucumber seedlings. The high (Spd + Spm)/Put value and the accumulation of Spm were beneficial to improving the salt tolerance of plants. Therefore, NO alleviated the damage to cucumber seedlings caused by salt stress. NO enhanced the tolerance of cucumber seedlings to NaCl stress by regulating the content and proportions of the different types of free polyamines.  相似文献   

13.
AimsCardiovascular disease (CVD) is common in chronic kidney disease (CKD) patients. Indoxyl sulfate (IS) is a nephrovascular uremic toxin that induces oxidative stress in kidney and vascular system. The present study aimed to examine the effect of IS on fibrosis and oxidative stress in rat heart.Main methodsThe effects of IS on heart were examined by Masson's trichrome (MT) staining and immunohistochemistry using: (1) Dahl salt-resistant normotensive rats (DN), (2) Dahl salt-resistant normotensive IS-administered rats (DN + IS), (3) Dahl salt-sensitive hypertensive rats (DH), and (4) Dahl salt-sensitive hypertensive IS-administered rats (DH + IS).Key findingsDH + IS rats showed significantly increased heart weight and left ventricle weight compared with DN. DH and DH + IS rats showed significantly increased diameter of cardiomyocytes, increased MT-positive fibrotic area, increased staining for transforming growth factor (TGF)-β1, α-smooth muscle actin (SMA), type 1 collagen, NADPH oxidase Nox 4, malondialdehyde (MDA), and 8-hydroxydeoxyguanosine (8-OHdG) and decreased staining for nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1) in the heart compared with DN. More notably, DH + IS rats showed significantly increased diameter of cardiomyocytes, increased fibrotic area, increased staining for TGF-β1, SMA, type 1 collagen, Nox4, 8-OHdG and MDA, and decreased staining for Nrf2 and HO-1 in the heart compared with DH.SignificanceIS aggravates cardiac fibrosis and cardiomyocyte hypertrophy with enhanced oxidative stress and reduced anti-oxidative defense in hypertensive rats.  相似文献   

14.
A hydroponic experiment was conducted to assess the possible involvement of polyamines (PAs), abscisic acid (ABA) and anti-oxidative enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in adaptation of six populations of Panicum antidotale Retz. to selection pressure (soil salinity) of a wide range of habitats. Plants of six populations were collected from six different habitats with ECe ranging from 3.39 to 19.23 dS m−1 and pH from 7.65 to 5.86. Young tillers from 6-month-old plants were transplanted in plastic containers each containing 10 l of half strength Hoagland's nutrient solution alone or with 150 mol m−3 NaCl. After 42 days growth, contents of polyamines (Put, Spd and Spm) and ABA, and the activities of anti-oxidative enzymes (SOD, POD and CAT) of all populations generally increased under salt stress. The populations collected from highly saline habitats showed a greater accumulation of polyamines and ABA and the activities of anti-oxidative enzymes as compared to those from mild or non-saline habitats. Moreover, Spm/Spd and Put/(Spd + Spm) ratios generally increased under salt stress. However, the populations from highly saline environments had significantly higher Spm/Spd and Put/(Spd + Spm) ratios as compared to those from mild or non-saline environments. Similarly, the populations adapted to high salinity accumulated less Na+ and Cl in culm and leaves, and showed less decrease in leaf K+ and Ca2+ under salinity stress. Higher activities of anti-oxidative enzymes and accumulation of polyamines and ABA, and increased Spm/Spd and Put/(Spm + Spd) ratios were found to be highly correlated with the degree of adaptability of Panicum to saline environment.  相似文献   

15.
Freeze tolerant insects must not only survive extracellular ice formation but also the generation of reactive oxygen species (ROS) during oxygen reperfusion upon thawing. Furthermore, diurnal fluctuations in temperature place temperate insects at risk of being exposed to multiple freeze–thaw cycles, yet few studies have examined metrics of survival and oxidative stress in freeze-tolerant insects subjected to successive freezing events. To address this, we assessed survival in larvae of the goldenrod gall fly Eurosta solidaginis, after being subjected to 0, 5, 10, 20, or 30 diurnally repeated cold exposures (RCE) to −18 °C or a single freeze to −18 °C for 20 days. In addition, we measured indicators of oxidative stress, levels of cryoprotectants, and total aqueous antioxidant capacity in animals exposed to the above treatments at 8, 32, or 80 h after their final thaw. Repeated freezing and thawing, rather than time spent frozen, reduced survival as only 30% of larvae subjected to 20 or 30 RCE successfully pupated, compared to those subjected to fewer RCE or a single 20 d freeze, of which 82% pupated. RCE had little effect on the concentration of the cryoprotectant glycerol (4.26 ± 0.66 μg glycerol·ng protein−1 for all treatments and time points) or sorbitol (18.8 ± 2.9 μg sorbitol·mg protein−1 for all treatments and time points); however, sorbitol concentrations were more than twofold higher than controls (16.3 ± 2.2 μg sorbitol·mg protein−1) initially after a thaw in larvae subjected to a single extended freeze, but levels returned to values similar to controls at 80 h after thaw. Thawing likely produced ROS as total aqueous antioxidant capacities peaked at 1.8-fold higher than controls (14.7 ± 1.6 mmol trolox·ng protein−1) in animals exposed to 5, 10, or 20 RCE. By contrast, aqueous antioxidant capacities were similar to controls in larvae subjected to 30 RCE or the single 20 d freeze regardless of time post final thaw, indicating these animals may have had an impaired ability to produce primary antioxidants. Larvae lacking an antioxidant response also had elevated levels of oxidized proteins, nearly twice that of controls (21.8 ± 3.2 mmol chloramine-T·mg protein−1). Repeated freezing also lead to substantial oxidative damage to lipids that was independent of aqueous antioxidant capacity; peroxides were, on average, 5.6-fold higher in larvae subjected to 10, 20 or 30 RCE compared to controls (29.1 ± 7.3 mmol TMOP·μg protein−1). These data suggest that oxidative stress due to repeated freeze–thaw cycles reduces the capacity of E. solidaginis larvae to survive freezing.  相似文献   

16.
Brassica napus plants were subjected to an oxidative stress by incubating them with 100 μM CuSO4 for different times. The early response to copper stress was evaluated studying changes at both root and leaf level in the putative lipid and antioxidative signals diacylglicerol (DAG), phosphatidic acid (PA) and glutathione, in order to achieve elucidation on how these two kind of signals are related to each other. Activation of phospholipases C (PLC) and D (PLD) was studied in roots and leaves whereas increases in the levels of total and reduced glutathione (GSH) and changes in its redox status were evaluated in roots, leaves and chloroplast stroma. PLC and PLD were measured by studying the production of DAG, PA and phosphatidylbutanol (PtdButOH). PA, PtdButOH as well as DAG increased in roots already after 1 min of the treatment whereas in leaves, where no translocation of the metal occurred, any increase in PA and DAG was observed and no PtdButOH was formed. Roots were affected by oxidative stress showing decreases in glutathione reductase (GR), in total glutathione (GSH + GSSG) and GSH, and increases in oxidised glutathione (GSSG). In leaves, GR was induced during the whole stress period and both GSH + GSSG and GSH showed a peak at 5 min of the treatment. In the stroma, the maximum presence in GSH + GSSG and GSH occurred with a time shift of 25 min compared with total leaf extract.  相似文献   

17.
Cigarette smoke is associated with high risk of lung, cardiovascular, and degenerative diseases, reduced fertility, and possibly the health of newborns. Cigarette smoke contains many components and exerts its genotoxicity in part by generating reactive oxidative stress. Telomeres consist of repeated ‘G’ rich sequences and associated proteins located at the chromosomal ends that maintain chromosomal integrity. We tested the hypothesis that telomere shortening and dysfunction are implicated in smoke associated oxidative damage and chromosomal instability using early mouse embryos in vitro and short-telomere mouse model. Mouse embryos exposed to smoke components, cigarette smoke condensate (CSC) at the concentration of 0.02 mg/ml continuously or 0.1 mg/ml for 20 h, or cadmium at 5-100 µM, exhibited increased oxidative stress and telomere shortening and loss, associated with chromosomal instability, apoptosis, and compromised embryo cleavage and development. Remarkably, reduction of oxidative stress by an antioxidant N-acetyl-L-cysteine (NAC) greatly reduced these toxicities. Notably, cadmium led to more severe oxidative damage and telomere dysfunction, which could be more effectively rescued by antioxidant treatment, than did CSC. Moreover, short telomeres predisposed embryos to smoke component-induced oxidative damage. These data further extend our understanding of mechanisms underlying smoke-induced oxidative damage to include telomere dysfunction and chromosomal instability.  相似文献   

18.
Success of long duration space missions will depend upon robust immunity. Decreased immunity has been observed in astronauts during short duration missions, as evident by the reactivation of latent herpes viruses. Seventeen astronauts were studied for reactivation and shedding of latent herpes viruses before, during, and after 9–14 days of 8 spaceflights. Blood, urine, and saliva samples were collected 10 days before the flight (L-10), during the flight (saliva only), 2–3 h after landing (R + 0), 3 days after landing (R + 3), and 120 days after landing (R + 120). Values at R + 120 were used as baseline levels. No shedding of viruses occurred before flight, but 9 of the 17 (designated “virus shedders”) shed at least one or more viruses during and after flight. The remaining 8 astronauts did not shed any of the 3 target viruses (non-virus shedders). Virus-shedders showed elevations in 10 plasma cytokines (IL-1α, IL-6, IL-8, IFNγ, IL-4, IL-10, IL-12, IL-13, eotaxin, and IP-10) at R + 0 over baseline values. Only IL-4 and IP-10 were elevated in plasma of non-virus shedders. In virus shedders, plasma IL-4 (a Th2 cytokine) was elevated 21-fold at R + 0, whereas IFNγ (a Th1 cytokine) was elevated only 2-fold indicating a Th2 shift. The inflammatory cytokine IL-6 was elevated 33-fold at R + 0. In non-shedding astronauts at R + 0, only IL-4 and IP-10 levels were elevated over baseline values. Elevated cytokines began returning to normal by R + 3, and by R + 120 all except IL-4 had returned to baseline values. These data show an association between elevated plasma cytokines and increased viral reactivation in astronauts.  相似文献   

19.
We hypothesized that zebrafish (Danio rerio) undergoing long-term vitamin E deficiency with marginal vitamin C status would develop myopathy resulting in impaired swimming. Zebrafish were fed for 1 y a defined diet without (E ?) and with (E +) vitamin E (500 mg α-tocopherol/kg diet). For the last 150 days, dietary ascorbic acid concentrations were decreased from 3500 to 50 mg/kg diet and the fish sampled periodically to assess ascorbic acid concentrations. The ascorbic acid depletion curves were faster in the E ? compared with E + fish (P < 0.0001); the estimated half-life of depletion in the E ? fish was 34 days, while in it was 55 days in the E + fish. To assess swimming behavior, zebrafish were monitored individually following a “startle-response” stimulus, using computer and video technology. Muscle histopathology was assessed using hematoxylin and eosin staining on paramedian sections of fixed zebrafish. At study end, E ? fish contained 300-fold less α-tocopherol (p < 0.0001), half the ascorbic acid (p = 0.0001) and 3-fold more malondialdehyde (p = 0.0005) than did E + fish. During the first minute following a tap stimulus (p < 0.05), E + fish swam twice as far as did E ? fish. In the E ? fish, the sluggish behavior was associated with a multifocal, polyphasic, degenerative myopathy of the skeletal muscle. The myopathy severity ranged from scattered acute necrosis to widespread fibrosis and was accompanied by increased anti-hydroxynonenal staining. Thus, vitamin E deficiency in zebrafish causes increased oxidative stress and a secondary depletion of ascorbic acid, resulting in severe damage to muscle tissue and impaired muscle function.  相似文献   

20.
This study was aimed at investigating the toxicity mechanism of lipopolysaccharide (LPS) on Penaeus monodon haemocytes at a cellular level. Reactive oxygen species (ROS) production, nitric oxide (NO) production, non-specific esterase activity, cytoplasmic free-Ca2 + (CF-Ca2 +) concentration, DNA damaged cell ratio and apoptotic cell ratio of in vitro LPS-treated haemocytes were measured by flow cytometry. Two concentrations of Escherichia coli LPS (5 and 10 μg mL? 1) were used. Results showed that ROS production, NO production and CF-Ca2 + concentration were significantly induced in the LPS-treated haemocytes. Ratio of DNA damaged cell and apoptotic cell increased caused by LPS, while esterase activity increased at the initial 60 min and dropped later. The initial increase in esterase activity suggested that LPS activated the release of esterase, and the later decrease might result from apoptosis. These results indicated that LPS would induce oxidative stress on shrimp haemocytes, and cause Ca2 + release, DNA damage and subsequently cell apoptosis. This process of ROS/RNS-induced Ca2 +-mediated apoptosis might be one of the toxicity mechanisms of LPS on shrimp haemocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号