共查询到20条相似文献,搜索用时 11 毫秒
1.
Background
The radiation-induced “bystander effect” (RIBE) was shown to occur in a number of experimental systems both in vitro and in vivo as a result of exposure to ionizing radiation (IR). RIBE manifests itself by intercellular communication from irradiated cells to non-irradiated cells which may cause DNA damage and eventual death in these bystander cells. It is known that human stem cells (hSC) are ultimately involved in numerous crucial biological processes such as embryologic development; maintenance of normal homeostasis; aging; and aging-related pathologies such as cancerogenesis and other diseases. However, very little is known about radiation-induced bystander effect in hSC. To mechanistically interrogate RIBE responses and to gain novel insights into RIBE specifically in hSC compartment, both medium transfer and cell co-culture bystander protocols were employed.Methodology/Principal Findings
Human bone-marrow mesenchymal stem cells (hMSC) and embryonic stem cells (hESC) were irradiated with doses 0.2 Gy, 2 Gy and 10 Gy of X-rays, allowed to recover either for 1 hr or 24 hr. Then conditioned medium was collected and transferred to non-irradiated hSC for time course studies. In addition, irradiated hMSC were labeled with a vital CMRA dye and co-cultured with non-irradiated bystander hMSC. The medium transfer data showed no evidence for RIBE either in hMSC and hESC by the criteria of induction of DNA damage and for apoptotic cell death compared to non-irradiated cells (p>0.05). A lack of robust RIBE was also demonstrated in hMSC co-cultured with irradiated cells (p>0.05).Conclusions/Significance
These data indicate that hSC might not be susceptible to damaging effects of RIBE signaling compared to differentiated adult human somatic cells as shown previously. This finding could have profound implications in a field of radiation biology/oncology, in evaluating radiation risk of IR exposures, and for the safety and efficacy of hSC regenerative-based therapies. 相似文献2.
Gap junction independent signaling mechanism was investigated using K562 human erythroleukemia cells. They were exposed to 2, 5, or 10 Gy of (60)Co gamma irradiation, the medium isolated 20 min post-irradiation and added to fresh cells. Evidence of radiation-induced bystander effect was observed wherein there was activation of p21, nuclear factor-kappaB (NF-kappaB), Bax, Bcl-2 and cleavage of poly(ADP-ribose) polymerase in bystander cells. The study implicates the involvement of signaling molecules released into the medium and factors like stable free radicals that are generated in the surrounding medium. The response elicited appears to be primarily via NF-kappaB and p21 activation. 相似文献
3.
Two signal transduction pathways mediate interleukin-1 receptor expression in Balb/c3T3 fibroblasts 总被引:3,自引:0,他引:3
P D Bonin W J Chiou J E McGee J P Singh 《The Journal of biological chemistry》1990,265(30):18643-18649
Our previous studies showed that platelet-derived growth factor (PDGF) modulated interleukin-1 (IL-1) activity and IL-1 binding to Balb/c3T3 fibroblasts (Bonin, P. D., and Singh, J. P. (1988) J. Biol. Chem. 263, 11052-11055). Subsequent studies have demonstrated an action of PDGF at the level of IL-1 receptor (IL-1R) gene expression. PDGF treatment of Balb/c3T3 cells produces a 10-20-fold stimulation of mRNA for IL-1 receptor. Investigation of the signal transduction pathways shows that activation of either the protein kinase C pathway or the cAMP-mediated pathway leads to the stimulation of IL-1 receptor expression in Balb/c3T3 cells. Treatment of Balb/c3T3 cells with phorbol 12-myristate 13-acetate (PMA), a known activator of protein kinase C, produced an increased 125I-IL-1 binding to cells and stimulation of IL-1R mRNA. Staurosporine, an inhibitor of protein kinase C, blocked the induction of IL-1 binding by PDGF or PMA. Down-regulation of protein kinase C by pretreatment with PMA reduced the subsequent stimulation by PDGF. Chronic treatment with PMA, however, did not produce a complete inhibition of PDGF effect on IL-1R. Further studies showed that the agents that stimulate cAMP accumulation (isobutyl methylxanthine, dibutyryl), directly stimulate adenylate cyclase (forskolin), or activate G protein (choleragen) stimulated 125I-IL-1 binding and IL-1R mRNA accumulation in Balb/c3T3 cells. These studies suggest that potentially two signal transduction pathways mediate IL-1 receptor expression in Balb/c3T3 fibroblasts. Evidence is presented that suggests that stimulation of IL-1R through these two pathways (PMA/PDGF-stimulated and cAMP-stimulated) occurs independent of each other. 相似文献
4.
There is increasing evidence biological responses to ionizing radiation are not confined to those cells that are directly hit, but may be seen in the progeny at subsequent generations (genomic instability) and in non-irradiated neighbors of irradiated cells (bystander effects). These so called non-targeted phenomena would have significant contributions to radiation-induced carcinogenesis, especially at low doses where only a limited number of cells in a population are directed hit. Here we present data using a co-culturing protocol examining chromosomal instability in alpha-irradiated and bystander human fibroblasts BJ1-htert. At the first cell division following exposure to 0.1 and 1Gy alpha-particles, irradiated populations demonstrated a dose dependent increase in chromosome-type aberrations. At this time bystander BJ1-htert populations demonstrated elevated chromatid-type aberrations when compared to controls. Irradiated and bystander populations were also analyzed for chromosomal aberrations as a function of time post-irradiation. When considered over 25 doublings, all irradiated and bystander populations had significantly higher frequencies of chromatid aberrations when compared to controls (2-3-fold over controls) and were not dependent on dose. The results presented here support the link between the radiation-induced phenomena of genomic instability and the bystander effect. 相似文献
5.
To study the bystander effects, G(0) human peripheral blood lymphocytes were X-irradiated with 0.1, 0.5 and 3 Gy. After 24h, cell-free conditioned media from irradiated cultures were transferred to unexposed lymphocytes. Following 48 h of medium transfer, viability, induction of apoptosis, telomere shortening, reactive oxygen species (ROS) levels and micronuclei (after stimulation) were analyzed. A statistically significant decrement in cell viability, concomitant with the loss of mitochondrial membrane potential, telomere shortening, increases in hydrogen peroxide (H(2)O(2)) and superoxide anion (O(2)(-)) with depletion of intracellular glutathione (GSH) level, and higher frequencies of micronuclei, were observed in bystander lymphocytes incubated with medium from 0.5 and 3 Gy irradiated samples, compared to lymphocytes unexposed. Furthermore, no statistically significant difference between the response to 0.5 and 3 Gy of irradiation in bystander lymphocytes, was found. However, when lymphocytes were irradiated with 0.1 Gy, no bystander effect with regard to viability, apoptosis, telomere length, and micronuclei was observed, although a high production of ROS level persisted. Radiation in the presence of the radical scavenger dimethyl sulfoxide (DMSO) suppressed oxidative stress induced by 3 Gy of X-rays with the effective elimination of bystander effects, suggesting a correlation between ROS and bystander signal formation in irradiated cells. The data propose that bystander effect might be mostly due to the reactions of radiation induced free radicals on DNA, with the existence of a threshold at which the bystander signal is not operative (0.1 Gy dose of X-rays). Our results may have clinical implications for health risk associated with radiation exposure. 相似文献
6.
We report near complete NMR backbone and side chain assignments of the human cytokine interleukin-33 (IL-33) in solution. IL-33 is the latest addition to the family of interleukin-1 homologous cytokines and was shown to be involved in inflammation and autoimmune diseases. 相似文献
7.
Ju-Fang Liu Sheng-Mou Hou Chun-Hao Tsai Chun-Yin Huang Wei-Hung Yang Chih-Hsin Tang 《Arthritis research & therapy》2012,14(2):R91
Introduction
Thrombin is a key factor in the stimulation of fibrin deposition, angiogenesis, and proinflammatory processes. Abnormalities in these processes are primary features of osteoarthritis (OA). Heme oxygenase (HO)-1 is a stress-inducible rate-limiting enzyme in heme degradation that confers cytoprotection against oxidative injury. Here, we investigated the intracellular signaling pathways involved in thrombin-induced HO-1 expression in human synovial fibroblasts (SFs).Methods
Thrombin-mediated HO-1 expression was assessed with quantitative real-time (q)PCR. The mechanisms of action of thrombin in different signaling pathways were studied by using Western blotting. Knockdown of protease-activated receptor (PAR) proteins was achieved by transfection with siRNA. Chromatin immunoprecipitation assays were used to study in vivo binding of Nrf2 to the HO-1 promoter. Transient transfection was used to examine HO-1 activity.Results
Osteoarthritis synovial fibroblasts (OASFs) showed significant expression of thrombin, and expression was higher than in normal SFs. OASFs stimulation with thrombin induced concentration- and time-dependent increases in HO-1 expression. Pharmacologic inhibitors or activators and genetic inhibition by siRNA of protease-activated receptors (PARs) revealed that the PAR1 and PAR3 receptors, but not the PAR4 receptor, are involved in thrombin-mediated upregulation of HO-1. Thrombin-mediated HO-1 expression was attenuated by thrombin inhibitor (PPACK), PKCδ inhibitor (rottlerin), or c-Src inhibitor (PP2). Stimulation of cells with thrombin increased PKCδ, c-Src, and Nrf2 activation.Conclusion
Our results suggest that the interaction between thrombin and PAR1/PAR3 increases HO-1 expression in human synovial fibroblasts through the PKCδ, c-Src, and Nrf2 signaling pathways. 相似文献8.
Kolomytkin Oleg V.; Marino Andrew A.; Sadasivan Kalia K.; Wolf Robert E.; Albright James A. 《American journal of physiology. Cell physiology》1999,276(1):C9
The possibility that membrane depolarization of synovialfibroblasts caused by interleukin-1 (IL-1) was mediated byprotein kinase C (PKC) and Ca2+influx was studied using inhibitor and activator analysis. The effectof IL-1 was blocked by bisindolylmaleimide I, an inhibitor of PKC,and by the Ca2+ channel blockersnifedipine and verapamil. In other experiments, PKC was activated usingphorbol 12-myristate 13-acetate, andCa2+ influx was increased by meansof a Ca2+ ionophore. Simultaneousapplication of phorbol ester andCa2+ ionophore in the absence ofIL-1 mimicked the depolarization caused by IL-1. The results wereconsistent with the hypothesis that, under the conditions studied,activation of PKC and Ca2+ influxare necessary and sufficient processes in the transduction of IL-1by synovial cells leading to membrane depolarization. Theessential role of protein phosphorylation andCa2+ influx in the earlyelectrophysiological response of synovial fibroblasts to IL-1 wastherefore established. The role of IL-1-induced depolarization inregulating protein expression by the cells remains to be determined,but the results reported here, taken together with observations thatprotein phosphorylation and Ca2+influx also mediate the effect of IL-1 on protease production (1, 2), suggest that electrophysiological changes are actually part of thepathway for expression of proteases in response to IL-1. 相似文献
9.
Hayakawa H Hayakawa M Kume A Tominaga S 《The Journal of biological chemistry》2007,282(36):26369-26380
The ST2 gene produces a soluble secreted form and a transmembrane form, referred to as soluble ST2 and ST2L, respectively. A recent study has reported that interleukin (IL)-33 is a specific ligand of ST2L and induces production of T helper type 2 (Th2) cytokines. Although soluble ST2 is highly produced in sera of asthmatic patients and plays a critical role for production of Th2 cytokines, the function of soluble ST2 in relation to IL-33 signaling remains unclear. Here we show antagonistic effects of soluble ST2 on IL-33 signaling using a murine thymoma EL-4 cells stably expressing ST2L and a murine model of asthma. Soluble ST2 directly bound to IL-33 and suppressed activation of NF-kappaB in EL-4 cells stably expressing ST2L, suggesting that the complex of soluble ST2 and IL-33 fails to bind to ST2L. In a murine model of asthma, pretreatment with soluble ST2 reduced production of IL-4, IL-5, and IL-13 from IL-33-stimulated splenocytes. These results indicate that soluble ST2 acts as a negative regulator of Th2 cytokine production by the IL-33 signaling. Our study provides a molecular mechanism wherein soluble ST2 modulates the biological activity of IL-33 in allergic airway inflammation. 相似文献
10.
Much evidence now exists regarding radiation-induced bystander effects, but the mechanisms involved in the transduction of the signal are still unclear. The mitogen-activated protein kinase (MAPK) pathways have been linked to growth factor-mediated regulation of cellular events such as proliferation, senescence, differentiation and apoptosis. Activation of multiple MAPK pathways such as the ERK, JNK and p38 pathways have been shown to occur after exposure of cells to radiation and a variety of other toxic stresses. Previous studies have shown oxidative stress and calcium signaling to be important in radiation-induced bystander effects. The aim of the present study was to investigate MAPK signaling pathways in bystander cells exposed to irradiated cell conditioned medium (ICCM) and the role of oxidative metabolism and calcium signaling in the induction of bystander responses. Human keratinocytes (HPV-G cell line) were irradiated (0.005-5 Gy) using a cobalt-60 teletherapy unit. The medium was harvested 1 h postirradiation and transferred to recipient HPV-G cells. Phosphorylated forms of p38, JNK and ERK were studied by immunofluorescence 30 min-24 h after exposure to ICCM. Inhibitors of the ERK pathway (PD98059 and U0126), the JNK pathway (SP600125), and the p38 pathway (SB203580) were used to investigate whether bystander-induced cell death could be blocked. Cells were also incubated with ICCM in the presence of superoxide dismutase, catalase, EGTA, verapamil, nifedipine and thapsigargin to investigate whether bystander effects could be inhibited because of the known effects on calcium homeostasis. Activated forms of JNK and ERK proteins were observed after exposure to ICCM. Inhibition of the ERK pathway appeared to increase bystander-induced apoptosis, while inhibition of the JNK pathway appeared to decrease apoptosis. In addition, reactive oxygen species, such as superoxide and hydrogen peroxide, and calcium signaling were found to be important modulators of bystander responses. Further investigations of these signaling pathways may aid in the identification of novel therapeutic targets. 相似文献
11.
Jing‐Bo Chen Rong Tao Hai‐Ying Sun Hung‐Fat Tse Chu‐Pak Lau Gui‐Rong Li 《Journal of cellular physiology》2010,223(1):68-75
Ca2+ signaling pathways are well studied in cardiac myocytes, but not in cardiac fibroblasts. The aim of the present study is to characterize Ca2+ signaling pathways in cultured human cardiac fibroblasts using confocal scanning microscope and RT‐PCR techniques. It was found that spontaneous intracellular Ca2+ (Ca) oscillations were present in about 29% of human cardiac fibroblasts, and the number of cells with Ca oscillations was increased to 57.3% by application of 3% fetal bovine serum. Ca oscillations were dependent on Ca2+ entry. Ca oscillations were abolished by the store‐operated Ca2+ (SOC) entry channel blocker La3+, the phospholipase C inhibitor U‐73122, and the inositol trisphosphate receptors (IP3Rs) inhibitor 2‐aminoethoxydiphenyl borate, but not by ryanodine. The IP3R agonist thimerosal enhanced Ca oscillations. Inhibition of plasma membrane Ca2+ pump (PMCA) and Na+–Ca2+ exchanger (NCX) also suppressed Ca oscillations. In addition, the frequency of Ca oscillations was reduced by nifedipine, and increased by Bay K8644 in cells with spontaneous Ca2+ oscillations. RT‐PCR revealed that mRNAs for IP3R1‐3, SERCA1‐3, CaV1.2, NCX3, PMCA1,3,4, TRPC1,3,4,6, STIM1, and Orai1‐3, were readily detectable, but not RyRs. Our results demonstrate for the first time that spontaneous Ca oscillations are present in cultured human cardiac fibroblasts and are regulated by multiple Ca2+ pathways, which are not identical to those of the well‐studied contractile cardiomyocytes. This study provides a base for future investigations into how Ca2+ signals regulate biological activity in human cardiac fibroblasts and cardiac remodeling under pathological conditions. J. Cell. Physiol. 223: 68–75, 2010. © 2009 Wiley‐Liss, Inc. 相似文献
12.
13.
14.
Blackford AN Bruton RK Dirlik O Stewart GS Taylor AM Dobner T Grand RJ Turnell AS 《Journal of virology》2008,82(15):7640-7652
E1B-55K-associated protein 5 (E1B-AP5) is a cellular, heterogeneous nuclear ribonucleoprotein that is targeted by adenovirus (Ad) E1B-55K during infection. The function of E1B-AP5 during infection, however, remains largely unknown. Given the role of E1B-55K targets in the DNA damage response, we examined whether E1B-AP5 function was integral to these pathways. Here, we show a novel role for E1B-AP5 as a key regulator of ATR signaling pathways activated during Ad infection. E1B-AP5 is recruited to viral replication centers during infection, where it colocalizes with ATR-interacting protein (ATRIP) and the ATR substrate replication protein A 32 (RPA32). Indeed, E1B-AP5 associates with ATRIP and RPA complex component RPA70 in both uninfected and Ad-infected cells. Additionally, glutathione S-transferase pull-downs show that E1B-AP5 associates with RPA components RPA70 and RPA32 directly in vitro. E1B-AP5 is required for the ATR-dependent phosphorylation of RPA32 during infection and contributes to the Ad-induced phosphorylation of Smc1 and H2AX. In this regard, it is interesting that Ad5 and Ad12 differentially promote the phosphorylation of RPA32, Rad9, and Smc1 during infection such that Ad12 promotes a significant phosphorylation of RPA32 and Rad9, whereas Ad5 only weakly promotes RPA32 phosphorylation and does not induce Rad9 phosphorylation. These data suggest that Ad5 and Ad12 have evolved different strategies to regulate DNA damage signaling pathways during infection in order to promote viral replication. Taken together, our results define a role for E1B-AP5 in ATR signaling pathways activated during infection. This might have broader implications for the regulation of ATR activity during cellular DNA replication or in response to DNA damage. 相似文献
15.
16.
Petri net-based method for the analysis of the dynamics of signal propagation in signaling pathways 总被引:2,自引:0,他引:2
MOTIVATION: Cellular signaling networks are dynamic systems that propagate and process information, and, ultimately, cause phenotypical responses. Understanding the circuitry of the information flow in cells is one of the keys to understanding complex cellular processes. The development of computational quantitative models is a promising avenue for attaining this goal. Not only does the analysis of the simulation data based on the concentration variations of biological compounds yields information about systemic state changes, but it is also very helpful for obtaining information about the dynamics of signal propagation. RESULTS: This article introduces a new method for analyzing the dynamics of signal propagation in signaling pathways using Petri net theory. The method is demonstrated with the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) regulation network. The results constitute temporal information about signal propagation in the network, a simplified graphical representation of the network and of the signal propagation dynamics and a characterization of some signaling routes as regulation motifs. 相似文献
17.
18.
A novel role for interleukin-18 in adhesion molecule induction through NF kappa B and phosphatidylinositol (PI) 3-kinase-dependent signal transduction pathways 总被引:14,自引:0,他引:14
Interleukin-18 (IL-18) is a novel proinflammatory cytokine found in serum and joints of patients with rheumatoid arthritis (RA). We studied a novel role for IL-18 in mediating cell adhesion, a vital component of the inflammation found in RA and other inflammatory diseases. We examined the expression of cellular cell adhesion molecules E-selectin, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) on endothelial cells and RA synovial fibroblasts using flow cytometry. Adhesion of the monocyte-like cell line HL-60 to endothelial cells was determined by immunofluorescence. IL-18 significantly enhanced ICAM-1 and VCAM-1 expression on endothelial cells and RA synovial fibroblasts. In addition, IL-18 induced E-selectin expression on endothelial cells and promoted the adhesion of HL-60 cells to IL-18-stimulated endothelial cells. Neutralizing anti-VCAM-1 and anti-E-selectin could completely inhibit HL-60 adherence to endothelial cells. IL-18-induced adhesion molecule expression appears to be mediated through nuclear factor kappa B (NF kappa B) and phosphatidyl-inositol 3 kinase (PI 3-kinase) since addition of inhibitors to either NF kappa B (pyrrolidine dithiocarbamate and N-acetyl-l-cysteine) or PI 3-kinase (LY294002) inhibited RA synovial fibroblast VCAM-1 expression by 50 to 60%. Addition of both inhibitors resulted in inhibition of VCAM-1 expression by 85%. In conclusion, the ability of IL-18 to induce adhesion molecule expression on endothelial cells and RA synovial fibroblasts indicates that IL-18 may contribute to RA joint inflammation by enhancing the recruitment of leukocytes into the joint. IL-18 requires NF kappa B as well as PI 3-kinase to induce VCAM-1 on RA synovial fibroblasts, suggesting that there may be two distinct pathways in IL-18-induced adhesion molecule expression. 相似文献
19.
20.
Involvement of gap junctional intercellular communication (GJIC) in bystander responses of confluent human fibroblasts irradiated with a carbon-ion beam was investigated. It was found that the lower the radiation dose, the higher the yield of radiation-induced micronuclei per nuclear traversal, suggesting the existence of bystander effects. This low-dose sensitivity was increased when GJIC was enhanced by treating cells with 8-Br-cAMP, but it was partly reduced by treating cells with DMSO, an effective scavenger of reactive oxygen species (ROS). Moreover, no low-dose sensitivity was observed when cells were treated with 100 micro M lindane, an inhibitor of GJIC. The survival of irradiated cells was increased by DMSO but was not influenced significantly by cAMP or lindane. On the other hand, G(1)-phase arrest was detected in the irradiated cells, and it was enhanced by cAMP. In contrast, this arrest was reduced or almost eliminated by DMSO or lindane, respectively, even when cells were irradiated with such a high dose that each cell received five nuclear traversals on average. Thus the bystander responses occurred after both low-dose and relatively high-dose irradiation. Our results indicated that both GJIC and ROS contributed to the radiation-induced bystander effect, but gap junctional channels might play an essential role by modulating the release of radiation-induced signaling factors. 相似文献