首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The microtubule cytoskeleton is known to play a role in cell structure and serve as a scaffold for a variety of active molecules in processes as diverse as motility and cell division. The literature on the role of microtubules in signal transduction, however, is marked by inconsistencies. We have investigated a well-studied signaling pathway, TNF-α-induced NF-κB activation, and found a connection between the stability of microtubules and the regulation of NF-κB signaling in C2C12 myotubes. When microtubules are stabilized by paclitaxel (taxol), there is a strong induction of NF-κB even in the absence of TNF-α . Although there was no additive effect of taxol and TNF-α on NF-κB activity suggesting a shared mechanism of activation, taxol strongly induced the NF-κB reporter in the presence of a TNF receptor (TNFR) blocking antibody while TNF-α did not. Both TNF-α and taxol induce the degradation of endogenous IκBα and either taxol or TNF-α induction of NF-κB activity was blocked by inhibitors of NF-κB acting at different sites in the signaling pathway. Both TNF-α and taxol strongly induce known NF-κB chemokine target genes. On the other hand, if microtubules are destabilized by colchicine, then the induction of NF-κB by TNF-α or taxol is greatly reduced. Taken together, we surmise that the activity of microtubules is at the level of the TNFR intracellular domain. This phenomenon may indicate a new level of signaling organization in cell biology, actively created by the state of the cytoskeleton, and has ramifications for therapies where microtubule regulating drugs are used.  相似文献   

3.
4.
Cellular loss induced by tumor necrosis factor alpha (TNF-α) contributes to the pathogenesis of intervertebral disc (IVD) degeneration. Cellular stress induced by TNF-α activates several processes to restore cell homeostasis. These processes include autophagy, endoplasmic reticulum stress, and related unfolded protein response (UPR). However, the effect and mechanism of UPR and autophagy regulated by TNF-α in IVD degeneration (IDD) remain unclear. The effect of autophagy on biological changes in nucleus pulposus cells (NPCs) also remains elusive. In this study, rat NPCs were cultured with TNF-α in the presence or absence of the UPR or autophagy pathway small-interfering RNAs. The associated genes and proteins were evaluated through immunofluorescence staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analyses to monitor UPR and autophagy signaling and identify the regulatory mechanism of autophagy by the UPR pathway. Trypan blue exclusion assay, cell flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, qRT-PCR, and western blot analyses were performed to examine the apoptosis of NPCs. The results showed that the acute exposure of TNF-α induced the apoptosis of rat NPCs and activated the protein kinase RNA-like ER kinase/eukaryotic translation initiation factor 2α (PERK/eIF2α) pathway of UPR and initiated autophagy. Silencing the PERK/eIF2α pathway or inhibiting autophagy enhanced the apoptosis of NPCs. Interference of the PERK/eIF2α pathway suppressed the autophagy of rat NPCs under TNF-α stimulation. Taken together, the PERK/eIF2α pathway reinforces the survival of NPCs under TNF-α stimulation by activating autophagy. Therefore, PERK/eIF2α-dependent autophagy could be a novel biological therapeutic target for IDD.  相似文献   

5.
Persistently elevated level of TNF-α has been implicated in several inflammatory disorders, however, its autocrine production through TNF-α receptors signaling is poorly understood. Here we report that simultaneous silencing of TNF-receptors, R1 and R2 by DNAzyme or siRNA suppressed TNF-α expression more efficiently than silencing them individually in lipopolysaccharides (LPS) stimulated THP-1 macrophages. Co-silencing of TNF-receptors also inhibited TNF-α induced NF-κB activation to a higher extent. It was further observed that NF-κB inhibitor but not c-Jun N-terminal kinase inhibitor (SP600125) suppressed TNF-α expression. All these results suggest that TNF-α expression is regulated by synergistic signaling of TNF receptors through downstream NF-κB activation.  相似文献   

6.
The myofibroblast has recently been identified as an important mediator of tumor necrosis factor-α (TNF-α)-associated colitis and cancer, but the mechanism(s) involved remains incompletely understood. Recent evidence suggests that TNF-α is a central regulator of multiple inflammatory signaling cascades. One important target of TNF-α may be the signaling pathway downstream of the epidermal growth factor receptor (EGFR), which has been associated with many human cancers. Here, we show that long-term exposure of 18Co cells, a model of human colonic myofibroblasts, with TNF-α led to a striking increase in cell surface EGFR expression, an effect that was completely inhibited by cycloheximide. Subsequent EGFR binding by EGF and heparin binding (HB)-EGF was associated with enhanced EGFR tyrosine kinase activity, prolonged ERK activation, and a significant increase in cyclooxygenase-2 (COX-2) expression compared with 18Co cells treated with EGF and HB-EGF alone. TNF-α also increased EGFR expression and signaling in primary myofibroblasts isolated from human colon tissue. TNF-α-induced upregulation of EGFR may be a plausible mechanism to explain the exaggerated cellular responsiveness that characterizes inflammatory bowel disease and that may contribute to a microenvironment that predisposes to colitis-associated cancer through enhanced COX-2 expression.  相似文献   

7.
Tumor necrosis factor alpha (TNF-α) is a potent inflammatory cytokine secreted upon cellular stress as well as immunological stimuli and is implicated in the pathology of inflammatory diseases and cancer. The therapeutic potential of modifying TNF-α pathway activity has been realized in several diseases, and antagonists of TNF-α have reached clinical applications. While much progress in the understanding of signaling downstream of the TNF-α receptor complex has been made, the compendium of factors required for signal transduction is still not complete. In order to find novel regulators of proinflammatory signaling induced by TNF-α, we conducted a genome-wide small interfering RNA screen in human cells. We identified several new candidate modulators of TNF-α signaling, which were confirmed in independent experiments. Specifically, we show that caspase 4 is required for the induction of NF-κB activity, while it appears to be dispensable for the activation of the Jun N-terminal protein kinase signaling branch. Taken together, our experiments identify caspase 4 as a novel regulator of TNF-α-induced NF-κB signaling that is required for the activation of IκB kinase. We further provide the genome-wide RNA interference data set as a compendium in a format compliant with minimum information about an interfering RNA experiment (MAIRE).  相似文献   

8.
9.
TNF-α is a proinflammatory cytokine that is upregulated in many cardiac diseases. The increase of TNF-α expression affects both heart function and the structure of the extracellular matrix. Lysyl oxidase (LOX) is a key enzyme responsible for the maturation of extracellular matrix proteins, including collagens type I and III. In this study, we investigated the regulation of LOX expression and activity by TNF-α using adult rat cardiac fibroblasts. Our results indicate that TNF-α has a dichotomous effect on LOX expression by cardiac fibroblasts. Low dose TNF-α (1–5 ng/ml) decreased LOX expression, whereas higher doses (10–30 ng/ml) increased expression. The higher dose TNF-α effect on LOX expression was attenuated by the inhibition of PI3Kinase/Akt pathway. TGF-β1 signaling played a significant role in mediating the TNF-α effect. TNF-α increased the expression of TGF-β, and TGF-β receptors type I and II, and also stimulated Smad3 phosphorylation. Inhibition of TGF-β receptor I or Smad3 prevented increased LOX expression by TNF-α. These findings indicate that TNF-α stimulated LOX expression may play an important role in progressive cardiac fibrosis.  相似文献   

10.
11.
We provide evidence for a prodegenerative, glial-derived signaling framework in the Drosophila neuromuscular system that includes caspase and mitochondria-dependent signaling. We demonstrate that Drosophila TNF-α (eiger) is expressed in a subset of peripheral glia, and the TNF-α receptor (TNFR), Wengen, is expressed in motoneurons. NMJ degeneration caused by disruption of the spectrin/ankyrin skeleton is suppressed by an eiger mutation or by eiger knockdown within a subset of peripheral glia. Loss of wengen in motoneurons causes a similar suppression providing evidence for glial-derived prodegenerative TNF-α signaling. Neither JNK nor NFκβ is required for prodegenerative signaling. However, we provide evidence for the involvement of both an initiator and effector caspase, Dronc and Dcp-1, and mitochondrial-dependent signaling. Mutations that deplete the axon and nerve terminal of mitochondria suppress degeneration as do mutations in Drosophila Bcl-2 (debcl), a mitochondria-associated protein, and Apaf-1 (dark), which links mitochondrial signaling with caspase activity in other systems.  相似文献   

12.
It is known that cobalamin (Cbl) deficiency damages myelin by increasing tumor necrosis factor (TNF)-α and decreasing epidermal growth factor (EGF) levels in rat central nervous system (CNS), and affects the peripheral nervous system (PNS) morphologically and functionally. It is also known that some polyneuropathies not due to Cbl deficiency are connected with increased TNF-α levels, and that various cytokines (including TNF-α) and growth factors regulate the in vitro synthesis of normal prions (PrPCs). Given that there is extensive evidence that PrPCs play a key role in the maintenance of CNS and PNS myelin, we investigated whether the PrPC octapeptide repeat (OR) region is involved in the pathogenesis of rat Cbl-deficient (Cbl-D) polyneuropathy. After intracerebroventricularly administering antibodies (Abs) against the OR region (OR-Abs) to Cbl-D rats to prevent myelin damage and maximum nerve conduction velocity (MNCV) abnormalities, and PrPCs to otherwise normal rats to reproduce PNS Cbl-D-like lesions, we measured PrPC levels and MNCV of the sciatic and tibial nerves. PrPC and TNF-α levels were increased in sciatic and tibial nerves of Cbl-D and saline-treated rats, and the OR-Abs normalized the myelin ultrastructure, TNF-α levels, and MNCV values of the sciatic and tibial nerves of Cbl-D rats. The same peripheral nerves of the otherwise normal PrPC-treated rats showed typical Cbl-D myelin lesions, significantly increased TNF-α levels, and significantly decreased MNCV values. These findings demonstrate that Cbl deficiency induces excess PrPCs and thereby excess OR regions, which seem to be responsible for the PNS myelin damage, as has recently been found in the case of CNS myelin damage [66]. Furthermore, excess TNF-α is also involved in the pathogenesis of Cbl-D polyneuropathy. In conclusion, we have extended the list of prion diseases by adding one caused by excess PrPCs and the polyneuropathies related to excess TNF-α.  相似文献   

13.
Although anti-tumor necrosis factor (TNF)-α treatments efficiently block inflammation in ankylosing spondylitis (AS), they are inefficient to prevent excessive bone formation. In AS, ossification seems more prone to develop in sites where inflammation has resolved following anti-TNF therapy, suggesting that TNF-α indirectly stimulates ossification. In this context, our objectives were to determine and compare the involvement of Wnt proteins, which are potent growth factors of bone formation, in the effects of TNF-α on osteoblast function. In human mesenchymal stem cells (MSCs), TNF-α significantly increased the levels of Wnt10b and Wnt5a. Associated with this effect, TNF-α stimulated tissue-non specific alkaline phosphatase (TNAP) and mineralization. This effect was mimicked by activation of the canonical β-catenin pathway with either anti-Dkk1 antibodies, lithium chloride (LiCl) or SB216763. TNF-α reduced, and activation of β-catenin had little effect on expression of osteocalcin, a late marker of osteoblast differentiation. Surprisingly, TNF-α failed to stabilize β-catenin and Dkk1 did not inhibit TNF-α effects. In fact, Dkk1 expression was also enhanced in response to TNF-α, perhaps explaining why canonical signaling by Wnt10b was not activated by TNF-α. However, we found that Wnt5a also stimulated TNAP in MSCs cultured in osteogenic conditions, and increased the levels of inflammatory markers such as COX-2. Interestingly, treatment with anti-Wnt5a antibodies reduced endogenous TNAP expression and activity. Collectively, these data suggest that increased levels of Dkk1 may blunt the autocrine effects of Wnt10b, but not that of Wnt5a, acting through non-canonical signaling. Thus, Wnt5a may be potentially involved in the effects of inflammation on bone formation.  相似文献   

14.
15.
Macrophage accumulation has been implicated in the pathogenesis of inflammatory glomerular disease. Monocyte chemoattractant protein-1 (MCP-1) plays a central role in recruiting monocytes to the glomeruli. Tumor necrosis factor-α (TNF-α) has been shown to induce MCP-1 expression in mesangial cells, although the precise mechanisms remain unclear. We previously demonstrated that RhoA and its effector, Rho-kinase (Rho-associated coiled-coil containing protein kinase, ROCK), are involved in the pathogenesis of diabetic nephropathy. However, its role in MCP-1 induction by TNF-α has not been elucidated. In the present study, we investigated whether the Rho/Rho-kinase signaling pathway regulates the TNF-α-mediated induction of MCP-1 in mesangial cells. Exposure of mouse mesangial cells (MES-13) to TNF-α resulted in an increase of MCP-1 expression (by RT-PCR) and secretion into the medium (by ELISA). Pull down and Western blot analysis revealed that TNF-α activated RhoA and Rho-kinase. Based on these observations, we speculated that the Rho/Rho-kinase signaling pathway may be involved in MCP-1 induction by TNF-α. In agreement with this concept, Y-27632, a specific Rho-kinase inhibitor, attenuated TNF-α-mediated induction of MCP-1. We demonstrated that Y-27632 inhibited TNF-α-mediated monocyte migration and attenuated TNF-α-mediated p38 MAPK activation. Based on these data we infer that Y-27632 inhibits TNF-α-induced MCP-1 expression, secretion and function through inhibition of Rho-kinase and p38 MAPK activity. Our study suggests that Rho/Rho-kinase is an important therapeutic target of monocyte recruitment and accumulation within the glomerulus in inflammatory renal disease.  相似文献   

16.
《遗传学报》2022,49(4):269-278
Nonalcoholic steatohepatitis (NASH), an inflammatory subtype of nonalcoholic fatty liver disease, is featured by significantly elevated levels of various proinflammatory cytokines. Among numerous proinflammatory factors that contribute to NASH pathogenesis, the secreted protein, tumor necrosis factor-alpha (TNF-α), plays an essential role in multiple facets of NASH progression and is therefore considered as a potential therapeutic target. In this review, we will first systematically describe the preclinical studies on the biochemical function of TNF-α and its intracellular downstream signaling mechanisms through its receptors. Moreover, we extensively discuss its functions in regulating inflammation, cell death, and fibrosis of liver cells in the pathogenesis of NASH, and the molecular mechanism that TNF-α expression is regulated by NF-κB and other upstream master regulators during NASH progression. As TNF-α is one of the causal factors that remarkably contributes to NASH progression, combination of therapeutic modalities, including TNF-α-based therapies may lead to the resolution of NASH via multiple pathways and thus generate clinical benefits. For translational studies, we summarize recent advances in strategies targeting TNF-α and its signaling pathway, which paves the way for potential therapeutic treatments for NASH in the future.  相似文献   

17.
18.
Tumour necrosis factor α (TNF-α) and interleukin 6 (IL-6) are potent inflammatory cytokines produced by osteoblasts and whose contribution to bone loss occurring in oestrogen deficiency is well documented. Calcitonin gene-related peptide (CGRP) is a neuropeptide abundantly concentrated in sensory nerve endings innervating bone metaphyses and periosteum suggesting that it controls bone homeostasis locally. Since CGRP was shown to inhibit TNF-α production by T cells and stimulate IL-6 expression by fibroblasts, this study was designed to investigate whether CGRP regulated TNF-α and IL-6 production by osteoblasts. We show that CGRP inhibits the production of TNF-α by both lipopolysaccharide (LPS)- and IL-1-stimulated fetal rat osteoblasts. Like CGRP, the cAMP agonists prostaglandin E2(PGE2), dibutyryl cAMP (Bt2cAMP) and forskolin inhibit TNF-α production by osteoblasts. Exposure of osteoblasts to a high dose of phorbol myristoyl acetate (PMA) to deplete PKC activity abolished CGRP-mediated TNF-α suppression. In contrast with its potent inhibition of TNF-α production, we show that CGRP is a weak inducer of IL-6 when compared to PGE2, Bt2cAMP and forskolin. However, in presence of isobutylmethylxanthine (IBMX) CGRP stimulates the production of IL-6. Collectively, these data suggest that the inhibition of TNF-α CGRP is cAMP dependent and PMA sensitive and that the concentration of intracellular cAMP may be a regulatory mechanism for IL-6 expression in osteoblasts.  相似文献   

19.
In rheumatoid arthritis (RA), a chronic inflammatory disease, loss of muscle mass is an important contributor to the loss of muscle strength in RA patients. Myostatin, a myokine involved in the process of muscle hypertrophy and myogenesis, enhances osteoclast differentiation and inflammation. Here, we investigated the mechanisms of myostatin in RA synovial inflammation. We found a positive correlation between myostatin and tumor necrosis factor-α (TNF-α), a well-known proinflammatory cytokine, in RA synovial tissue. Our in vitro results also showed that myostatin dose-dependently induced TNF-α expression through the phosphatidylinositol 3-kinase (PI3K)–Akt–AP-1 signaling pathway. Myostatin treatment of human MH7A cells stimulated AP-1-induced luciferase activity and activation of the c-Jun binding site on the TNF-α promoter. Our results indicated that myostatin increases TNF-α expression via the PI3K–Akt–AP-1 signaling pathway in human RA synovial fibroblasts. Myostatin appears to be a promising target in RA therapy.  相似文献   

20.
为探讨脓肿分枝杆菌脓肿亚种和马赛亚种经Toll样受体2(Toll-like receptor 2,TLR2)介导的c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)和细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)诱导THP-1巨噬细胞内肿瘤坏死因子α(tumor necrosis factor α,TNF-α)和白细胞介素8(interleukin 8,IL-8)表达的相关分子机制,本研究将脓肿分枝杆菌脓肿亚种和马赛亚种感染THP-1巨噬细胞,细菌与巨噬细胞最佳感染之比为感染复数(multiplicity of infection,MOI)=3,用荧光定量聚合酶链反应(polymerase chain reaction,PCR)检测THP-1巨噬细胞感染两细菌亚种6 h后的胞内TNF-α和IL-8 mRNA水平,以及分别阻断TLR2、JNK 和ERK信号蛋白后TNF-α和IL-8 mRNA水平的变化。结果显示,脓肿分枝杆菌脓肿亚种和马赛亚种作用于THP-1巨噬细胞6 h后,均可诱导细胞内TNF-α和IL-8 mRNA水平显著上调,差异有统计学意义(P<0.05);分别阻断TLR2、JNK和ERK信号蛋白,脓肿亚种感染THP-1巨噬细胞后胞内TNF-α和IL-8 mRNA上调水平出现明显抑制,差异有统计学意义(P<0.05);分别阻断TLR2和JNK信号蛋白,马赛亚种感染THP-1巨噬细胞后胞内TNF-α和IL-8 mRNA上调水平均出现明显抑制,差异有统计学意义(P<0.05);而阻断ERK信号蛋白后,马赛亚种组仅见IL-8 mRNA水平明显抑制,差异有统计学意义(P<0.05),而TNF-α mRNA水平未见明显变化,差异无统计学意义(P>0.05)。本研究提示,脓肿分枝杆菌脓肿亚种和马赛亚种均可作用于TLR2,诱导THP-1细胞内TNF-α和IL-8 mRNA水平上调,脓肿亚种可经JNK和ERK信号蛋白诱导TNF-α mRNA上调,马赛亚种可经JNK信号蛋白诱导TNF-α mRNA上调;脓肿亚种和马赛亚种诱导IL-8 mRNA上调可能与JNK和ERK信号蛋白相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号