首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The reaction between metmyoglobin and hydrogen peroxide results in the two-electron reduction of H2O2 by the protein, with concomitant formation of a ferryl-oxo heme and a protein-centered free radical. Sperm whale metmyoglobin, which contains three tyrosine residues (Tyr-103, Tyr-146, and Tyr-151) and two tryptophan residues (Trp-7 and Trp-14), forms a tryptophanyl radical at residue 14 that reacts with O2 to form a peroxyl radical and also forms distinct tyrosyl radicals at Tyr-103 and Tyr-151. Horse metmyoglobin, which lacks Tyr-151 of the sperm whale protein, forms an oxygen-reactive tryptophanyl radical and also a phenoxyl radical at Tyr-103. Human metmyoglobin, in addition to the tyrosine and tryptophan radicals formed on horse metmyoglobin, also forms a Cys-110-centered thiyl radical that can also form a peroxyl radical. The tryptophanyl radicals react both with molecular oxygen and with the spin trap 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS). The spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) traps the Tyr-103 radicals and the Cys-110 thiyl radical of human myoglobin, and 2-methyl-2-nitrosopropane (MNP) traps all of the tyrosyl radicals. When excess H2O2 is used, DBNBS traps only a tyrosyl radical on horse myoglobin, but the detection of peroxyl radicals and the loss of tryptophan fluorescence support tryptophan oxidation under those conditions. Kinetic analysis of the formation of the various free radicals suggests that tryptophanyl radical and tyrosyl radical formation are independent events, and that formation of the Cys-110 thiyl radical on human myoglobin occurs via oxidation of the thiol group by the Tyr-103 phenoxyl radical. Peptide mapping studies of the radical adducts and direct EPR studies at low temperature and room temperature support the conclusions of the EPR spin trapping studies.  相似文献   

2.
5,5-Dimethyl-1-pyrroline N-oxide (DMPO) spin trapping in conjunction with antibodies specific for the DMPO nitrone epitope was used on hydrogen peroxide-treated sperm whale and horse heart myoglobins to determine the site of protein nitrone adduct formation. The present study demonstrates that the sperm whale myoglobin tyrosyl radical, formed by hydrogen peroxide-dependent self-peroxidation, can either react with another tyrosyl radical, resulting in a dityrosine cross-linkage, or react with the spin trap DMPO to form a diamagnetic nitrone adduct. The reaction of sperm whale myoglobin with equimolar hydrogen peroxide resulted in the formation of a myoglobin dimer detectable by electrophoresis/protein staining. Addition of DMPO resulted in the trapping of the globin radical, which was detected by Western blot. The location of this adduct was demonstrated to be at tyrosine-103 by MS/MS and site-specific mutagenicity. Interestingly, formation of the myoglobin dimer, which is known to be formed primarily by cross-linkage of tyrosine-151, was inhibited by the addition of DMPO.  相似文献   

3.
The photosynthetic reaction center from the purple bacterium Rhodobacter sphaeroides has been modified such that the bacteriochlorophyll dimer, when it becomes oxidized after light excitation, is capable of oxidizing tyrosine residues. One factor in this ability is a high oxidation-reduction midpoint potential for the dimer, although the location and protein environment of the tyrosine residue appear to be critical as well. These factors were tested in a series of mutants, each of which contains changes, at residues L131, M160, M197, and M210, that give rise to a bacteriochlorophyll dimer with a midpoint potential of at least 800 mV. The protein environment was altered near tyrosine residues that are either present in the wild type or introduced by mutagenesis, focusing on residues that could act as acceptors for the phenolic proton of the tyrosine upon oxidation. These mutations include Ser M190 to His, which is near Tyr L162, the combination of His M193 to Tyr and Arg M164 to His, which adds a Tyr-His pair, and the combinations of Arg L135 to Tyr with Tyr L164 to His, Arg L135 to Tyr with Tyr L144 to Glu, and Arg L135 to Tyr with Tyr L164 to Phe. Radicals were produced in the mutants by using light to initiate electron transfer. The radicals were trapped by freezing the samples, and the relative populations of the oxidized dimer and tyrosyl radicals were determined by analysis of low-temperature electron paramagnetic resonance spectra. The mutants all showed evidence of tyrosyl radical formation at high pH, and the extent of radical formation at Tyr L135 with pH differed depending on the identity of L144 and L164. The results show that tyrosine residues within approximately 10 A of the dimer can become oxidized when provided with a suitable protein environment.  相似文献   

4.
It is shown that nitrogen dioxide oxidizes thiamine to thiamine disulfide, thiochrome, and oxodihydrothiochrome (ODTch). The latter is formed during oxidation of thiochrome by nitrogen dioxide. Nitrogen dioxide was produced by incubation of nitrite with horse ferric myoglobin and human hemoglobin in the presence of hydrogen peroxide. After addition of tyrosine or phenol to aqueous solutions containing oxoferryl forms of the hemoproteins, thiamine, and nitrite, the yield of thiochrome greatly increased, whereas the yield of ODTch decreased. In the presence of high concentrations of tyrosine or phenol compounds ODTch was not formed at all. The neutral form of thiamine with the closed thiazole cycle and minor tricyclic form of thiamine do not enter the heme pocket of the protein and do not interact with the oxoferryl heme complex Fe(IV=O) or porphyrin radical. The tricyclic form of thiamine is oxidized to thiochrome by tyrosyl radicals located on the surface of the hemoprotein. The thiol form of thiamine is oxidized to thiamine disulfide by both hemoprotein tyrosyl radicals and oxoferryl heme complexes. Nitrite and also tyrosine, tyramine, and phenol readily penetrate into the heme pocket of the protein and reduce the oxyferryl complex to ferric cation. These reactions yield nitrogen dioxide as well as tyrosyl and phenoxyl radicals of tyrosine molecules and phenol compounds, respectively. Tyrosyl and phenoxyl radicals of low molecular weight compounds oxidize thiamine only to thiochrome and thiamine disulfide. The effect of oxoferryl forms of myoglobin and hemoglobin, nitrogen dioxide, and phenol on thiamine oxidative transformation as well as antioxidant properties of the hydrophobic thiamine metabolites thiochrome and ODTch are discussed.  相似文献   

5.
The reactivity of the endogenous antioxidants ascorbate, ergothioneine, and urate toward the high oxidation state of sperm whale myoglobin, ferrylmyoglobin-formed upon oxidation of metmyoglobin by H2O2--was evaluated by optical spectroscopy and SDS-PAGE analysis. Depending on whether these antioxidants were present in the reaction mixture before or after the addition of H2O2 to a metmyoglobin suspension, two different effects were observed: (a) In the former instances, ascorbate, ergothioneine, and urate reduced efficiently the oxoferryl moiety in ferrylmyoglobin to metmyoglobin and prevented dimer formation, a process which requires intermolecular cross-link involving specific tyrosyl residues. In addition, all the reducing compounds inhibited--albeit with different efficiencies--dityorosine-dependent fluorescence build up produced via dimerization of photogenerated tyrosyl radicals. (b) In the latter instances, the antioxidants reduced the preformed sperm whale ferrylmyoglobin to a modified metmyoglobin, the spectral profile of which was characterized by a blue shift of the typical 633 nm absorbance of native metmyoglobin. In addition, under these experimental conditions, the antioxidants did not affect dimer formation, thus indicating the irreversible character of the process. The dimeric form of sperm whale myoglobin--separated from the monomeric form by gel electrophoresis of a solution in which ergothioneine was added to preformed ferrylmyoglobin--revealed optical spectral properties in the visible region identical to that of the modified myoglobin. This suggests that the dimeric form of the hemoprotein is redox active, inasmuch as the oxoferryl complex can be reduced to its ferric form. These results are discussed in terms of the potential reactivity of these endogenous antioxidants toward the reducible loci of ferrylmyoglobin, the oxoferryl moiety, and the apoprotein radical.  相似文献   

6.
Nitrogen dioxide is a product of peroxynitrite homolysis and peroxidase-catalyzed oxidation of nitrite. It is of great importance in protein tyrosine nitration because most nitration pathways end with the addition of *NO2 to a one-electron-oxidized tyrosine. The rate constant of this radical addition reaction is high with free tyrosine-derived radicals. However, little is known of tyrosine radicals in proteins. In this paper, we have used *NO2 generated by gamma radiolysis to study the nitration of the R2 subunit of ribonucleotide reductase, which contains a long-lived tyrosyl radical on Tyr122. Most of the nitration occurred on Tyr122, but nonradical tyrosines were also modified. In addition, peptidic bonds close to nitrated Tyr122 could be broken. Nitration at Tyr122 was not observed with a radical-free metR2 protein. The estimated rate constant of the Tyr122 radical reaction with *NO2 was of 3 x 10(4) M(-1) s(-1), thus several orders of magnitude lower than that of a radical on free tyrosine. Nitration rate of other tyrosine residues in R2 was even lower, with an estimated value of 900 M(-1) s(-1). This study shows that protein environment can significantly reduce the reactivity of a tyrosyl radical. In ribonucleotide reductase, the catalytically active radical residue is very efficiently protected against nitrogen oxide attack and subsequent nitration.  相似文献   

7.
Myeloperoxidase is a heme enzyme of neutrophils that uses hydrogen peroxide to oxidize chloride to hypochlorous acid. Recently, it has been shown to catalyze nitration of tyrosine. In this study we have investigated the mechanism by which it oxidizes nitrite and promotes nitration of tyrosyl residues. Nitrite was found to be a poor substrate for myeloperoxidase but an excellent inhibitor of its chlorination activity. Nitrite slowed chlorination by univalently reducing the enzyme to an inactive form and as a consequence was oxidized to nitrogen dioxide. In the presence of physiological concentrations of nitrite and chloride, myeloperoxidase catalyzed little nitration of tyrosyl residues in a heptapeptide. However, the efficiency of nitration was enhanced at least 4-fold by free tyrosine. Our data are consistent with a mechanism in which myeloperoxidase oxidizes free tyrosine to tyrosyl radicals that exchange with tyrosyl residues in peptides. These peptide radicals then couple with nitrogen dioxide to form 3-nitrotyrosyl residues. With neutrophils, myeloperoxidase-dependent nitration required a high concentration of nitrite (1 mM), was doubled by tyrosine, and increased 4-fold by superoxide dismutase. Superoxide is likely to inhibit nitration by reacting with nitrogen dioxide and/or tyrosyl radicals. We propose that at sites of inflammation myeloperoxidase will nitrate proteins, even though nitrite is a poor substrate, because the co-substrate tyrosine will be available to facilitate the reaction. Also, production of 3-nitrotyrosine will be most favorable when the concentration of superoxide is low.  相似文献   

8.
H Zhang  J Joseph  J Feix  N Hogg  B Kalyanaraman 《Biochemistry》2001,40(25):7675-7686
It has been reported that peroxynitrite will initiate both oxidation and nitration of tyrosine, forming dityrosine and nitrotyrosine, respectively. We compared peroxynitrite-dependent oxidation and nitration of a hydrophobic tyrosine analogue in membranes and tyrosine in aqueous solution. Reactions were carried out in the presence of either bolus addition or slow infusion of peroxynitrite, and also using the simultaneous generation of superoxide and nitric oxide. Results indicate that the level of nitration of the hydrophobic tyrosyl probe located in a lipid bilayer was significantly greater than its level of oxidation to the corresponding dimer. During slow infusion of peroxynitrite, the level of nitration of the membrane-incorporated tyrosyl probe was greater than that of tyrosine in aqueous solution. Evidence for hydroxyl radical formation from decomposition of peroxynitrite in a dimethylformamide/water mixture was obtained by electron spin resonance spin trapping. Mechanisms for nitration of the tyrosyl probe in the membrane are discussed. We conclude that nitration but not oxidation of a tyrosyl probe by peroxynitrite is a predominant reaction in the membrane. Thus, the local environment of target tyrosine residues is an important factor governing its propensity to undergo nitration in the presence of peroxynitrite. This work provides a new perspective on selective nitration of membrane-incorporated tyrosine analogues.  相似文献   

9.
Previous studies have reported that myosin can be modified by oxidative stress and particularly by activated haem proteins. These reactions have been implicated in changes in the properties of this protein in food samples (changes in meat tenderness and palatability), in human physiology (alteration of myocyte function and force generation) and in disease (e.g. cardiomyopathy, chronic heart failure). The oxidant species, mechanisms of reaction and consequences of these reactions are incompletely characterized. In the present study, the nature of the transient species generated on myosin as a result of the reaction with activated haem proteins (horseradish peroxidase/H2O2) and met-myoglobin/H2O2) has been investigated by EPR spectroscopy and amino-acid consumption, product formation has been characterized by HPLC, and changes in protein integrity have been determined by SDS/PAGE. Multiple radical species have been detected by EPR in both the presence and the absence of spin traps. Evidence has been obtained for the presence of thiyl, tyrosyl and other unidentified radical species on myosin as a result of damage-transfer from oxidized myoglobin or horseradish peroxidase. The generation of thiyl and tyrosyl radicals is consistent with the observed consumption of cysteine and tyrosine residues, the detection of di-tyrosine by HPLC and the detection of both reducible (disulfide bond) and non-reducible cross-links between myosin molecules by SDS/PAGE. The time course of radical formation on myosin, product generation and cross-link induction are consistent with these processes being interlinked. These changes are consistent with the altered function and properties of myosin in muscle tissue exposed to oxidative stress arising from disease or from food processing.  相似文献   

10.
Avram D  Romijn EP  Pap EH  Heck AJ  Wirtz KW 《Proteomics》2004,4(8):2397-2407
Tyrosyl radicals cross-linked to protein tyrosine residues (tyrosylated proteins) represent hallmarks of neutrophil-mediated injury at the inflammatory locus. Yet the proteins targeted by tyrosyl radicals in an intact cellular system remain to be elucidated. Here, we show that tyrosyl radicals generated by human neutrophils after activation by phorbol 12-myristate 13-acetate (PMA), interferon-gamma (IFN-gamma) or TNF-alpha could act in an autocrine manner by cross-linking to endogenous proteins. We have identified the tyrosylated proteins by using a membrane-impermeable tyrosine analogue, tyramine coupled to fluorescein (TyrFluo), in combination with proteomics techniques. Confocal microscopy images indicated that initially the tyrosylated proteins were localized in patches at the cell surface to become internalized subsequently. In the neutrophil membrane-associated proteome, lactoferrin was the prime target of tyrosylation. Out of three isoforms identified, an 80 kDa neutral isoform was tyrosylated more extensively than the 85 kD basic isoform, particularly after PMA activation. Although all three stimuli induced tyrosylation of the filamentous component vimentin, additional tyrosylated vimentin fragments were detected after IFN-gamma- and TNF-alpha-stimulation. Moreover, upon activation the bulk of vimentin behaved as a dimer (M(r) 120 kDa) being slightly tyrosylated, yet phosphorylated at Thr-425 possibly as a requirement for its externalization. Unexpectedly, bovine catalase added to end tyrosyl radicals formation was detected as a highly tyrosylated neutrophil-associated protein. A moderate stimulus-dependent tyrosylation of ATP synthase-beta, alpha-enolase, glyceraldehyde 3-phosphate dehydrogenase, cytokeratin-10, filamin-A, and annexin-I was also observed. When the membrane-permeable probe (acetylTyrFluo) was used, protein tyrosylation was not observed indicating that the intracellular proteins were well protected against oxidative attack. This study shows that human neutrophils can modulate their proteome via a tyrosine oxidation pathway induced by pro-inflammatory mediators.  相似文献   

11.
A method for determining relative tyrosyl radical scavenging activity of antioxidants which requires only a standard fluorometer and commercially available materials is presented. Ultraviolet irradiation of aqueous tyrosine solutions containing superoxide dismutase and catalase produces fluorescent dityrosine residues via dimerization of photogenerated tyrosyl radicals. Added antioxidants suppress the buildup of fluorescence by scavenging the tyrosyl radicals. A correlation exists between the ability of a substance to suppress dityrosine formation and the substance's one-electron oxidation potential. This method demonstrates that ovothiol A scavenges tyrosyl radicals much more efficiently than glutathione or cysteine, resembling instead the known biological radical scavengers uric acid and ascorbic acid and the alpha-tocopherol analog trolox.  相似文献   

12.
Tyrosyl free radicals generated by the peroxidase-catalyzed oxidation of peptide tyrosyl residues are known to yield the stable cross-linked product dityrosine. In the present report, horseradish peroxidase is used as a model of peroxidase to study oxidative modifications of non-protein cellular components. Tyrosyl free radicals promote, as many free radicals, the decay of β-phycoerythrin fluorescence emission, they oxidize NADH and ascorbic acid and initiate arachidonic acid peroxidation with formation of hydroperoxides and dienes. These results suggest that tyrosyl free radicals generated when tyrosine residues in protein and peptides are activated in vivo by peroxidase-H2O2 might undergo the peroxidation of membrane lipids.  相似文献   

13.
The chemistry underlying superoxide toxicity is not fully understood. A potential mechanism for superoxide-mediated injury involves addition to tyrosyl radicals, to give peptide or protein hydroperoxides. The rate constant for the reaction of tyrosyl radicals with superoxide is higher than for dimerization, but the efficiency of superoxide addition to peptides depends on the position of the Tyr residue. We have examined the requirements for superoxide addition and structurally characterized the products for a range of tyrosyl peptides exposed to a peroxidase/ system. These included enkephalins as examples of the numerous proteins and physiological peptides with N-terminal tyrosines. The importance of amino groups in promoting hydroperoxide formation and effect of methionine residues on the reaction were investigated. When tyrosine was N-terminal, the major products were hydroperoxides that had undergone cyclization through conjugate addition of the terminal amine. With non-N-terminal tyrosine, electron transfer from to the peptide radical prevailed. Peptides containing methionine revealed a novel and efficient intramolecular oxygen transfer mechanism from an initial tyrosine hydroperoxide to give a dioxygenated derivative with one oxygen on the tyrosine and the other forming methionine sulfoxide. Exogenous amines promoted hydroperoxide formation on tyrosyl peptides lacking a terminal amine, without forming an adduct. These findings, plus the high hydroperoxide yields with N-terminal tyrosine, can be explained by a mechanism in which hydrogen bonding of to the amine increases is oxidizing potential and alters its reactivity. If this amine effect occurred more generally, it could increase the biological reactivity of and have major implications.Free radical-mediated oxidative damage occurs in numerous diseases and is thought to contribute to the aging process. The primary radical generated by the reduction of oxygen is superoxide (), a relatively benign radical that nevertheless must be removed by superoxide dismutases (SODs)2 for an organism to survive in an aerobic environment (1). A number of potentially damaging reactions of have been identified (14). One of these, which has received relatively little attention, is the addition of to other radicals to form hydroperoxides (5, 6). This reaction has been shown to occur readily with tyrosine and Tyr-containing dipeptides, resulting in the formation of tyrosine hydroperoxides (57). Hydroperoxides are potentially damaging reactive oxygen species. Formation on proteins can result in detrimental structural and functional changes (8). Protein hydroperoxides are also oxidants that can injure other biomolecules.Tyrosyl radicals are generated in many physiological situations and proteins are major targets for reactive oxidants (9). In proteins exposed to free radicals, regardless of the initial site of attack, the resultant radical commonly localizes to Tyr (1013). Tyrosyl radicals are also produced from tyrosyl peptides through the action of peroxidases such as myeloperoxidase, and are generated during the catalytic cycle of enzymes such as ribonucleotide reductase and cyclooxygenase (14). Tyrosyl radicals undergo a variety of subsequent reactions. They readily dimerize to form dityrosine, which has been well documented as a product of oxidative injury (15, 16). Another oxidative biomarker, nitrotyrosine, is also formed via tyrosyl radicals (4, 15, 17). However, one of their most favored reactions is with (5, 7, 18, 19). The reaction has a rate constant several times higher than that for dimerization (7, 20) and is favored over dityrosine formation in situations where both tyrosyl and radicals are generated (7, 20).The reaction of with phenoxyl radicals results in either repair of the parent phenol (reaction 2, Fig. 1b) or addition to form a hydroperoxide (reaction 3). With tyrosine, most of the reacts by addition (7, 20). The structure of tyrosine hydroperoxide has not been determined directly but inferred from NMR studies of the corresponding monoxide derivative formed by slow decomposition (7). These were shown to be bicyclic compounds formed by conjugate addition of the amino group to the phenol ring (HOHICA, designated I and named in full in Fig. 1b, proposed to arise from reactions 5 and 6).Open in a separate windowFIGURE 1.a, experimental system used for the generation of superoxide and tyrosyl (TyrO·) radicals. b, proposed mechanism for the formation and decomposition of tyrosine hydroperoxide derivatives. R and R′ represent OH and H, respectively, for Tyr, or amino acid residue(s) for the peptides. Reaction 1 shows peroxidase-mediated formation of Tyr radicals, which can either dimerize (not shown) or react with by electron transfer (reaction 2) or addition (reaction 3). Addition results in the formation of hydroperoxides (o- and p-isomers, only the o-isomer shown) that may exist transiently and decompose to release 1O2 (reaction 4) or form a stable species that can undergo conjugate addition of the terminal amino group are shown (when R′= H, reaction 5). An equivalent reaction is proposed for non-N-terminal Tyr (R′= amino acid residue) in which conjugation involves the amide nitrogen. Hydrolysis of the hydroperoxides that are modified by conjugate addition gives the corresponding hydroxide derivatives (I, 3a-hydroxy-6-oxo-2,3,3a,6,7,7a-hexahydro-1H-indol-2-carboxylic acid or HOHICA) in reaction 6. c, possible alternative hydrolysis products (mono-oxygenated derivatives). II, 3,4-dihydroxyphenylalanine derivatives from the o-isomer; III, 4-alanyl-4-hydroxy-cyclohexadienone (HACHD) derivatives from the p-isomer.Hydroperoxide formation has been observed with peptides but only when tyrosine is N-terminal or the reaction is promoted by amino compounds (5). The amine effect has implications for hydroperoxide formation on proteins, but the mechanism is not understood. It has also been postulated that the repair mechanism involves singlet oxygen release from an intermediate (reaction 4) rather than electron transfer (reaction 2) (18), but this has not been studied experimentally.The objectives of this investigation were to determine the structures of the hydroperoxide and any other superoxide addition products, and to understand the mechanism of formation, using a range of synthetic and physiological tyrosyl peptides. These include the opioids Leu- and Met-Enkephalin (Leu-Enk, YGGFL; and Met-Enk, YGGFM, respectively) and Endomorphin 2 (Endo2, YPFF). The opioids have a free N-terminal Tyr that is essential for activity and are potential physiological targets for inactivation by addition. We also investigated whether the presence of a Met residue (as in Met-Enk) influences Tyr-hydroperoxide formation on the peptide and whether addition results in the formation of methionine sulfoxide. If so, this could be a physiological mechanism for production of methionine sulfoxide, which is one of the most prevalent products of oxidative stress (21, 22).Peptides were exposed to a xanthine oxidase (XO) system to generate and hydrogen peroxide (H2O2) plus horseradish peroxidase (HRP) to catalyze the reaction of H2O2 with the peptide to give the tyrosyl radical (Fig. 1a). Products were analyzed using a general hydroperoxide assay (Fe2+/xylenol orange or FOX assay) and by liquid chromatography/electrospray mass spectrometry (LC/MS). We have obtained structural information on the hydroperoxides, identified a mechanism of rapid intramolecular oxidation of Met residues via a hydroperoxide intermediate, and provide an explanation for why amino groups facilitate the addition of to the tyrosyl radical.  相似文献   

14.
Methylene blue photosensitized oxidation of tyrosine in the presence of nitrite produces 3-nitrotyrosine, with maximum yield at pH 6. The formation of 3-nitrotyrosine requires oxygen and increases using deuterium oxide as solvent, suggesting the involvement of singlet oxygen in the reaction. The detection of dityrosine as an additional reaction product suggests that the first step in the interaction of tyrosine with singlet oxygen generates tyrosyl radicals which can dimerize to form dityrosine or react with a nitrite-derived species to produce 3-nitrotyrosine. Although the chemical identity of the nitrating species has not been established, the possible generation of nitrogen dioxide (*NO(2)) by indirect oxidation of nitrite by intermediately produced tyrosyl radical, via electron transfer, is proposed. One important implication of the results of this study is that the oxidation of tyrosine by singlet oxygen in the presence of nitrite may represent an alternative or additional pathway of 3-nitrotyrosine formation of potential importance in oxidative injures such as during inflammatory processes.  相似文献   

15.
The oxidation of proteins and other macromolecules by radical species under conditions of oxidative stress can be modulated by antioxidant compounds. Decreased levels of the antioxidants glutathione and ascorbate have been documented in oxidative stress-related diseases. A radical generated on the surface of a protein can: (1) be immediately and fully repaired by direct reaction with an antioxidant; (2) react with dioxygen to form the corresponding peroxyl radical; or (3) undergo intramolecular long range electron transfer to relocate the free electron to another amino acid residue. In pulse radiolysis studies, in vitro production of the initial radical on a protein is conveniently made at a tryptophan residue, and electron transfer often leads ultimately to residence of the unpaired electron on a tyrosine residue. We review here the kinetics data for reactions of the antioxidants glutathione, selenocysteine, and ascorbate with tryptophanyl and tyrosyl radicals as free amino acids in model compounds and proteins. Glutathione repairs a tryptophanyl radical in lysozyme with a rate constant of (1.05 ± 0.05) × 105 M–1 s–1, while ascorbate repairs tryptophanyl and tyrosyl radicals ca. 3 orders of magnitude faster. The in vitro reaction of glutathione with these radicals is too slow to prevent formation of peroxyl radicals, which become reduced by glutathione to hydroperoxides; the resulting glutathione thiyl radical is capable of further radical generation by hydrogen abstraction. Although physiologically not significant, selenoglutathione reduces tyrosyl radicals as fast as ascorbate. The reaction of protein radicals formed on insulin, β-lactoglobulin, pepsin, chymotrypsin and bovine serum albumin with ascorbate is relatively rapid, competes with the reaction with dioxygen, and the relatively innocuous ascorbyl radical is formed. On the basis of these kinetics data, we suggest that reductive repair of protein radicals may contribute to the well-documented depletion of ascorbate in living organisms subjected to oxidative stress.  相似文献   

16.
Radical-radical reactions of superoxide: a potential route to toxicity   总被引:2,自引:0,他引:2  
Superoxide reacts with many radicals, such as phenoxyl radicals, at near diffusion-controlled rates. These reactions are usually considered to be repair processes and have received little biological attention. However, addition of superoxide to give hydroperoxides and secondary oxidation products can also occur. The relative contributions of addition and repair vary depending on the properties of the phenol. With tyrosine, addition to give tyrosine hydroperoxide predominates, but in peptides the efficiency of hydroperoxide formation depends on the proximity of free amine groups. Radicals from other phenolic compounds, such as alpha-tocopherol and serotonin, also undergo addition reactions with superoxide. Physiologically, these reactions are likely to be more significant than dimerization when both radicals are generated together. They warrant attention as potential contributors to superoxide toxicity.  相似文献   

17.
Reaction centers from the Y(L167) mutant of Rhodobacter sphaeroides, containing a highly oxidizing bacteriochlorophyll dimer and a tyrosine residue substituted at Phe L167, were compared to reaction centers from the Y(M) mutant, with a tyrosine at M164, and a quadruple mutant containing a highly oxidizing dimer but no nearby tyrosine residue. Distinctive features in the light-induced optical and EPR spectra showed that the oxidized bacteriochlorophyll dimer was reduced by Tyr L167 in the Y(L167) mutant, resulting in a tyrosyl radical, as has been found for Tyr M164 in the Y(M) mutant. In the Y(L167) mutant, the net proton uptake after formation of the tyrosyl radical and the reduced primary quinone ranged from +0.1 to +0.3 H(+)/reaction center between pH 6 and pH 10, with a dependence that is similar to the quadruple mutant but different than the large proton release observed in the Y(M) mutant. In the light-induced absorption spectrum in the 700-1000 nm region, the Y(L167) mutant exhibited unique changes that can be assigned as arising primarily from an approximately 30 nm blue shift of the dimer absorption band. The optical signals in the Y(L167) mutant were pH dependent, with a pK(a) value of approximately 8.7, indicating that the tyrosyl radical is stabilized at high pH. The results are modeled by assuming that the phenolic proton of Tyr L167 is trapped in the protein after oxidation of the tyrosine, resulting in electrostatic interactions with the tetrapyrroles and nearby residues.  相似文献   

18.
The pH and temperature dependences of tyrosine oxidation were measured in reaction centers from mutants of Rhodobacter sphaeroides containing a tyrosine residue near a highly oxidizing bacteriochlorophyll dimer. Under continuous illumination, a rapid increase in the absorption change at 420 nm was observed because of the formation of a charge-separated state involving the oxidized dimer and reduced primary quinone, followed by a slow absorption decrease attributed to tyrosine oxidation. Both the amplitude and rate of the slow absorption change showed a pH dependency, indicating that, at low pH, the rate of tyrosine oxidation is limited by the transfer of the phenolic proton to a nearby base. Below 17 degrees C, the rate of the slow absorption change had a strong exponential dependence on the temperature, indicating a high activation energy. At higher pH and temperature, the overall rate of tyrosyl formation appears to be limited by a proposed conformational change in the reaction center that is also observed in reaction centers that do not undergo tyrosine oxidation. The yield of tyrosyl formation measured using electron paramagnetic resonance spectroscopy decreased significantly at 4 degrees C compared to 20 degrees C and was lower at both temperatures in mutants expected to have a slightly smaller driving force for tyrosyl formation.  相似文献   

19.
The iron chelating agent desferrioxamine inhibits peroxynitrite-mediated oxidations and attenuates nitric oxide and oxygen radical-dependent oxidative damage both in vitro and in vivo. The mechanism of protection is independent of iron chelation and has remained elusive over the past decade. Herein, stopped-flow studies revealed that desferrioxamine does not react directly with peroxynitrite. However, addition of peroxynitrite to desferrioxamine in both the absence and the presence of physiological concentrations of CO2 and under excess nitrite led to the formation of a one-electron oxidation product, the desferrioxamine nitroxide radical, consistent with desferrioxamine reacting with the peroxynitrite-derived species carbonate (CO3*-) and nitrogen dioxide (*NO2) radicals. Desferrioxamine inhibited peroxynitrite-dependent free radical-mediated processes, including tyrosine dimerization and nitration, oxyhemoglobin oxidation in the presence of CO2, and peroxynitrite plus carbonate-dependent chemiluminescence. The direct two-electron oxidation of glutathione by peroxynitrite was unaffected by desferrioxamine. The reactions of desferrioxamine with CO3*- and *NO2 were unambiguously confirmed by pulse radiolysis studies, which yielded second-order rate constants of 1.7 x 10(9) and 7.6 x 10(6) M(-1) s(-1), respectively. Desferrioxamine also reacts with tyrosyl radicals with k = 6.3 x 10(6) M(-1) s(-1). However, radical/radical combination reactions between tyrosyl radicals or of tyrosyl radical with *NO2 outcompete the reaction with desferrioxamine and computer-assisted simulations indicate that the inhibition of tyrosine oxidation can be fully explained by scavenging of the peroxynitrite-derived radicals. The results shown herein provide an alternative mechanism to account for some of the biochemical and pharmacological actions of desferrioxamine via reactions with CO3*- and *NO2 radicals.  相似文献   

20.
This short review compiles high-field electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) studies on different intermediate amino acid radicals, which emerge in wild-type and mutant class I ribonucleotide reductase (RNR) both in the reaction of protein subunit R2 with molecular oxygen, which generates the essential tyrosyl radical, and in the catalytic reaction, which involves a radical transfer between subunits R2 and R1. Recent examples are presented, how different amino acid radicals (tyrosyl, tryptophan, and different cysteine-based radicals) were identified, assigned to a specific residue, and their interactions, in particular hydrogen bonding, were investigated using high-field EPR and ENDOR spectroscopy. Thereby, unexpected diiron-radical centers, which emerge in mutants of R2 with changed iron coordination, and an important catalytic cysteine-based intermediate in the substrate turnover reaction in R1 were identified and characterized. Experiments on the essential tyrosyl radical in R2 single crystals revealed the so far unknown conformational changes induced by formation of the radical. Interesting structural differences between the tyrosyl radicals of class Ia and Ib enzymes were revealed. Recently accurate distances between the tyrosyl radicals in the protein dimer R2 could be determined using pulsed electron-electron double resonance (PELDOR), providing a new tool for docking studies of protein subunits. These studies show that high-field EPR and ENDOR are important tools for the identification and investigation of radical intermediates, which contributed significantly to the current understanding of the reaction mechanism of class I RNR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号