首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The developing and mature central nervous system contains neural precursor cells expressing the proteoglycan NG2. Some of these cells continuously differentiate to myelin-forming oligodendrocytes; knowledge of the destiny of NG2(+) precursors would benefit from the characterization of new key functional players. In this respect, the G protein-coupled membrane receptor GPR17 has recently emerged as a new timer of oligodendrogliogenesis. Here, we used purified oligodendrocyte precursor cells (OPCs) to fully define the immunophenotype of the GPR17-expressing cells during OPC differentiation, unveil its native signaling pathway, and assess the functional consequences of GPR17 activation by its putative endogenous ligands, uracil nucleotides and cysteinyl leukotrienes (cysLTs). GPR17 presence was restricted to very early differentiation stages and completely segregated from that of mature myelin. Specifically, GPR17 decorated two subsets of slowly proliferating NG2(+) OPCs: (i) morphologically immature cells expressing other early proteins like Olig2 and PDGF receptor-α, and (ii) ramified preoligodendrocytes already expressing more mature factors, like O4 and O1. Thus, GPR17 is a new marker of these transition stages. In OPCs, GPR17 activation by either uracil nucleotides or cysLTs resulted in potent inhibition of intracellular cAMP formation. This effect was counteracted by GPR17 antagonists and receptor silencing with siRNAs. Finally, uracil nucleotides promoted and GPR17 inhibition, by either antagonists or siRNAs, impaired the normal program of OPC differentiation. These data have implications for the in vivo behavior of NG2(+) OPCs and point to uracil nucleotides and cysLTs as main extrinsic local regulators of these cells under physiological conditions and during myelin repair.  相似文献   

2.
Deciphering the mechanisms regulating the generation of new neurons and new oligodendrocytes, the myelinating cells of the central nervous system, is of paramount importance to address new strategies to replace endogenous damaged cells in the adult brain and foster repair in neurodegenerative diseases. Upon brain injury, the extracellular concentrations of nucleotides and cysteinyl-leukotrienes (cysLTs), two families of endogenous signaling molecules, are markedly increased at the site of damage, suggesting that they may act as "danger signals" to alert responses to tissue damage and start repair. Here we show that, in brain telencephalon, GPR17, a recently deorphanized receptor for both uracil nucleotides and cysLTs (e.g., UDP-glucose and LTD(4)), is normally present on neurons and on a subset of parenchymal quiescent oligodendrocyte precursor cells. We also show that induction of brain injury using an established focal ischemia model in the rodent induces profound spatiotemporal-dependent changes of GPR17. In the lesioned area, we observed an early and transient up-regulation of GPR17 in neurons expressing the cellular stress marker heat shock protein 70. Magnetic Resonance Imaging in living mice showed that the in vivo pharmacological or biotechnological knock down of GPR17 markedly prevents brain infarct evolution, suggesting GPR17 as a mediator of neuronal death at this early ischemic stage. At later times after ischemia, GPR17 immuno-labeling appeared on microglia/macrophages infiltrating the lesioned area to indicate that GPR17 may also acts as a player in the remodeling of brain circuitries by microglia. At this later stage, parenchymal GPR17+ oligodendrocyte progenitors started proliferating in the peri-injured area, suggesting initiation of remyelination. To confirm a specific role for GPR17 in oligodendrocyte differentiation, the in vitro exposure of cortical pre-oligodendrocytes to the GPR17 endogenous ligands UDP-glucose and LTD(4) promoted the expression of myelin basic protein, confirming progression toward mature oligodendrocytes. Thus, GPR17 may act as a "sensor" that is activated upon brain injury on several embryonically distinct cell types, and may play a key role in both inducing neuronal death inside the ischemic core and in orchestrating the local remodeling/repair response. Specifically, we suggest GPR17 as a novel target for therapeutic manipulation to foster repair of demyelinating wounds, the types of lesions that also occur in patients with multiple sclerosis.  相似文献   

3.
Possible roles of coexisting cells in inducing neurite growth from a nerve cell were studied. Nerve growth factor (NGF)-inducing neurite growth from PC12h-R (a cell line derived from cultured nerve cells) was investigated at various cell densities. At the cell density 102104 cells/ml neurites appeared even without NGF. In contrast, no neurite appeared without NGF in single cell culture. The neurite growth observed in plural cell culture without NGF was only partially inhibited by antibody to NGF receptor (Ab-NGFR). However, the effect of the used medium alone was mostly inhibited by Ab-NGFR. These results suggest that the neurite inducing potency of coexisting cells is via different sites than the NGF receptor.Abbreviations Ab-IgG-FITC anti-mouse-IgG labeled with fluorescein isothiocyanate - Ab-NF monoclonal antibody to neurofilament 160 kD - Ab-NGFR monoclonal antibody to NGF receptor - BDNF brain-derived neurotrophic factor - D-medium medium for differentiation culture - DMEM Dulbecco's modified Eagle's medium - M-medium medium for multiplication culture - NGF nerve growth factor - NGFR NGF receptor - NT-3 neurotrophin-3 - PC12 pheochromocytoma cell line - PC12h-R subclone of PC12 - Sup-D supernatant of D-medium  相似文献   

4.
5.
A rat pheochromocytoma (PC12) cell line (designated MMTV-M17-5) expressing a dominant inhibitory mutant Ha-ras (Ha-ras Asn 17) protein was used to study nerve growth factor (NGF) induced neurite regeneration. Expression of the mutant p21 completely blocked NGF stimulated process formation in these cells. In contrast, neurite outgrowth induced by NGF treatment of primed MMTV-M17-5 cells was not significantly affected by the presence of Ha-ras Asn 17 protein. These observations suggest that, while ras function is required for NGF induced neuronal differentiation of PC12 cells, it is not needed to mediate NGF stimulated neurite regeneration.  相似文献   

6.
GPR55 was recently identified as a putative receptor for certain cannabinoids, and lysophosphatidylinositol (LPI). Recently, the role of cannabinoids as GPR55 agonists has been disputed by a number of reports, in part, because studies investigating GPR55 often utilized overexpression systems, such as the GPR55-overexpressing HEK293 cells, which make it difficult to deduce the physiological role of endogenous GPR55. In the present study, we found that PC12 cells, a neural model cell line, express endogenous GPR55, and by using these cells, we were able to examine the role of endogenous GPR55. Although GPR55 mRNA and protein were expressed in PC12 cells, neither CB(1) nor CB(2) mRNA was expressed in these cells. GPR55 was predominantly localized on the plasma membrane in undifferentiated PC12 cells. However, GPR55 was also localized in the growth cones or the ruffled border in differentiated PC12 cells, suggesting a potential role for GPR55 in the regulation of neurite elongation. LPI increased intracellular Ca(2+) concentration and RhoA activity, and induced ERK1/2 phosphorylation, whereas endogenous and synthetic cannabinoids did not, thereby suggesting that cannabinoids are not GPR55 agonists. LPI also caused neurite retraction in a time-dependent manner accompanied by the loss of neurofilament light chain and redistribution of actin in PC12 cells differentiated by NGF. This LPI-induced neurite retraction was found to be G(q)-independent and G(13)-dependent. Furthermore, inactivation of RhoA function via C3 toxin and GPR55 siRNA knockdown prevented LPI-induced neurite retraction. These results suggest that LPI, and not cannabinoids, causes neurite retraction in differentiated PC12 cells via a GPR55, G(13) and RhoA signaling pathway.  相似文献   

7.
S Ihara  K Nakajima  T Fukada  M Hibi  S Nagata  T Hirano    Y Fukui 《The EMBO journal》1997,16(17):5345-5352
IL-6 induces differentiation of PC12 cells pretreated with nerve growth factor (NGF). We explored the signals required for neurite outgrowth of PC12 cells by using a series of mutants of a chimeric receptor consisting of the extracellular domain of the granulocyte-colony stimulating factor (G-CSF) receptor and the cytoplasmic domain of gp130, a signal-transducing subunit of the IL-6 receptor. The mutants incapable of activating the MAP kinase cascade failed to induce neurite outgrowth. Consistently, a MEK inhibitor, PD98059, inhibited neurite outgrowth, showing that activation of the MAP kinase cascade is essential for the differentiation of PC12 cells. In contrast, a mutation that abolished the ability to activate STAT3 did not inhibit, but rather stimulated neurite outgrowth. This mutant did not require NGF pretreatment for neurite outgrowth. Dominant-negative STAT3s mimicked NGF pretreatment, and NGF suppressed the IL-6-induced activation of STAT3, supporting the idea that STAT3 might regulate the differentiation of PC12 cells negatively. These results suggest that neurite outgrowth of PC12 cells is regulated by the balance of MAP kinase and STAT3 signal transduction pathways, and that STAT3 activity can be regulated negatively by NGF.  相似文献   

8.
The effects of several kinds of microbial extracellular glycolipids on neurite initiation in PC12 cells were examined. Addition of mannosylerythritol lipid-A (MEL-A), MEL-B, and sophorose lipid (SL) to PC12 cells caused significant neurite outgrowth. Other glycolipids, such as polyol lipid (PL), rhamnose lipid (RL), succinoyl trehalose lipid-A (STL-A) and STL-B caused no neurite-initiation. MEL-A increased acetylcholine esterase (AChE) activity to an extent similar to nerve growth factor (NGF). However, MEL-A induced one or two long neurites from the cell body, while NGF induced many neurites. In addition, MEL-A-induced differentiation was transient, and after 48 h, percentage of cells with neurites started to decrease in contrast to neurons induced by NGF, which occurred in a time-dependent manner. MEL-A could induce neurite outgrowth after treatment of PC12 cells with an anti-NGF receptor antibody that obstructed NGF action. These results indicate that MEL-A and NGF induce differentiation of PC12 cells through different mechanisms. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
The c-fes protooncogene encodes a non-receptor protein-tyrosine kinase (Fes) that has been implicated in the differentiation of myeloid haematopoietic cells. Fes is also expressed in several neuronal cell types and the vascular endothelium, suggestive of a more general function in development. To examine the role of Fes in neuronal differentiation, we investigated the effect of Fes expression on process outgrowth in PC12 cells following stimulation with nerve growth factor (NGF). PC12 cells expressing wild-type and activated mutants of Fes extended processes faster and of greater length than control cells. In contrast, expression of kinase-inactive Fes was without effect, indicating that cooperation with NGF requires Fes kinase activity. Short-term treatment of PC12-Fes cells with NGF enhanced tyrosine phosphorylation of Fes, suggesting upstream regulation by the NGF receptor. Fes-mediated acceleration of neurite outgrowth was blocked by wortmannin and LY294002, implicating phosphatidylinositol 3-kinase (PI3K) activation in the Fes-induced response. In contrast, the MEK inhibitor PD98059 was without effect, suggesting that the Ras-Erk pathway is not involved. These data provide the first evidence that Fes may contribute to morphological differentiation of neuronal cells by enhancing NGF signalling through the PI3K pathway.  相似文献   

10.
PC12h-R cell, a subclone of PC12 cells, exhibited a neuron-like phenotype, including neurite outgrowth and increased acetylcholinesterase activity, in response to epidermal growth factor (EGF) as well as nerve growth factor (NGF). We examined the mechanism by which EGF induced the neuronal differentiation in PC12h-R cells. The EGF-induced neuronal differentiation of PC12h-R cells was not blocked by K252a, whereas that induced by NGF was. EGF induced sustained tyrosine phosphorylation of the EGF receptor in PC12h-R cells, but not in the parent PC12h cells, which do not show neuronal differentiation in response to EGF. In addition, the rate of EGF-induced down-regulation of the EGF receptor in PC12h-R cells was decreased compared with that in PC12h cells. Furthermore, we found that the duration of EGF-induced tyrosine phosphorylation of the EGF receptor in PC12h-R cells was similar to that of NGF-induced tyrosine phosphorylation of p140 trkA in PC12h cells. The EGF-induced phosphorylation of the EGF receptor in PC12h cells was less sustained than that of p140 trkA by NGF in PC12h cells. These findings suggested that the EGF-induced neuronal differentiation of PC12h-R cells is due to the sustained activation of the EGF receptor, resulting from the decreased down-regulation of the EGF receptor and that the duration of the receptor tyrosine kinase activity determines the cellular responses of PC12 cells. We concluded that sustained activation of the receptor tyrosine kinase induces neuronal differentiation, although transient activation promotes proliferation of PC12 cells. Special issue dedicated to Dr. Hans Thoenen.  相似文献   

11.
PC12 cells treated with nerve growth factor (NGF) or infected with Rous sarcoma virus differentiate into sympathetic, neuronlike cells. To compare the differentiation programs induced by NGF and v-src, we have established a PC12 cell line expressing a temperature-sensitive v-src protein. The v-src-expressing PC12 cell line was shown to elaborate neuritic processes in a temperature-inducible manner, indicating that the differentiation process was dependent on the activity of the v-src protein. Further characterization of this cell line, in comparison with NGF-treated PC12 cells, indicated that the events associated with neurite outgrowth induced by these two agents shared features but could be distinguished by others. Both NGF- and v-src-induced neurite outgrowths were reversible. In addition, NGF and v-src could prime PC12 cells for NGF-induced neurite outgrowth, and representative early and late NGF-responsive genes were also induced by v-src. However, unlike NGF-induced neurite growth, v-src-induced neurite outgrowth was not blocked at high cell density. A comparison of phosphotyrosine containing-protein profiles showed that v-src and NGF each increase tyrosine phosphorylation of multiple cellular proteins. There was overlap in substrates; however, both NGF-specific and v-src-specific tyrosine phosphorylations were observed. One protein which was found to be phosphorylated in both the NGF- and v-src-induced PC12 cells was phospholipase C-gamma 1. Taken together, these results suggest that v-src's ability to function as an inducing agent may be a consequence of its ability to mimic critical aspects of the NGF differentiation program and raise the possibility that Src-like tyrosine kinases are involved in mediating some of the events triggered by NGF.  相似文献   

12.
We have investigated the roles of pp60c-src and p21c-ras proteins in transducing the nerve growth factor (NGF) and fibroblast growth factor (FGF) signals which promote the sympathetic neuronlike phenotype in PC12 cells. Neutralizing antibodies directed against either Src or Ras proteins were microinjected into fused PC12 cells. Each antibody both prevented and reversed NGF- or FGF-induced neurite growth, a prominent morphological marker for the neuronal phenotype. These data demonstrate the involvement of both pp60c-src and p21c-ras proteins in NGF and FGF actions in PC12 cells, and establish a physiological role for the pp60c-src tyrosine kinase in signal transduction pathways initiated by receptor tyrosine kinases in these cells. Additional microinjection experiments, using PC12 transfectants containing inducible v-src or ras oncogene activities, demonstrated a specific sequence of Src and Ras actions. Microinjection of anti-Ras antibody blocked v-src-induced neurite growth, but microinjection of anti-Src antibodies had no effect on ras oncogene-induced neurite growth. We propose that a cascade of Src and Ras actions, with Src acting first, is a significant feature of the signal transduction pathways for NGF and FGF. The Src-Ras cascade may define a functional cassette in the signal transduction pathways used by growth factors and other ligands whose receptors have diverse structures and whose range of actions on various cell types include mitogenesis and differentiation.  相似文献   

13.
v-Crk is a member of a class of SH2 and SH3-containing adaptor proteins that have been implicated in regulating the TrkA receptor tyrosine kinase and potentiating Nerve Growth Factor (NGF)-mediated neurite outgrowth in pheochromocytoma (PC12) cells (Hempstead et al, Mol. Cell Biol. 14: 1964 - 1971). Given the fact that NGF induces both differentiation and survival by binding to TrkA, we examined the rate of apoptotic cell death elicited by NGF-withdrawal in native, v-Crk, and TrkA-expressing PC12 cells. While more than 50% of native PC12 cells underwent apoptosis within 48 h of NGF withdrawal, the v-Crk and TrkA-expressing cells were much more resistant to apoptosis under these conditions, whereby approximately 70 and 95%, respectively, of the cells were alive. The ability of v-Crk to delay apoptosis required prior NGF-dependent differentiation, since naive undifferentiated v-Crk expressing PC12 cells or cells that express v-Crk mutants that are defective in NGF signaling were not protected from apoptosis during growth factor withdrawal. Moreover, addition of 50 ng/ml EGF to serum and NGF deprived v-Crk expressing cells, which also causes neurite outgrowth, promoted complete and long-term survival, although such EGF replacement had no neurotrophic effect on wild-type PC12 cells or PC12 cells overexpressing Human Bcl-2. These experiments suggest that v-Crk potentiation of a receptor tyrosine kinase under conditions of growth factor deprivation is essential for preventing apoptosis. However, unlike native PC12 cells, neither v-Crk or TrkA-expressing PC12 cells exhibited a G1 arrest when incubated for 2 weeks in NGF. Thus, v-Crk and TrkA may protect NGF deprived PC12 by preventing cell cycle arrest and hence an aborted entry into a defective cell cycle. Moreover, during NGF-withdrawal, v-CrkPC12 cells exhibited down regulation in MAP kinase and JNK activities while in native cells, these activities increased within 6 - 8 h after NGF deprivation. Thus, unlike v-Crk-mediated augmentation of differentiation, sustained activation of MAP kinase may not be required for v-Crk-induced cell survival.  相似文献   

14.
In PC12 cells, a well studied model for neuronal differentiation, an elevation in the intracellular cAMP level increases cell survival, stimulates neurite outgrowth, and causes activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). Here we show that an increase in the intracellular cAMP concentration induces tyrosine phosphorylation of two receptor tyrosine kinases, i.e. the epidermal growth factor (EGF) receptor and the high affinity receptor for nerve growth factor (NGF), also termed Trk(A). cAMP-induced tyrosine phosphorylation of the EGF receptor is rapid and correlates with ERK1/2 activation. It occurs also in Panc-1, but not in human mesangial cells. cAMP-induced tyrosine phosphorylation of the NGF receptor is slower and correlates with Akt activation. Inhibition of EGF receptor tyrosine phosphorylation, but not of the NGF receptor, reduces cAMP-induced neurite outgrowth. Expression of dominant-negative Akt does not abolish cAMP-induced survival in serum-free media, but increases cAMP-induced ERK1/2 activation and neurite outgrowth. Together, our results demonstrate that cAMP induces dual signaling in PC12 cells: transactivation of the EGF receptor triggering the ERK1/2 pathway and neurite outgrowth; and transactivation of the NGF receptor promoting Akt activation and thereby modulating ERK1/2 activation and neurite outgrowth.  相似文献   

15.
Nerve growth factor (NGF) regulates proliferation, differentiation, and survival of sympathetic and sensory neurons through the tyrosine kinase activity of its receptor, p140trk. These biological effects of NGF depend upon the signal-mediating function of p140trk substrates which are likely to differ from cell to cell. To define p140trk receptor substrates and the details of signalling by NGF in the hybrid cell PC12EN, we stably transfected cultures with a vector encoding a full-length human p140trk cDNA sequence. Two stably transfected clones, one expressing p140trk with higher affinity (PC12EN-trk3; Kd 57.4 pM, Bmax 9.7 pmole/mg) and one expressing p140trk with a lower affinity (PC12EN-trk1; Kd 392.4 pM, Bmax 5.7 pmole/mg) were generated. Radioreceptor assays indicate that transfected p140trk receptors show slow NGF-dissociation kinetics, are resistant to trypsin or Triton X-100 treatment, are specific for NGF compared to other neurotrophins, and are internalized or downregulated as are native PC12 p140trk receptors. NGF stimulates p140trk tyrosine phosphorylation in a dose- (0.01-10 ng/ml) and time- (5-120 min) dependent manner, and tyrosine phosphorylation was inhibited by 200-1,000 nM K-252a. NGF-induced Erk stimulation for 60 min was assessed using myelin basic protein as a substrate. NGF treatment also led to an increased phosphorylation of p70S6k, SNT, and phospholipase Cγ, demonstrating that the major NGF-stimulated signalling pathways found in other cells are activated in PC12EN-trk cells. Staurosporine (5-50 nM) rapidly and dBcAMP (1 mM) more slowly, but not NGF induced morphological differentiation in PC12EN-trk cells. Rather, NGF treatment in low-serum medium stimulated a 1.3- and 2.3-fold increase in DNA synthesis measured by [3H]thymidine incorporation in PC12EN-trk1 and PC12EN-trk3, respectively. These data highlight the functionality of the transfected p140trk receptors and indicate that these transfected cells may serve as a novel cellular model facilitating the study of the mitogenic properties of NGF signalling and the transducing role of the p140trk receptor substrates. J. Cell. Biochem. 66:229-244. © 1997 Wiley-Liss, Inc. This article is a U.S. Government work and, as such, is in the public domain in the United States of America.  相似文献   

16.
Cyclooxygenase-1 (COX-1) behaves as a delayed response gene in rat pheochromocytoma (PC12) cells exposed to nerve growth factor (NGF). To investigate the possible targets for COX-1 generated prostanoids in the early stages of neuronal differentiation, we have examined the expression of prostanoid receptors by PC12 cells using functional assays. Prostanoid receptor-specific agonists failed to activate adenylyl cyclase in undifferentiated and NGF-treated PC12 cells; neither did they stimulate phospholipase C activity. EP3 receptor agonists and PGF were the only active ligands, able to inhibit forskolin-stimulated adenylyl cyclase activity. PC12 cells expressed EP3 and FP receptor mRNA, but only the responses to EP3 receptor agonists were inhibited by the EP3 receptor antagonist ONO-AE3-240. The functional role of NGF-stimulated COX-1 remains to be determined since we found no strong evidence of a role for EP3 receptors in the morphological changes induced by NGF during the early stages of differentiation of PC12 cells.  相似文献   

17.
Neu differentiation factor (NDF; also known as neuregulin) induces a pleiotropic cellular response that is cell type-dependent. NDF and its receptor ErbB-4 are highly expressed in neurons, implying important roles in neuronal cell functions. In the present study we demonstrate that ErbB-4 receptors expressed in PC12 cells mediate NDF-induced signals and neurite outgrowth that are indistinguishable from those mediated by the nerve growth factor-activated Trk receptors. In PC12-ErbB-4 cells but not in PC12 cells, NDF induced an initial weak mitogenic signal and subsequently neurite outgrowth. The NDF-induced differentiation in PC12-ErbB-4 cells was mimicked by the pan-ErbB ligand betacellulin but not by other epidermal growth factor-like ligands. Thus, NDF and betacellulin mediate similar activities through the ErbB-4 receptor. Indeed, only these ligands induced strong phosphorylation of the ErbB-4 receptors. Neurite outgrowth induced by NDF in PC12-ErbB-4 cells was accompanied by sustained activation of mitogen-activated protein kinase (MAPK) and induction of the neural differentiation marker GAP-43. Inhibition of the MAPK kinase MEK or of protein kinase C (PKC) blocked NDF-induced differentiation, whereas elevation of cyclic AMP levels enhanced the response. Taken together, these results indicate that neurite outgrowth induced by ErbB-4 in PC12 cells requires MAPK and PKC signaling networks.  相似文献   

18.
19.
Fibroblast growth factors (FGFs), like nerve growth factor (NGF), induce morphological differentiation of PC12 cells. This activity of FGF is regulated by glycosaminoglycans. To further understand the mechanisms of FGF and glycosaminoglycan actions in PC12 cells, we studied the regulation of protein phosphorylation and ornithine decarboxylase (ODC) activity by FGF in the presence and absence of heparin. As with NGF, aFGF and bFGF increased the incorporation of radioactive phosphate into the protein tyrosine hydroxylase (TH). The increase in TH phosphorylation was localized to the tryptic peptide, T3. Both T3 and T1 phosphorylations occur in response to NGF, but there was no evidence that aFGF or bFGF stimulated the phosphorylation of the T1 peptide. This result suggests differential regulation of second messenger systems by NGF and FGF in PC12 cells. Heparin, at a concentration that potentiated aFGF-induced neurite outgrowth 100-fold (100 micrograms/ml), did not alter the ability of aFGF to increase S6 phosphorylation or ODC activity. One milligram per milliliter of heparin, a concentration that inhibited bFGF-induced neurite outgrowth, also inhibited bFGF-induced increases in S6 phosphorylation and ODC activity. These observations suggest (i) that acidic and basic FGF activate a protein kinase, possibly protein kinase C, resulting in the phosphorylation of peptide T3 of TH; (ii) that the FGFs and NGF share some but not all second messenger systems; (iii) that heparin potentiates aFGF actions and inhibits bFGF actions in PC12 cells via distinct mechanisms; (iv) that heparin does not potentiate the neurite outgrowth promoting activity of aFGF by enhancing binding to its PC12 cell surface receptor; and (v) that heparin may coordinately regulate several activities of bFGF (induction of protein phosphorylation, ODC and neurite outgrowth) via a common mechanism, most likely by inhibiting the productive binding of bFGF to its PC12 cell surface receptor.  相似文献   

20.
Neurite outgrowth and neuronal differentiation play a crucial role in the development of the nervous system. Understanding of neurotrophins induced neurite outgrowth was important to develop therapeutic strategy for axon regeneration in neurodegenerative diseases as well as after various nerve injuries. It has been reported that extension of neurite and differentiation of sympathetic neuron-like phenotype was modulated by nerve growth factor (NGF) in PC12 cells. In this study, NGF mediated neurite outgrowth was investigated in PC12 cells after liquiritin exposure. Liquiritin is a kind of flavonoids that is extracted from Glycyrrhizae radix, which is frequently used to treat injury or swelling for its life-enhancing properties as well as detoxification in traditional Oriental medicine. The result showed that liquiritin significantly promotes the neurite outgrowth stimulated by NGF in PC12 cells in dose dependant manners whereas the liquiritin alone did not induce neurite outgrowth. Oligo microarray and RT-PCR analysis further clarified that the neurotrophic effect of liquiritin was related to the overexpression of neural related genes such as neurogenin 3, neurofibromatosis 1, notch gene homolog 2, neuromedin U receptor 2 and neurotrophin 5. Thus, liquiritin may be a good candidate for treatment of various neurodegenerative diseases such as Alzheimer’s disease or Parkinson’s disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号