首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycosphingolipids and mitochondria: role in apoptosis and disease   总被引:4,自引:0,他引:4  
Glycosphingolipids (GSLs) comprise a class of lipids with important structural and signaling functions. Synthesized from ceramide in the Golgi, they are subsequently distributed to different compartments, most predominantly in the plasma membrane where they integrate signaling platforms. A recently characterized trafficking of ganglioside GD3 (GD3), a GSLs with two sialic-acid residues, to mitochondria has revealed a novel function of this lipid as a death effector. In addition to the interaction of GD3 with mitochondria recruiting these organelles to apoptotic pathways, GD3 disables survival paths dependent on NF-kappaB, thus favoring the balance towards cell death. The present review gathers the evidence documenting this emerging function of GSLs in cell death and their involvement in pathological states.  相似文献   

2.
Actin dynamics and membrane trafficking influence cell commitment to programmed cell death through largely undefined mechanisms. To investigate how actin and recycling endosome (RE) trafficking can engage death signaling, we studied the death program induced by the adenovirus early region 4 open reading frame 4 (E4orf4) protein as a model. We found that in the early stages of E4orf4 expression, Src-family kinases (SFKs), Cdc42, and actin perturbed the organization of the endocytic recycling compartment and promoted the transport of REs to the Golgi apparatus, while inhibiting recycling of protein cargos to the plasma membrane. The resulting changes in Golgi membrane dynamics that relied on actin-regulated Rab11a membrane trafficking triggered scattering of Golgi membranes and contributed to the progression of cell death. A similar mobilization of RE traffic mediated by SFKs, Cdc42 and Rab11a also contributed to Golgi fragmentation and to cell death progression in response to staurosporine, in a caspase-independent manner. Collectively, these novel findings suggest that diversion of RE trafficking to the Golgi complex through a pathway involving SFKs, Cdc42, and Rab11a plays a general role in death signaling by mediating regulated changes in Golgi dynamics.  相似文献   

3.
Glycosphingolipids (GSLs) comprise a class of lipids with important structural and signaling functions. Synthesized from ceramide in the Golgi, they are subsequently distributed to different compartments, most predominantly in the plasma membrane where they integrate signaling platforms. A recently characterized trafficking of ganglioside GD3 (GD3), a GSLs with two sialic-acid residues, to mitochondria has revealed a novel function of this lipid as a death effector. In addition to the interaction of GD3 with mitochondria recruiting these organelles to apoptotic pathways, GD3 disables survival paths dependent on NF-B, thus favoring the balance towards cell death. The present review gathers the evidence documenting this emerging function of GSLs in cell death and their involvement in pathological states. Published in 2004..  相似文献   

4.
CD14 controls the LPS-induced endocytosis of Toll-like receptor 4   总被引:1,自引:0,他引:1  
The transport of Toll-like Receptors (TLRs) to various organelles has emerged as an essential means by which innate immunity is regulated. While most of our knowledge is restricted to regulators that promote the transport of newly synthesized receptors, the regulators that control TLR transport after microbial detection remain unknown. Here, we report that the plasma membrane localized Pattern Recognition Receptor (PRR) CD14 is required for the microbe-induced endocytosis of TLR4. In dendritic cells, this CD14-dependent endocytosis pathway is upregulated upon exposure to inflammatory mediators. We identify the tyrosine kinase Syk and its downstream effector PLCγ2 as important regulators of TLR4 endocytosis and signaling. These data establish that upon microbial detection, an upstream PRR (CD14) controls the trafficking and signaling functions of a downstream PRR (TLR4). This innate immune trafficking cascade illustrates how pathogen detection systems operate to induce both membrane transport and signal transduction.  相似文献   

5.
Molecular motors drive the transport of vesicles and organelles within the cell. Traditionally, these transport processes have been considered separately from membrane trafficking events, such as regulated budding and fusion. However, recent progress has revealed mechanistic links that integrate these processes within the cell. Rab proteins, which function as key regulators of intracellular trafficking, have now been shown to recruit specific motors to organelle membranes. Rab-independent recruitment of motors by adaptor or scaffolding proteins is also a key mechanism. Once recruited to vesicles and organelles, these motors can then drive directed transport; this directed transport could in turn affect the efficiency of trafficking events. Here, we discuss this coordinated regulation of trafficking and transport, which provides a powerful mechanism for temporal and spatial control of cellular dynamics.  相似文献   

6.
The vacuoles play important roles in cellular homeostasis and their functions include the digestion of cytoplasmic material and organelles derived from autophagy. Conserved nutrient signaling pathways regulate vacuolar function and autophagy, ensuring normal cell and organismal development and aging. Recent evidence implicates sphingolipids in the modulation of these processes, but the impact of ceramide signaling on vacuolar dynamics and autophagy remains largely unknown. Here, we show that yeast cells lacking Isc1p, an orthologue of mammalian neutral sphingomyelinase type 2, exhibit vacuolar fragmentation and dysfunctions, namely decreased Pep4p-mediated proteolysis and V-ATPase activity, which impairs vacuolar acidification. Moreover, these phenotypes are suppressed by downregulation of the ceramide-activated protein phosphatase Sit4p. The isc1Δ cells also exhibit defective Cvt and vesicular trafficking in a Sit4p-dependent manner, ultimately contributing to a reduced autophagic flux. Importantly, these phenotypes are also suppressed by downregulation of the nutrient signaling kinase TORC1, which is known to inhibit Sit4p and autophagy, or Sch9p. These results support a model in which Sit4p functions downstream of Isc1p in a TORC1-independent, ceramide-dependent signaling branch that impairs vacuolar function and vesicular trafficking, leading to autophagic defects in yeast.  相似文献   

7.
Abstract

Phosphatidylinositol lipids are signaling molecules involved in nearly all aspects of cellular regulation. Production of phosphatidylinositol 4-phosphate (PI4P) has long been recognized as one of the first steps in generating poly-phosphatidylinositol phosphates involved in actin organization, cell migration, and signal transduction. In addition, progress over the last decade has brought to light independent roles for PI4P in membrane trafficking and lipid homeostasis. Here, we describe recent advances that reveal the breadth of processes regulated by PI4P, the spectrum of PI4P effectors, and the mechanisms of spatiotemporal control that coordinate crosstalk between PI4P and cellular signaling pathways.  相似文献   

8.
Bai L  Wang Y  Fan J  Chen Y  Ji W  Qu A  Xu P  James DE  Xu T 《Cell metabolism》2007,5(1):47-57
Insulin-stimulated GLUT4 translocation is central to glucose homeostasis. Functional assays to distinguish individual steps in the GLUT4 translocation process are lacking, thus limiting progress toward elucidation of the underlying molecular mechanism. Here we have developed a robust method, which relies on dynamic tracking of single GLUT4 storage vesicles (GSVs) in real time, for dissecting and systematically analyzing the docking, priming, and fusion steps of GSVs with the cell surface in vivo. Using this method, we have shown that the preparation of GSVs for fusion competence after docking at the surface is a key step regulated by insulin, whereas the docking step is regulated by PI3K and its downstream effector, the Rab GAP AS160. These data show that Akt-dependent phosphorylation of AS160 is not the major regulated step in GLUT4 trafficking, implicating alternative Akt substrates or alternative signaling pathways downstream of GSV docking at the cell surface as the major regulatory node.  相似文献   

9.
Cell migration is a fundamental cellular process required for embryonic development to wound healing and also plays a key role in tumor metastasis and atherosclerosis. Migration is regulated at multiple strata, from cytoskeletal reorganization to vesicle trafficking. In migrating cells, signaling pathways are integrated with vesicle trafficking machineries in a highly coordinated fashion to accomplish the recruitment and trafficking of the trans-membrane proteins toward the leading edge. Different signaling molecules regulate cell migration in different physio-pathological contexts, among them, phosphatidylinositol-4,5-biphosphate (PIP2) is an integral component of the plasma membrane and pleiotropic lipid signaling molecule modulating diverse biological processes, including actin cytoskeletal dynamics and vesicle trafficking required for cell migration. In this commentary, we provide a brief overview of our current understandings on the phosphoinositide signaling and its implication in regulation of cell polarity and vesicle trafficking in migrating cells. In addition, we highlight the coordinated role of PIPKIγi2, a focal adhesion-targeted enzyme that synthesizes PIP2, and the exocyst complex, a PIP2-effector, in the trafficking of E-cadherin in epithelial cells and integrins in migrating cancer cells.  相似文献   

10.
The secretion of cytokines by immune cells plays a significant role in determining the course of an inflammatory response. The levels and timing of each cytokine released are critical for mounting an effective but confined response, whereas excessive or dysregulated inflammation contributes to many diseases. Cytokines are both culprits and targets for effective treatments in some diseases. The multiple points and mechanisms that have evolved for cellular control of cytokine secretion highlight the potency of these mediators and the fine tuning required to manage inflammation. Cytokine production in cells is regulated by cell signaling, and at mRNA and protein synthesis levels. Thereafter, the intracellular transport pathways and molecular trafficking machinery have intricate and essential roles in dictating the release and activity of cytokines. The trafficking machinery and secretory (exocytic) pathways are complex and highly regulated in many cells, involving specialized membranes, molecules and organelles that enable these cells to deliver cytokines to often-distinct areas of the cell surface, in a timely manner. This review provides an overview of secretory pathways – both conventional and unconventional – and key families of trafficking machinery. The prevailing knowledge about the trafficking and secretion of a number of individual cytokines is also summarized. In conclusion, we present emerging concepts about the functional plasticity of secretory pathways and their modulation for controlling cytokines and inflammation.  相似文献   

11.
Cell migration is a fundamental cellular process required for embryonic development to wound healing and also plays a key role in tumor metastasis and atherosclerosis. Migration is regulated at multiple strata, from cytoskeletal reorganization to vesicle trafficking. In migrating cells, signaling pathways are integrated with vesicle trafficking machineries in a highly coordinated fashion to accomplish the recruitment and trafficking of the trans-membrane proteins toward the leading edge. Different signaling molecules regulate cell migration in different physio-pathological contexts, among them, phosphatidylinositol-4,5-biphosphate (PIP2) is an integral component of the plasma membrane and pleiotropic lipid signaling molecule modulating diverse biological processes, including actin cytoskeletal dynamics and vesicle trafficking required for cell migration. In this commentary, we provide a brief overview of our current understandings on the phosphoinositide signaling and its implication in regulation of cell polarity and vesicle trafficking in migrating cells. In addition, we highlight the coordinated role of PIPKIγi2, a focal adhesion-targeted enzyme that synthesizes PIP2, and the exocyst complex, a PIP2-effector, in the trafficking of E-cadherin in epithelial cells and integrins in migrating cancer cells.  相似文献   

12.
Mitochondria are key regulators of cellular energy and redox metabolism, also playing a central role in cell signaling and death pathways. A number of processes occur within mitochondria, including redox-dependent ATP synthesis by oxidative phosphorylation and reactive oxygen species production. Mitochondrial permeability transition is a reversible process that may lead to cell death and is regulated by calcium and reactive oxygen species. Functional mitochondria are present in platelets, and evidence has demonstrated the direct involvement of these organelles in cellular ATP production, redox balance, as well as in platelet activation and apoptosis. Here, we review aspects of platelet physiology in which mitochondria are involved, as well as assess their function as new tools for studying a number of human diseases.  相似文献   

13.
MS4A family members differentially regulate the cell cycle, and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1–enriched microdomains. Silencing of MS4A4 in human mast cells altered ligand-induced KIT endocytosis pathways and reduced receptor recycling to the cell surface, thus promoting KIT signaling in the endosomes while reducing that in the plasma membrane, as exemplified by Akt and PLCγ1 phosphorylation, respectively. The altered endocytic trafficking of KIT also resulted in an increase in SCF-induced mast cell proliferation and migration, which may reflect altered signaling in these cells. Our data reveal a novel function for MS4A family proteins in regulating trafficking and signaling, which could have implications in both proliferative and immunological diseases.  相似文献   

14.
蛋白质可逆磷酸化对花粉管生长的调控作用   总被引:1,自引:0,他引:1  
索金伟  戴绍军 《遗传》2014,36(8):766-778
花粉管极性生长受多种信号与代谢过程的调控,主要包括Rop GTPase信号途径、磷脂酰肌醇信号通路、Ca2+信号途径、肌动蛋白动态变化、囊泡运输、细胞壁重塑等,这些过程都受到蛋白质可逆磷酸化作用的调节。如:(1) Rop调节蛋白(GEF、GDI和GAP)的可逆磷酸化可以改变其活性,从而调节Rop GTPase;同时,蛋白激酶还可能作为Rop下游的效应器分子参与Rop下游信号途径的调节;(2) 蛋白质可逆磷酸化作用既能够激活/失活质膜上的Ca2+通道或Ca2+泵,又参与调节胞内贮存Ca2+的释放,从而调控花粉管尖端Ca2+梯度的形成;此外,蛋白激酶还作为Ca2+信号的感受器,磷酸化相应的靶蛋白,参与Ca2+信号下游途径的调节;(3) 肌动蛋白结合蛋白(ADF和Profilin)的活性也受到蛋白质可逆磷酸化的调节,进而调控肌动蛋白聚合与解聚之间的动态平衡;(4) 蛋白质磷酸化作用调节胞吞/胞吐相关蛋白的活性,并调控质膜的磷脂代谢,从而参与调控囊泡运输过程;(5) 胞质丝氨酸/苏氨酸蛋白激酶和蔗糖合酶的可逆磷酸化可以调节其在花粉管中的功能与分布模式,参与花粉管细胞壁重塑;(6) 转录调节蛋白与真核生物翻译起始因子的可逆磷酸化可以改变其活性,从而调控RNA转录与蛋白质合成。文章主要综述了花粉管生长过程中重要蛋白质的可逆磷酸化作用对上述关键事件的调节。  相似文献   

15.
Many cellular processes are driven by spatially and temporally regulated redox-dependent signaling events. Although mounting evidence indicates that organelles such as the endoplasmic reticulum and mitochondria can function as signaling platforms for oxidative stress-regulated pathways, little is known about the role of peroxisomes in these processes. In this study, we employ targeted variants of the genetically encoded photosensitizer KillerRed to gain a better insight into the interplay between peroxisomes and cellular oxidative stress. We show that the phototoxic effects of peroxisomal KillerRed induce mitochondria-mediated cell death and that this process can be counteracted by targeted overexpression of a select set of antioxidant enzymes, including peroxisomal glutathione S-transferase kappa 1, superoxide dismutase 1, and mitochondrial catalase. We also present evidence that peroxisomal disease cell lines deficient in plasmalogen biosynthesis or peroxisome assembly are more sensitive to KillerRed-induced oxidative stress than control cells. Collectively, these findings confirm and extend previous observations suggesting that disturbances in peroxisomal redox control and metabolism can sensitize cells to oxidative stress. In addition, they lend strong support to the ideas that peroxisomes and mitochondria share a redox-sensitive relationship and that the redox communication between these organelles is not only mediated by diffusion of reactive oxygen species from one compartment to the other. Finally, these findings indicate that mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress, and this may have profound implications for our views on cellular aging and age-related diseases.  相似文献   

16.
Cells have a complex system for delivering and compartmentalizing proteins and lipids in order to achieve spatio-temporal coordination of signaling. Rafts/caveolae are plasma membrane microdomains that regulate signaling pathways and processes such as cell migration, polarization and proliferation. Regulation of raft/caveolae trafficking involves multiple steps regulated by different proteins to ensure coordination of signaling cascades. The best studied raft-mediated endocytic route is controlled by caveolins. Recent data suggest integrin-mediated cell adhesion is a key regulator of caveolar endocytosis. In this review we examine the regulation of caveolar trafficking and the interplay between integrins, cell adhesion and caveolae internalization.  相似文献   

17.
Most of the membrane trafficking phenomena including those involving the interactions between endosomes and lysosomes are regulated by changes in intracellular Ca2+ (Cai). These processes are disturbed in some types of mucolipidoses and other lysosomal storage disorders, such as mucolipidosis IV (MLIV), a neurological disorder that usually presents during the first year of life with blindness, cognitive impairment, and psychomotor delays. It is caused by mutations in MCOLN1, the gene encoding mucolipin-1 (MLN1), which we have recently established to represent a Ca2+-permeable cation channel that is transiently modulated by changes in Cai. The cells of MLIV patients contain enlarged lysosomes that are likely associated with abnormal sorting and trafficking of these and related organelles. We studied fibroblasts from MLIV patients and found disturbed Ca2+ signaling and large acidic organelles such as late endosomes and lysosomes (LEL) with altered cellular localization in these cells. The fusion between LEL vesicles in these cells was defective. This is a Ca2+-dependent process related to signaling pathways involved in regulation of Ca2+ homeostasis and trafficking. The MLN1 channels could play a key role in Ca2+ release from LEL vesicles, which triggers the fusion and trafficking of these organelles. The characterization of this MLN1-mediated Ca2+-dependent process should provide new insights into the pathophysiological mechanisms that lead to the development of MLIV and other mucolipidoses associated with similar disturbances in membrane trafficking.  相似文献   

18.
Intracellular trafficking underlies cellular functions ranging from membrane remodeling to receptor activation. During multicellular organ development, these basic cell biological functions are required as both passive machinery and active signaling regulators. Exocytosis, endocytosis, and recycling of several key signaling receptors have long been known to actively regulate morphogenesis and pattern formation during Drosophila eye development. Hence, intracellular membrane trafficking not only sets the cell biological stage for receptor-mediated signaling but also actively controls signaling through spatiotemporally regulated receptor localization. In contrast to eye development, the role of intracellular trafficking for the establishment of the eye-to-brain connectivity map has only recently received more attention. It is still poorly understood how guidance receptors are spatiotemporally regulated to serve as meaningful synapse formation signals. Yet, the Drosophila visual system provides some of the most striking examples for the regulatory role of intracellular trafficking during multicellular organ development. In this review we will first highlight the experimental and conceptual advances that motivate the study of intracellular trafficking during Drosophila visual system development. We will then illuminate the development of the eye, the eye-to-brain connectivity map and the optic lobe from the perspective of cell biological dynamics. Finally, we provide a conceptual framework that seeks to explain how the interplay of simple genetically encoded intracellular trafficking events governs the seemingly complex cellular behaviors, which in turn determine the developmental product.  相似文献   

19.
The components that control trafficking between organelles of the secretory pathway as well as their architecture were uncovered to a reasonable extent in the past decades. However, only recently did we begin to explore the regulation of the secretory pathway by cellular signaling. In the current review, we focus on trafficking between the endoplasmic reticulum and the Golgi apparatus. We highlight recent advances that have been made toward a better understanding of how the secretory pathway is regulated by signaling and discuss how this knowledge is important to obtain an integrative view of secretion in the context of other homeostatic processes such as growth and proliferation.  相似文献   

20.
Mitochondria are crucial organelles for life and death of the cell. They are prominent players in energy conversion and integrated signaling pathways including regulation of Ca2+ signals and apoptosis. Their functional versatility is matched by their morphological plasticity and by their high mobility, allowing their transport at specialized cellular sites. This transport occurs by interactions with a variety of cytoskeletal proteins that also have the ability to influence shape and function of the organelle. A growing body of evidence suggests that mitochondria use cytoskeletal proteins as tracks for their movement; in turn, mitochondrial morphology and function is regulated via mostly uncharacterized pathways, by the cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号