首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A hybrid protein structure determination approach combining sparse Electron Paramagnetic Resonance (EPR) distance restraints and Rosetta de novo protein folding has been previously demonstrated to yield high quality models (Alexander et al. (2008)). However, widespread application of this methodology to proteins of unknown structures is hindered by the lack of a general strategy to place spin label pairs in the primary sequence. In this work, we report the development of an algorithm that optimally selects spin labeling positions for the purpose of distance measurements by EPR. For the α-helical subdomain of T4 lysozyme (T4L), simulated restraints that maximize sequence separation between the two spin labels while simultaneously ensuring pairwise connectivity of secondary structure elements yielded vastly improved models by Rosetta folding. 54% of all these models have the correct fold compared to only 21% and 8% correctly folded models when randomly placed restraints or no restraints are used, respectively. Moreover, the improvements in model quality require a limited number of optimized restraints, which is determined by the pairwise connectivities of T4L α-helices. The predicted improvement in Rosetta model quality was verified by experimental determination of distances between spin labels pairs selected by the algorithm. Overall, our results reinforce the rationale for the combined use of sparse EPR distance restraints and de novo folding. By alleviating the experimental bottleneck associated with restraint selection, this algorithm sets the stage for extending computational structure determination to larger, traditionally elusive protein topologies of critical structural and biochemical importance.  相似文献   

2.
Gunnar Jeschke 《Proteins》2016,84(4):544-560
Conformational ensembles of intrinsically disordered peptide chains are not fully determined by experimental observations. Uncertainty due to lack of experimental restraints and due to intrinsic disorder can be distinguished if distance distributions restraints are available. Such restraints can be obtained from pulsed dipolar electron paramagnetic resonance (EPR) spectroscopy applied to pairs of spin labels. Here, we introduce a Monte Carlo approach for generating conformational ensembles that are consistent with a set of distance distribution restraints, backbone dihedral angle statistics in known protein structures, and optionally, secondary structure propensities or membrane immersion depths. The approach is tested with simulated restraints for a terminal and an internal loop and for a protein with 69 residues by using sets of sparse restraints for underlying well‐defined conformations and for published ensembles of a premolten globule‐like and a coil‐like intrinsically disordered protein. Proteins 2016; 84:544–560. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
Trapping membrane proteins in the confines of a crystal lattice obscures dynamic modes essential for interconversion between multiple conformations in the functional cycle. Moreover, lattice forces could conspire with detergent solubilization to stabilize a minor conformer in an ensemble thus confounding mechanistic interpretation. Spin labeling in conjunction with electron paramagnetic resonance (EPR) spectroscopy offers an exquisite window into membrane protein dynamics in the native-like environment of a lipid bilayer. Systematic application of spin labeling and EPR identifies sequence-specific secondary structures, defines their topology and their packing in the tertiary fold. Long range distance measurements (60 ?-80 ?) between pairs of spin labels enable quantitative analysis of equilibrium dynamics and triggered conformational changes. This review highlights the contribution of spin labeling to bridging structure and mechanism. Efforts to develop methods for determining structures from EPR restraints and to increase sensitivity and throughput promise to expand spin labeling applications in membrane protein structural biology.  相似文献   

4.
Identifying conformational changes with site-directed spin labeling   总被引:16,自引:0,他引:16  
Site-direct spin labeling combined with electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for detecting structural changes in proteins. This review provides examples that illustrate strategies for interpreting the data in terms of specific rearrangements in secondary and tertiary structure. The changes in the mobility and solvent accessibility of the spin label side chains, and in the distances between spin labels, report (i) rigid body motions of alpha-helices and beta-strands (ii) relative movements of domains and (iii) changes in secondary structure. Such events can be monitored in the millisecond time-scale, making it possible to follow structural changes during function. There is no upper limit to the size of proteins that can be investigated, and only 50-100 picomoles of protein are required. These features make site-directed spin labeling an attractive approach for the study of structure and dynamics in a wide range of systems.  相似文献   

5.
We report an approach for determining the structure of macromolecular assemblies by the combined application of cryo-electron microscopy (cryo-EM) and site-directed spin labeling electron paramagnetic resonance spectroscopy (EPR). This approach is illustrated for Hsp16.5, a small heat shock protein that prevents the aggregation of nonnative proteins. The structure of Hsp16.5 has been previously studied by both cryo-EM and X-ray crystallography. The crystal structure revealed a roughly spherical protein shell with dodecameric symmetry; however, residues 1-32 were found to be disordered. The cryo-EM reconstruction at 13 A resolution appeared similar to the crystal structure but with additional internal density corresponding to the N-terminal regions of the 24 subunits. In this study, a systematic application of site-directed spin labeling and EPR spectroscopy was carried out. By combining the EPR constraints from spin label accessibilities and proximities with the cryo-EM density, we obtained an atomic model for a portion of the Hsp16.5 N-terminal region in the context of the oligomeric complex.  相似文献   

6.
Using sets of experimental distance restraints, which characterize active or inactive receptor conformations, and the X-ray crystal structure of the inactive form of bovine rhodopsin as a starting point, we have constructed models of both the active and inactive forms of rhodopsin and the beta2-adrenergic G-protein coupled receptors (GPCRs). The distance restraints were obtained from published data for site-directed crosslinking, engineered zinc binding, site-directed spin-labeling, IR spectroscopy, and cysteine accessibility studies conducted on class A GPCRs. Molecular dynamics simulations in the presence of either "active" or "inactive" restraints were used to generate two distinguishable receptor models. The process for generating the inactive and active models was validated by the hit rates, yields, and enrichment factors determined for the selection of antagonists in the inactive model and for the selection of agonists in the active model from a set of nonadrenergic GPCR drug-like ligands in a virtual screen using ligand docking software. The simulation results provide new insights into the relationships observed between selected biochemical data, the crystal structure of rhodopsin, and the structural rearrangements that occur during activation.  相似文献   

7.
Recent developments including pulse and multi-frequency techniques make the combination of site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy an attractive approach for the study of protein-protein or protein-oligonucleotide interaction. Analysis of the spin label side chain mobility, its solvent accessibility, the polarity of the spin label micro-environment and distances between spin label side chains allow the modeling of protein domains or protein-protein interaction sites and their conformational changes with a spatial resolution at the level of the backbone fold. Structural changes can be detected with millisecond time resolution. Inter- and intra-molecular distances are accessible in the range from approximately 0.5 to 8 nm by the combination of continuous wave and pulse EPR methods. Recent applications include the study of transmembrane substrate transport, membrane channel gating, gene regulation and signal transfer.  相似文献   

8.
For many membrane proteins, the determination of their topology remains a challenge for methods like X‐ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. Electron paramagnetic resonance (EPR) spectroscopy has evolved as an alternative technique to study structure and dynamics of membrane proteins. The present study demonstrates the feasibility of membrane protein topology determination using limited EPR distance and accessibility measurements. The BCL::MP‐Fold (BioChemical Library membrane protein fold) algorithm assembles secondary structure elements (SSEs) in the membrane using a Monte Carlo Metropolis (MCM) approach. Sampled models are evaluated using knowledge‐based potential functions and agreement with the EPR data and a knowledge‐based energy function. Twenty‐nine membrane proteins of up to 696 residues are used to test the algorithm. The RMSD100 value of the most accurate model is better than 8 Å for 27, better than 6 Å for 22, and better than 4 Å for 15 of the 29 proteins, demonstrating the algorithms' ability to sample the native topology. The average enrichment could be improved from 1.3 to 2.5, showing the improved discrimination power by using EPR data. Proteins 2015; 83:1947–1962. © 2015 Wiley Periodicals, Inc  相似文献   

9.
Colicin A (ColA) is a water-soluble toxin that forms a voltage-gated channel in the cytoplasmic membrane of Escherichia coli. Until now, two models were proposed for the closed channel state: the umbrella model and the penknife model. Mutants of ColA, each containing a single cysteine, were labeled with a nitroxide spin label, reconstituted into liposomes, and studied by electron paramagnetic resonance (EPR) spectroscopy to study the membrane-bound closed channel state. The spin-labeled ColA variants in solution and in liposomes of native E. coli lipid composition were analyzed in terms of the mobility of the nitroxide, its accessibility to paramagnetic reagents, and the polarity of its microenvironment. The EPR data determined for the soluble ColA pore-forming domain are in agreement with its crystal structure. Moreover, the EPR results show that ColA has a conformation in liposomes different from its water-soluble conformation. Residues that belong to helices H8 and H9 are significantly accessible for O2 but not for nickel-ethylene diamine diacetic acid, indicating their location inside the membrane. In addition, the polarity values determined from the hyperfine tensor component Azz of residues 176, 181, and 183 (H9) indicate the location of these residues close to the center of the lipid bilayer, supporting a transmembrane orientation of the hydrophobic hairpin. Furthermore, the accessibility and polarity data suggest that the spin-labeled side chains of the amphipathic helices (H1-H7 and H10) are located at the membrane-water interface. Evidence that the conformation of the closed channel state in artificial liposomes depends on lipid composition is given. The EPR results for ColA reconstituted into liposomes of E. coli lipids support the umbrella model for the closed channel state.  相似文献   

10.
A novel thiol-specific spin labeling procedure for the protein component (apoprotein B, apoB) of low density lipoproteins (LDLs) is presented. A methanethiosulfonate spin label was used to probe the free cysteine residues of apoB with electron paramagnetic resonance (EPR) spectroscopy. The results indicated that the spin labeled sites are predominantly buried in the LDL particle in two distinct environments that differ in their mobility restrictions. The suitability of thiol-specific labeling for the study of the stability and conformation of apoB was demonstrated in experiments with denaturing agents. The results presented in this work offer a new approach for the matching of EPR data with the primary structure of apoB.  相似文献   

11.
Nuclear magnetic resonance (NMR) structure calculations of the α-helical integral membrane proteins DsbB, GlpG, and halorhodopsin show that distance restraints from paramagnetic relaxation enhancement (PRE) can provide sufficient structural information to determine their structure with an accuracy of about 1.5?? in the absence of other long-range conformational restraints. Our systematic study with simulated NMR data shows that about one spin label per transmembrane helix is necessary for obtaining enough PRE distance restraints to exclude wrong topologies, such as pseudo mirror images, if only limited other NMR restraints are available. Consequently, an experimentally realistic amount of PRE data enables α-helical membrane protein structure determinations that would not be feasible with the very limited amount of conventional NOESY data normally available for these systems. These findings are in line with our recent first de novo NMR structure determination of a heptahelical integral membrane protein, proteorhodopsin, that relied extensively on PRE data.  相似文献   

12.
13.
A method was developed to determine the interspin distances of two or more nitroxide spin labels attached to specific sites in proteins. This method was applied to different conformations of spin-labeled insulins. The electron paramagnetic resonance (EPR) line broadening due to dipolar interaction is determined by fitting simulated EPR powder spectra to experimental data, measured at temperatures below 200 K to freeze the protein motion. The experimental spectra are composed of species with different relative nitroxide orientations and interspin distances because of the flexibility of the spin label side chain and the variety of conformational substates of proteins in frozen solution. Values for the average interspin distance and for the distance distribution width can be determined from the characteristics of the dipolar broadened line shape. The resulting interspin distances determined for crystallized insulins in the R6 and T6 structure agree nicely with structural data obtained by x-ray crystallography and by modeling of the spin-labeled samples. The EPR experiments reveal slight differences between crystal and frozen solution structures of the B-chain amino termini in the R6 and T6 states of hexameric insulins. The study of interspin distances between attached spin labels can be applied to obtain structural information on proteins under conditions where other methods like two-dimensional nuclear magnetic resonance spectroscopy or x-ray crystallography are not applicable.  相似文献   

14.

Background

Electron paramagnetic resonance (EPR) spectroscopy (also known as electron spin resonance, ESR, spectroscopy) is widely considered to be the “gold standard” for the detection and characterisation of radicals in biological systems.

Scope of review

The article reviews the major positive and negative aspects of EPR spectroscopy and discusses how this technique and associated methodologies can be used to maximise useful information, and minimise artefacts, when used in biological studies. Consideration is given to the direct detection of radicals (at both ambient and low temperature), the use of spin trapping and spin scavenging (e.g. reaction with hydroxylamines), the detection of nitric oxide and the detection and quantification of some transition metal ions (particularly iron and copper) and their environment.

Major conclusions

When used with care this technique can provide a wealth of valuable information on the presence of radicals and some transition metal ions in biological systems. It can provide definitive information on the identity of the species present and also information on their concentration, structure, mobility and interactions. It is however a technique that has major limitations and the user needs to understand the various pitfalls and shortcoming of the method to avoid making errors.

General significance

EPR remains the most definitive method of identifying radicals in complex systems and is also a valuable method of examining radical kinetics, concentrations and structure. This article is part of a Special Issue entitled Current methods to study reactive oxygen species — pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

15.
In this review we summarize our approach to the study of Intermediate Filament (IF) structure and assembly by electron paramagnetic resonance (EPR) spectroscopy of site-directed spin labels. Using vimentin, a homopolymeric type III IF protein, we demonstrate that this approach serves as a general paradigm for studying protein filament structure and assembly. These strategies will be useful in exploring the structure and assembly properties of other filamentous or aggregation-prone systems.  相似文献   

16.
Apolipoprotein A-I (apoA-I) is the major protein component of high density lipoproteins (HDL) and plays a central role in cholesterol metabolism. The lipid-free/lipid-poor form of apoA-I is the preferred substrate for the ATP-binding cassette transporter A1 (ABCA1). The interaction of apoA-I with ABCA1 leads to the formation of cholesterol laden high density lipoprotein (HDL) particles, a key step in reverse cholesterol transport and the maintenance of cholesterol homeostasis. Knowledge of the structure of lipid-free apoA-I is essential to understanding its critical interaction with ABCA1 and the molecular mechanisms underlying HDL biogenesis. We therefore examined the structure of lipid-free apoA-I by electron paramagnetic resonance spectroscopy (EPR). Through site directed spin label EPR, we mapped the secondary structure of apoA-I and identified sites of spin coupling as residues 26, 44, 64, 167, 217 and 226. We capitalize on the fact that lipid-free apoA-I self-associates in an anti-parallel manner in solution. We employed these sites of spin coupling to define the central plane in the dimeric apoA-I complex. Applying both the constraints of dipolar coupling with the EPR-derived pattern of solvent accessibility, we assembled the secondary structure into a tertiary context, providing a solution structure for lipid-free apoA-I. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

17.
Membrane proteins reside in a structured environment in which some of their residues are accessible to water, some are in contact with alkyl chains of lipid molecules, and some are buried in the protein. Water accessibility of residues may change during folding or function-related structural dynamics. Several techniques based on the combination of pulsed electron paramagnetic resonance (EPR) with site-directed spin labeling can be used to quantify such water accessibility. Accessibility parameters for different residues in major plant light-harvesting complex IIb are determined by electron spin echo envelope modulation spectroscopy in the presence of deuterated water, deuterium contrast in transversal relaxation rates, analysis of longitudinal relaxation rates, and line shape analysis of electron-spin-echo-detected EPR spectra as well as by the conventional techniques of measuring the maximum hyperfine splitting and progressive saturation in continuous-wave EPR. Systematic comparison of these parameters allows for a more detailed characterization of the environment of the spin-labeled residues. These techniques are applicable independently of protein size and require ∼10-20 nmol of singly spin-labeled protein per sample. For a residue close to the N-terminus, in a domain unresolved in the existing x-ray structures of light-harvesting complex IIb, all methods indicate high water accessibility.  相似文献   

18.
Apolipoprotein A-I (apoA-I) is the major protein component of high density lipoproteins (HDL) and plays a central role in cholesterol metabolism. The lipid-free/lipid-poor form of apoA-I is the preferred substrate for the ATP-binding cassette transporter A1 (ABCA1). The interaction of apoA-I with ABCA1 leads to the formation of cholesterol laden high density lipoprotein (HDL) particles, a key step in reverse cholesterol transport and the maintenance of cholesterol homeostasis. Knowledge of the structure of lipid-free apoA-I is essential to understanding its critical interaction with ABCA1 and the molecular mechanisms underlying HDL biogenesis. We therefore examined the structure of lipid-free apoA-I by electron paramagnetic resonance spectroscopy (EPR). Through site directed spin label EPR, we mapped the secondary structure of apoA-I and identified sites of spin coupling as residues 26, 44, 64, 167, 217 and 226. We capitalize on the fact that lipid-free apoA-I self-associates in an anti-parallel manner in solution. We employed these sites of spin coupling to define the central plane in the dimeric apoA-I complex. Applying both the constraints of dipolar coupling with the EPR-derived pattern of solvent accessibility, we assembled the secondary structure into a tertiary context, providing a solution structure for lipid-free apoA-I. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

19.
J C Macosko  M S Pio  I Tinoco  Jr    Y K Shin 《RNA (New York, N.Y.)》1999,5(9):1158-1166
An RNA spin-labeling technique was developed using the well-characterized interaction between the HIV Rev peptide and the Rev response element (RRE) RNA as a model system. Spin-labeled RNA molecules were prepared by incorporating guanosine monophosphorothioate (GMPS) at the 5' end using T7 RNA polymerase and then covalently attaching a thiol-specific nitroxide spin label. Three different constructs of the RRE RNA were made by strategically displacing the 5' end within the native three-dimensional structure. Nitroxide-to-nitroxide distance measurements were made between the specifically bound RNA and peptide using electron paramagnetic resonance (EPR) spectroscopy. The dipolar EPR method can reliably measure distances up to 25 A, the calculation of which is derived from the 1/r3 dependence of the broadening of EPR lines in motionally frozen samples. This RNA-labeling technique, dubbed 5' displacement spin labeling, extends the usefulness of the dipolar EPR method developed for analysis of protein structure. The advantage of this technique is that it is applicable to large RNA systems such as the ribosome, which are difficult to study by other structural methods.  相似文献   

20.

Background

Serum albumin is a major transport protein in mammals and is known to have at least seven binding sites for long-chain fatty acids (FAs).

Scope of review

We have devised a new electron paramagnetic resonance (EPR) spectroscopic approach to gain information on the functional structure of serum albumin in solution in a “coarse-grained” manner from the ligands' point of view. Our approach is based on using spin labeled (paramagnetic) stearic acids self-assembled with albumin and subsequent nanoscale distance measurements between the FAs using double electron–electron resonance spectroscopy (DEER). Simple continuous wave (CW) EPR spectroscopy, which allows for quantification of bound ligands, complements our studies.

Major conclusions

Based on DEER nanoscale distance measurements, the functional solution structure of human serum albumin (HSA) has remarkably been found to have a much more symmetric distribution of entry points to the FA binding sites than expected from the crystal structure, indicating increased surface flexibility and plasticity for HSA in solution.In contrast, for bovine serum albumin (BSA), the entry point topology is in good agreement with that expected from the crystal structure of HSA. Changes in the solution structures between albumins can hence be revealed and extended to more albumins to detect functional differences at the nanoscale.Going beyond fundamental structural studies, our research platform is also excellently suited for general studies of protein–solvent interactions, temperature effects and ligand binding.

General significance

We discuss how our research platform helps illuminate protein dynamics and function and can be used to characterize albumin-based hybrid materials. This article is part of a Special Issue entitled Serum Albumin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号