首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deoxyadenosine (dAdo) and deoxyguanosine (dGuo) decrease methionine synthesis from homocysteine in cultured lymphoblasts; because of the possible trapping of 5-methyltetrahydrofolate this could lead to decreased purine nucleotide synthesis. Since purine deoxynucleosides could also inhibit purine synthesis de novo at an early step not involving folate metabolism, we measured in azaserine-treated cells 5-amino-4-imidazolecarboxamide (Z-base)-dependent purine nucleotide synthesis using [14C]formate. In the T lymphoblasts, Z-base-dependent purine nucleotide synthesis was decreased 26% by 0.3 microM-dAdo, 21% by 1 microM-dGuo and 28% by 1 microM-adenosine dialdehyde, a potent S-adenosylhomocysteine hydrolase inhibitor; homocysteine fully reversed the inhibitions. The B lymphoblasts were considerably less sensitive to the deoxynucleoside-induced decrease in Z-base-dependent purine nucleotide synthesis, with 100 microM-dAdo required for significant inhibition and no inhibition by dGuo at this concentration; homocysteine partly reversed the inhibition by dAdo. The observed decrease in Z-base-dependent purine nucleotide synthesis could not be attributed either to dUMP depletion changing the folate pools or to decreased ATP availability because dUrd was without effect and during the experimental period the intracellular ATP concentration did not change significantly. Cells with 5,10-methylenetetrahydrofolate reductase deficiency were relatively resistant to inhibition of Z-base-dependent purine nucleotide synthesis by dAdo and adenosine dialdehyde. Our results suggest that deoxynucleosides decrease purine nucleotide synthesis by trapping 5-methyltetrahydrofolate.  相似文献   

2.
1. The concentrations of folate-dependent enzymes in Neurospora crassa Lindegren A wild type (FGSC no. 853), Ser-l mutant, strain H605a (FGSC no. 118), and for mutant, strain C-24 (FGSC no. 9), were compared during exponential growth on defined minimal media. Both mutants were partially lacking in serine hydroxymethyltransferase, but contained higher concentrations of 10-formyltetrahydrofolate synthetase than did the wild type. Mycelia of the mutants contained higher concentrations of these enzymes when growth media were supplemented with 1mM-glycine. In the wild-type, this glycine supplement also increased the specific activities of 5,10-methylenetetrahydrofolate dehydrogenase and 5,10-methylenetetrahydrofolate reductase. 5. During growth, total folate and polyglutamyl folate concentrations were greatest in the wild-type. Methylfolates were not detected in mutant Ser-l, and were only present in the for mutant after growth in glycine-supplemented media. Exogenous glycine increased folate concentration threefold in the wild type, mainly owing to increases in unsubstituted polyglutamyl derivatives. 3. Feeding experiments using 14C-labelled substrates showed that C1 units were generated from formate, glycine and serine in the wild type. Greater incorporation of 14C occurred when mycelia were cultured in glycine-supplemented media. Formate and serine were precursors of C1 units in the mutants, but the ability to cleave glycine was slight or lacking.  相似文献   

3.
The folate coenzyme 5,10-methylenetetrahydrofolate is an important folate metabolite which cannot be determined directly by HPLC near neutral pH because it dissociates to formaldehyde and tetrahydrofolate. A method for the determination of 5,10-methylenetetrahydrofolate in liver is described. This method involves (1) determination of liver 5-methyltetrahydrofolate; (2) chemical reduction of liver 5,10-methylenetetrahydrofolate (stabilized at pH 10) to 5-methyltetrahydrofolate; and (3) determination of total liver 5-methyltetrahydrofolate. Subtraction of (1) from (3) gives the concentration of 5,10-methylenetetrahydrofolate in liver.  相似文献   

4.
—Folic acid coenzymes were found to be distributed equally between post-nuclear particulate and soluble fractions from whole Swiss mouse brain. Mitochondria isolated from the particulate fraction contained essentially only the N5-methyl derivative of folate, virtually all of which was in a polyglutamate form. Isolated synaptosomes contained significantly more folate than did mitochondria, with the greater proportion being non-N5-methyl derivatives. Osmotic lysis of synaptosomes released only a small portion of the folate; approximately 80 per cent remained with the particulate components of the synaptosome. The enzymes serine transhydroxymethylase and N5, N10-methylenetetrahydrofolate dehydrogenase were found in both the soluble and particulate fractions while formiminoglutamic acid:tetrahydrofolate formiminotransferase activity could not be detected. These findings may be of importance with respect to the synaptic functions of folate coenzymes, including the methylation of biogenic amines.  相似文献   

5.
Folic acid and the methylation of homocysteine by Bacillus subtilis   总被引:2,自引:1,他引:1       下载免费PDF全文
1. Cell-free extracts of Bacillus subtilis synthesize methionine from serine and homocysteine without added folate. The endogenous folate may be replaced by tetrahydropteroyltriglutamate or an extract of heated Escherichia coli for the overall C1 transfer, but tetrahydropteroylmonoglutamate is relatively inactive. 2. Extracts of B. subtilis contain serine transhydroxymethylase and 5,10-methylenetetrahydrofolate reductase, which are non-specific with respect to the glutamate content of the folate substrates. Methyl transfer to homocysteine requires a polyglutamate folate as methyl donor. These properties are not affected by growth of the organism with added vitamin B12. 3. The synthesis of methionine from 5-methyltetrahydropteroyltriglutamate and homocysteine has the characteristics of the cobalamin-independent reaction of E. coli. No evidence for a cobalamin-dependent transmethylation was obtained. 4. S-Adenosylmethionine was not a significant precursor of the methyl group of methionine with cell-free extracts, neither was S-adenosylmethionine generated by methylation of S-adenosylhomocysteine by 5-methyltetrahydrofolate. 5. A procedure for the isolation and analysis of folic acid derivatives from natural sources is described. 6. The folates isolated from lysozyme extracts of B. subtilis are sensitive to folic acid conjugase. One has been identified as 5-formyltetrahydropteroyltriglutamate; the other is possibly a diglutamate folate. 7. A sequence is proposed for methionine biosynthesis in B. subtilis in which methyl groups are generated from serine and transferred to homocysteine by means of a cobalamin-independent pathway mediated by conjugated folate coenzymes.  相似文献   

6.
One-carbon metabolism mediated by folate coenzymes plays an essential role in several major cellular processes. In the prokaryotes studied, three folate-dependent enzymes, 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9), and 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) generally exist as monofunctional or bifunctional proteins, whereas in eukaryotes the three activities are present on one polypeptide. The structural organization of these enzymes in plants had not previously been examined. We have purified the 10-formyltetrahydrofolate synthetase activity from spinach leaves to homogeneity and raised antibodies to it. The protein was a dimer with a subunit molecular weight of Mr = 67,000. The Km values for the three substrates, (6R)-tetrahydrofolate, ATP, and formate were 0.94, 0.043, and 21.9 mM, respectively. The enzyme required both monovalent and divalent cations for maximum activity. The 5,10-methylenetetrahydrofolate dehydrogenase and 5,10-methenyltetrahydrofolate cyclohydrolase activities of spinach coeluted separately from the 10-formyltetrahydrofolate synthetase activity on a Matrex Green-A column. On the same column, the activities of the yeast trifunctional C1-tetrahydrofolate synthase coeluted. In addition, antibodies raised to the purified spinach protein immunoinactivated and immunoprecipitated only the 10-formyltetrahydrofolate synthetase activity in a crude extract of spinach leaves. These results suggest that unlike the trifunctional form of C1-tetrahydrofolate synthase in the other eukaryotes examined, 10-formyltetrahydrofolate synthetase in spinach leaves is monofunctional and 5,10-methyl-enetetrahydrofolate dehydrogenase and 5,10-methenyltetrahydrofolate cyclohydrolase appear to be bifunctional. Although structurally dissimilar to the other eukaryotic trifunctional enzymes, the 35 amino-terminal residues of spinach 10-formyltetrahydrofolate synthetase showed 35% identity with six other tetrahydrofolate synthetases.  相似文献   

7.
A unique group of mutations (amer) in the dihydrofolate reductase (5,6,7,8-tetrahydrofolate:NADP+ oxidoreductase, EC 1.5.1.3.) structural gene of Diplococcus pneumoniae determine a marked overproduction of the corresponding enzyme protein. Since findings with these mutations relate to a key metabolic function and may be important to the regulation of folate coenzyme synthesis in general, the same group of multations were also examined for their effects on a number of related enzymic activities. Mutant and wild-type cell-free extracts, in addition to dihydrofolate reductase activity, exhibited both dihydropteroate and dihydrofolate synthetic activities under the conditions employed. Four folate coenzyme-related enzyme activities could also be demonstrated with the same preparations. These are mediated by the following enzymes, serine hydroxymethyl transferase (l-serine: tetrahydrofolate 10-hydroxymethyl tranferase, EC 2.1.2.1), 5, 10-methylenetetrahydrofolate dehydrogenase (5,10-methylenetetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.5), 10-formyltetrahydrofolate synthetase (formate: tetrahydrofolate ligase (ADP-forming), EC 6.3.4.3) and glutamate formiminotransferase (N-formimino-l-glutamate: tetrahydrofolate 5-formiminotransferase, EC 2.1.2.5). The amer mutations examined in the current study determined 3–80-fold increases in dihydrofolate reductase in comparison to the wild type. However, none of the other folate-related enzyme activities were altered. The possible significance of these findings in light of previous results is discussed.  相似文献   

8.
Glycine-accumulating mutants of barley (Hordeum vulgare L.) and Amaranthus edulis (Speg.), which lack the ability to decarboxylate glycine by glycine decarboxylase (GDC; EC 2.1.2.10), were used to study the significance of an alternative photorespiratory pathway of serine formation. In the normal photorespiratory pathway, 5,10-methylenetetrahydrofolate is formed in the reaction catalysed by GDC and transferred to serine by serine hydroxymethyltransferase. In an alternative pathway, glyoxylate could be decarboxylated to formate and formate could be converted into 5,10-methylenetetrahydrofolate in the C1-tetrahydrofolate synthase pathway. In contrast to wild-type plants, the mutants showed a light-dependent accumulation of glyoxylate and formate, which was suppressed by elevated (0.7%) CO2 concentrations. After growth in air, the activity and amount of 10-formyltetrahydrofolate synthetase (FTHF synthetase; EC 6.3.4.4), the first enzyme of the conversion of formate into 5,10-methylenetetrahydrofolate, were increased in the mutants compared to the wild types. A similar increase in FTHF synthetase could be induced by incubating leaves of wild-type plants with glycine under illumination, but not in the dark. Experiments with 14C showed that the barley mutants incorporated [14C]formate and [2-14C]glycollate into serine. Together, the accumulation of glyoxylate and formate under photorespiratory conditions, the increase in FTHF synthetase and the ability to utilise formate and glycollate for the formation of serine indicate that the mutants are able partially to compensate for the lack of GDC activity by bypassing the normal photorespiratory pathway. Received: 14 August 1998 / Accepted: 30 September 1998  相似文献   

9.
The tissue distribution of folate in its numerous coenzyme forms may influence the development of disease at different sites. For instance, the susceptibility of human colonic mucosa to localized folate deficiency may predispose to the development of colorectal cancer. We report a sensitive and robust ultra high-performance liquid chromatography (UHPLC) tandem mass spectrometry method for quantifying tissue H4folate, 5-CH3-H4folate, 5-CHO-H4folate, folic acid, and 5,10-CH+-H4folate concentration. Human colonic mucosa (20–100 mg) was extracted using lipase and conjugase enzyme digestion. Rapid separation of analytes was achieved on a UHPLC 1.9-μm C18 column over 7 min. Accurate quantitation was performed using stable isotopically labeled (13C5) internal standards. The instrument response was linear over physiological concentrations of tissue folate (R2 > 0.99). Limits of detection and quantitation were less than 20 and 30 fmol on column, respectively, and within- and between-run imprecision values were 6–16%. In colonic mucosal samples from 73 individuals, the average molar distribution of folate coenzymes was 58% 5-CH3-H4folate, 20% H4folate, 18% formyl-H4folate (sum of 5-CHO-H4folate and 5,10-CH+-H4folate), and 4% folic acid. This assay would be useful in characterizing folate distribution in human and animal tissues as well as the role of deregulated folate homeostasis on disease pathogenesis.  相似文献   

10.
Aeration of carrot storage tissue disks in water was accompanied by net folate synthesis and by changes in the specific activities of key folate-dependent enzymes. Disks aerated in 0.1 mM gibberellic acid (GA3) for 48 hr contained higher concentrations of methyltetrahydrofolates but aeration in 5 mM L-methionine reduced net folate synthesis. Gibberellic acid also increased the specific activities of 5,10-methylenetetrahydrofolate reductase (E.C. 1.1.1.68), serine hydroxymethyltransferase (E.C. 2.1.2.1) and 5-methyltetrahydrofolate: homocysteine transmethylase. The levels of these enzymes in disks aerated in L-methionine (5 mM) were comparable or slightly higher than those of disks aerated in water. Activity of the reductase and 10-formyltetrahydrofolate synthetase (E.C. 6.3.4.3) was inhibited by L-methionine in vitro. Aeration increased ability to incorporate formate [14C] into serine, glycine and methionine. Disks aerated for 36 hr in 0.1 mM GA3 incorporated greater amounts of 14C into free methionine but those aerated in L-methionine (5 mM) had less ability to metabolize formate and the specific radioactivities of free glycine, serine and methionine were low.  相似文献   

11.
Folate-mediated one-carbon metabolism is a metabolic network of interconnected pathways that is required for the de novo synthesis of three of the four DNA bases and the remethylation of homocysteine to methionine. Previous studies have indicated that the thymidylate synthesis and homocysteine remethylation pathways compete for a limiting pool of methylenetetrahydrofolate cofactors and that thymidylate biosynthesis is preserved in folate deficiency at the expense of homocysteine remethylation, but the mechanisms are unknown. Recently, it was shown that thymidylate synthesis occurs in the nucleus, whereas homocysteine remethylation occurs in the cytosol. In this study we demonstrate that methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), an enzyme that generates methylenetetrahydrofolate from formate, ATP, and NADPH, functions in the nucleus to support de novo thymidylate biosynthesis. MTHFD1 translocates to the nucleus in S-phase MCF-7 and HeLa cells. During folate deficiency mouse liver MTHFD1 levels are enriched in the nucleus >2-fold at the expense of levels in the cytosol. Furthermore, nuclear folate levels are resistant to folate depletion when total cellular folate levels are reduced by >50% in mouse liver. The enrichment of folate cofactors and MTHFD1 protein in the nucleus during folate deficiency in mouse liver and human cell lines accounts for previous metabolic studies that indicated 5,10-methylenetetrahydrofolate is preferentially directed toward de novo thymidylate biosynthesis at the expense of homocysteine remethylation during folate deficiency.  相似文献   

12.
The ability of human blood in vitro, and partially purified red blood cells, to metabolize leucovorin, or 5-formyltetrahydrofolate, has been examined. A radioenzymatic assay based upon entrapment of 5,10-methylenetetrahydrofolate, and other reduced folates after cycling to this form, into a stable ternary complex with thymidylate synthase and tritiated 5-fluoro-2'-deoxyuridine-5'-monophosphate was used to estimate reduced folate metabolites. Incubation of whole blood samples with (R,S)5-formyltetrahydrofolate resulted in a time- and concentration-dependent extracellular accumulation of the reduced folates, 5-methyltetrahydrofolate, tetrahydrofolate, 10-formyltetrahydrofolate, and 5,10-methylenetetrahydrofolate. While accumulation with time was nonlinear, the tetrahydrofolate pool showed the greatest overall increase in concentration. 5-Methyltetrahydrofolate, which was the only reduced folate detected in plasma prior to introduction of (R,S)5-formyltetrahydrofolate, accumulated more slowly than tetrahydrofolate. 10-Formyltetrahydrofolate and 5,10-methylenetetrahydrofolate accumulated even more slowly but exhibited nonlinear kinetic patterns similar to those of tetrahydrofolate and 5-methyltetrahydrofolate. When blood cells were removed by centrifugation, a complete loss of metabolic activity was observed. Exposure of purified red blood cells to (R,S)5-formyltetrahydrofolate resulted in accumulation of extracellular reduced folates that was similar to that in whole blood samples while partially purified white blood cells exhibited little activity. Metabolism of the (S) diastereomer of 5-formyltetrahydrofolate accounted for essentially all of the observed extracellular accumulation of reduced folates. We propose that red blood cell-mediated metabolism of 5-formyltetrahydrofolate could, in part at least, account for reduced folate accumulation in plasma when leucovorin is administered to humans.  相似文献   

13.
Folates act as essential coenzymes in many biological pathways. Alteration in folate form distribution might have biological significance, especially in relation to certain genetic polymorphisms. We developed a stable-isotope dilution ultra performance liquid chromatography–mass spectrometry (UPLC–MS/MS) method for quantification of the folate forms 5-methyltetrahydrofolate (5-methylTHF), 5-formylTHF, 5,10-methenylTHF, THF, and folic acid in serum. After extraction using an ion exchange and mixed mode solid-phase, samples were separated and detected using an UPLC–MS/MS system. The quantification limits were between 0.17 nmol/L (5-formylTHF) and 1.79 nmol/L (THF), and the assay was linear up to 100 nmol/L (5-methylTHF) and 10 nmol/L (5-formylTHF, 5,10-methenylTHF, THF, and folic acid). The intraassay CVs for 5-methylTHF and 5-formylTHF were 2.0% and 7.2%, respectively. Mean recoveries were between 82.3% for THF and 110.8% for 5,10-methenylTHF. Concentrations of total folate measured by the new method showed a strong correlation with those measured by an immunologic assay (r = 0.939; p < 0.001). The mean total folate from 32 apparently healthy subjects was 18.09 nmol/L, of which 87.23% was 5-methylTHF. Concentrations of homocysteine showed a better correlation to the total folate measured by the new method compared to that obtained by an immunologic assay. We also confirmed that MTHFR polymorphism has a significant effect on folate distribution in this small population of non-supplemented subjects.  相似文献   

14.
Oxidation of 5-methyltetrahydrofolate to 5,10-methylenetetrahydrofolate was the rate-limiting step in 5-methyltetrahydrofolate metabolism by Lactobacillus casei. The limiting steps in the utilization of suboptimal levels of folate by L. casei were related to the ability of folates to function in purine and/or thymidylate biosynthesis. Folates with glutamate chains of up to at least seven residues were substrates for these biosynthetic enzymes, and comparisons of bacterial growth yields with transport rates for these folates indicated that the polyglutamates were more effective substrates in purine and thymidylate synthesis than the corresponding pteroylmonoglutamates. Lactobacillus casei contained low levels of a B12-independent, pteroylpolyglutamate-specific methionine synthetase. Its methylenetetrahydrofolate reductase also functioned more effectively with pteroylpolyglutamate substrates.  相似文献   

15.
A method has been developed to characterize the poly-γ-glutamates of 5,10-methyl-enetetrahydrofolate. Incorporation of 5,10-methylenetetrahydrofolates into a ternary complex with L. casei thymidylate synthetase and 5-fluoro-2-deoxy[3H]uridylate stabilizes the reduced folate against oxidation, loss of the one carbon moiety, and poly-γ-glutamate degradation. The covalent ternary complexes, containing 5,10-methylenetetrahydrofolate polyglutamates, were resolved electrophoretically. Electrophoretic mobility was shown to be a linear function of polyglutamate chain-length. The method can potentially be applied to analysis of chemically prepared folate polyglutamates, the monitoring of enzyme-mediated interconversions of polyglutamates and characterization of tissue extract polyglutamates.  相似文献   

16.
Clostridium thermoaceticum ferments xylose, fructose, and glucose with acetate as the only product. In fermentations with mixtures of the sugars, xylose is first fermented, then fructose, and last, glucose. Fructose inhibits the fermentation of glucose, and this inhibition appears to be due to a repression of the synthesis of an enzyme needed for glucose utilization. Addition of metals to the culture medium increases the cell yield drastically from about 7 to 18 g per liter, and Y(glucose) values between 40 and 50 are obtained. According to the postulated pathways of the fermentation of glucose and synthesis of acetate from CO(2) by C. thermoaceticum, 3 mol of ATP are available as energy for growth. Thus a Y(adenosine 5'-triphosphate) of 13 to 16 is obtained. Because the normal Y(ATP) value is 10.5, this could mean that an additional source of ATP is available by an unknown mechanism. The addition of metals also increases the nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase activity, the overall reaction ((14)CO(2) --> acetate), and the incorporation of the methyl group of 5-methyltetrahydrofolate into acetate. These reactions are catalyzed very efficiently by cells harvested in early growth, whereas cells obtained at the end of a fermentation have very low formate dehydrogenase activity and capacity to incorporate CO(2) into acetate. The following enzymes involved in the synthesis of acetate from CO(2) and in the metabolism of pyruvate are present in extracts of C. thermoaceticum: 10-formyltetrahydrofolate synthetase, 5,10-methenyltetrahydrofolate cyclohydrolase, 5,10-methylenetetrahydrofolate dehydrogenase, 5,10-methylenetetrahydrofolate reductase, phosphate acetyltransferase, and acetate kinase. These enzymes are not or are very little affected by the addition of metals to the growth medium.The amount of corrinoids in cells from early growth is low, whereas it is high in cells harvested late in growth. The opposite is found for the activity of delta-aminolevulinate dehydratase, which is high at the beginning of growth and low at the end.  相似文献   

17.
A pilot study using capillary electrophoresis with mass spectrometry for the analysis of nucleotides in human erythrocytes is presented. Erythrocytes were incubated with 5-amino-4-imidazolecarboxamide riboside in order to mimic situation in defect of purine metabolism—AICA-ribosiduria. Characteristic AICA-ribotides together with normal nucleotides were separated by capillary electrophoresis in acetate buffer (20 mmol/L, pH 4.4) and identified on line by mass spectrometry.  相似文献   

18.
A pilot study using capillary electrophoresis with mass spectrometry for the analysis of nucleotides in human erythrocytes is presented. Erythrocytes were incubated with 5-amino-4-imidazolecarboxamide riboside in order to mimic situation in defect of purine metabolism--AICA-ribosiduria. Characteristic AICA-ribotides together with normal nucleotides were separated by capillary electrophoresis in acetate buffer (20 mmol/L, pH 4.4) and identified on line by mass spectrometry.  相似文献   

19.
DNA photolyase catalyzes the photoreversal of pyrimidine dimers. The enzymes from Escherichia coli and yeast contain a flavin chromophore and a folate cofactor, 5,10-methenyltetrahydropteroylpolyglutamate. E. coli DNA photolyase contains about 0.3 mol of folate/mol flavin, whereas the yeast photolyase contains the full complement of folate. E. coli DNA photolyase is reconstituted to a full complement of the folate by addition of 5,10-methenyltetrahydrofolate to cell lysates or purified enzyme samples. The reconstituted enzyme displays a higher photolytic cross section under limiting light. Treatment of photolyase with sodium borohydride or repeated camera flashing results in the disappearance of the absorption band at 384 nm and is correlated with the formation of modified products from the enzyme-bound 5,10-methenyltetrahydrofolate. Photolyase modified in this manner has a decreased photolytic cross section under limiting light. Borohydride reduction results in the formation of 5,10-methylenetetrahydrofolate and 5-methyltetrahydrofolate, both of which are released from the enzyme. Repeated camera flashing results in photodecomposition of the enzyme-bound 5,10-methenyltetrahydrofolate and release of the decomposition products. Finally, it is observed that photolyase binds 10-formyltetrahydrofolate and appears to cyclize it to form the 5,10-methenyltetrahydrofolate chromophore.  相似文献   

20.
In the ternary complex of thymidylate synthetase, 5-fluoro-2'-deoxyuridylate (FdUMP), and 5,10-methylenetetrahydrofolate (5,10-CH2H4folate), the 5-fluorouracil moiety is covalently bound to the enzyme by a sulfide linkage from C-6 and to either N-5 or N-10 of H4folate by a methylene bridge from C-5. In an effort to establish the site by which H4folate is attached to FdUMP, the ternary complex was subjected to reagents that cleave the C-9, N-10 bond of folate derivatives. The complex was stable to zinc dust in hydrochloric acid, a reagent that cleaves N-10-substituted but not N-5-substituted folates. The conditions of the Bratton-Marshall reaction, which involve the use of nitrous acid, were found to cleave N-5-substituted folates in yields ranging from 5 to 50%. Exposure of the double-labeled thymidylate synthetase-FdUMP-[2-14C,7,9,3',5'-3H]5,10-CH2H4folate complex to the Bratton-Marshall reaction resulted in 16% cleavage of the C-9, N-10 bond with release solely of p-aminobenzoylglutamate, whereas all of the carbon-14-labeled pterin residue remained covalently bound to the protein. These results demonstrate that in the ternary complex, the 5-fluorouracil residue is connected by a covalent bond to N-5 of H4folate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号