共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Evolution maintains organismal fitness by preserving genomic information. This is widely assumed to involve conservation of specific genomic loci among species. Many genomic encodings are now recognized to integrate small contributions from multiple genomic positions into quantitative dispersed codes, but the evolutionary dynamics of such codes are still poorly understood. Here we show that in yeast, sequences that quantitatively affect nucleosome occupancy evolve under compensatory dynamics that maintain heterogeneous levels of A+T content through spatially coupled A/T-losing and A/T-gaining substitutions. Evolutionary modeling combined with data on yeast polymorphisms supports the idea that these substitution dynamics are a consequence of weak selection. This shows that compensatory evolution, so far believed to affect specific groups of epistatically linked loci like paired RNA bases, is a widespread phenomenon in the yeast genome, affecting the majority of intergenic sequences in it. The model thus derived suggests that compensation is inevitable when evolution conserves quantitative and dispersed genomic functions. 相似文献
4.
This review is motivated by the true explosion in the number of recent studies both developing and ameliorating probabilistic models of codon evolution. Traditionally parametric, the first codon models focused on estimating the effects of selective pressure on the protein via an explicit parameter in the maximum likelihood framework. Likelihood ratio tests of nested codon models armed the biologists with powerful tools, which provided unambiguous evidence for positive selection in real data. This, in turn, triggered a new wave of methodological developments. The new generation of models views the codon evolution process in a more sophisticated way, relaxing several mathematical assumptions. These models make a greater use of physicochemical amino acid properties, genetic code machinery, and the large amounts of data from the public domain. The overview of the most recent advances on modeling codon evolution is presented here, and a wide range of their applications to real data is discussed. On the downside, availability of a large variety of models, each accounting for various biological factors, increases the margin for misinterpretation; the biological meaning of certain parameters may vary among models, and model selection procedures also deserve greater attention. Solid understanding of the modeling assumptions and their applicability is essential for successful statistical data analysis. 相似文献
5.
It is known that there are several codes residing simultaneously on the DNA double helix. The two best-characterized codes are the genetic code—the code for protein production, and the code for DNA packaging into nucleosomes. Since these codes have to coexist simultaneously on the same DNA region, both must be degenerate to allow this coexistence. A-tracts are homopolymeric stretches of several adjacent deoxyadenosines on one strand of the double helix, having unusual structural properties, which were shown to exclude nucleosomes and as such are instrumental in setting the translational positioning of DNA within nucleosomes. We observe, cross-kingdoms, a strong codon bias toward the avoidance of long A-tracts in exon regions, which enables the formation of high density of nucleosomes in these regions. Moreover, long A-tract avoidance is restricted exclusively to nucleosome-occupied exon regions. We show that this bias in codon usage is sufficient for enabling DNA organization within nucleosomes without constraints on the actual code for proteins. Thus, there is inter-dependency of the two major codes within DNA to allow their coexistence. Furthermore, we show that modulation of A-tract occurrences in exon versus non-exon regions may result in a unique alternation of the diameter of the ‘30-nm’ fiber model. 相似文献
6.
Segal MR 《Statistical applications in genetics and molecular biology》2008,7(1):Article14
Nucleosomes, the fundamental repeating subunits of all eukaryotic chromatin, are responsible for packaging DNA into chromosomes inside the cell nucleus and controlling gene expression. While it has been well established that nucleosomes exhibit higher affinity for select DNA sequences, until recently it was unclear whether such preferences exerted a significant, genome-wide effect on nucleosome positioning in vivo. This question was seemingly and recently resolved in the affirmative: a wide-ranging series of experimental and computational analyses provided extensive evidence that the instructions for wrapping DNA around nucleosomes are contained in the DNA itself. This subsequently labeled second genetic code was based on data-driven, structural, and biophysical considerations. It was subjected to an extensive suite of validation procedures, with one conclusion being that intrinsic, genome-encoded, nucleosome organization explains approximately 50% of in vivo nucleosome positioning. Here, we revisit both the nature of the underlying sequence preferences, and the performance of the proposed code. A series of new analyses, employing spectral envelope (Fourier transform) methods for assessing key sequence periodicities, classification techniques for evaluating predictive performance, and discriminatory motif finding methods for devising alternate models, are applied. The findings from the respective analyses indicate that signature dinucleotide periodicities are absent from the bulk of the high affinity nucleosome-bound sequences, and that the predictive performance of the code is modest. We conclude that further exploration of the role of sequence-based preferences in genome-wide nucleosome positioning is warranted. This work offers a methodologic counterpart to a recent, high resolution determination of nucleosome positioning that also questions the accuracy of the proposed code and, further, provides illustrations of techniques useful in assessing sequence periodicity and predictive performance. 相似文献
7.
Background
Although eukaryotic genomes are generally thought to be entirely chromatin-associated, the activated PHO5 promoter in yeast is largely devoid of nucleosomes. We systematically evaluated nucleosome occupancy in yeast promoters by immunoprecipitating nucleosomal DNA and quantifying enrichment by microarrays. 相似文献8.
Post-translational modifications of the histone tails are correlated with distinct chromatin states that regulate access to DNA. Recent proteomic analyses have revealed several new modifications in the globular nucleosome core, many of which lie at the histone-DNA interface. We interpret these modifications in light of previously published data and propose a new and testable model for how cells implement the histone code by modulating nucleosome dynamics. 相似文献
9.
10.
11.
Tuck Seng Wong Tuck Seng Wong Danilo Roccatano 《Biocatalysis and Biotransformation》2013,31(2-4):229-241
Directed protein evolution is the most versatile method for studying protein structure–function relationships, and for tailoring a protein's properties to the needs of industrial applications. In this review, we performed a statistical analysis on the genetic code to study the extent and consequence of the organization of the genetic code on amino acid substitution patterns generated in directed evolution experiments. In detail, we analyzed amino acid substitution patterns caused by (a) a single nucleotide (nt) exchange at each position of all 64 codons, and (b) two subsequent nt exchanges (first and second nt, first and third nt, second and third nt). Additionally, transitions and transversions mutations were compared at the level of amino acid substitution patterns. The latter analysis showed that single nucleotide substitution in a codon generates only 39.5% of the natural diversity on the protein level with 5.2–7 amino acid substitutions per codon. Transversions generate more complex amino acid substitution patterns (increased number and chemically more diverse amino acid substitutions) than transitions. Simultaneous nt exchanges at both first and second nt of a codon generates very diverse amino acid substitution patterns, achieving 83.2% of the natural diversity. The statistical analysis described in this review sets the objectives for novel random mutagenesis methods that address the consequences of the organization of the genetic code. Random mutagenesis methods that favor transversions or introduce consecutive nt exchanges can contribute in this regard. 相似文献
12.
Tuck Seng Wong - Both authors contributed equally to this work Danilo Roccatano Ulrich Schwaneberg 《Biocatalysis and Biotransformation》2007,25(2):229-241
Directed protein evolution is the most versatile method for studying protein structure-function relationships, and for tailoring a protein's properties to the needs of industrial applications. In this review, we performed a statistical analysis on the genetic code to study the extent and consequence of the organization of the genetic code on amino acid substitution patterns generated in directed evolution experiments. In detail, we analyzed amino acid substitution patterns caused by (a) a single nucleotide (nt) exchange at each position of all 64 codons, and (b) two subsequent nt exchanges (first and second nt, first and third nt, second and third nt). Additionally, transitions and transversions mutations were compared at the level of amino acid substitution patterns. The latter analysis showed that single nucleotide substitution in a codon generates only 39.5% of the natural diversity on the protein level with 5.2-7 amino acid substitutions per codon. Transversions generate more complex amino acid substitution patterns (increased number and chemically more diverse amino acid substitutions) than transitions. Simultaneous nt exchanges at both first and second nt of a codon generates very diverse amino acid substitution patterns, achieving 83.2% of the natural diversity. The statistical analysis described in this review sets the objectives for novel random mutagenesis methods that address the consequences of the organization of the genetic code. Random mutagenesis methods that favor transversions or introduce consecutive nt exchanges can contribute in this regard. 相似文献
13.
Verdaasdonk JS Gardner R Stephens AD Yeh E Bloom K 《Molecular biology of the cell》2012,23(13):2560-2570
Nucleosome positioning is important for the structural integrity of chromosomes. During metaphase the mitotic spindle exerts physical force on pericentromeric chromatin. The cell must adjust the pericentromeric chromatin to accommodate the changing tension resulting from microtubule dynamics to maintain a stable metaphase spindle. Here we examine the effects of spindle-based tension on nucleosome dynamics by measuring the histone turnover of the chromosome arm and the pericentromere during metaphase in the budding yeast Saccharomyces cerevisiae. We find that both histones H2B and H4 exhibit greater turnover in the pericentromere during metaphase. Loss of spindle-based tension by treatment with the microtubule-depolymerizing drug nocodazole or compromising kinetochore function results in reduced histone turnover in the pericentromere. Pericentromeric histone dynamics are influenced by the chromatin-remodeling activities of STH1/NPS1 and ISW2. Sth1p is the ATPase component of the Remodels the Structure of Chromatin (RSC) complex, and Isw2p is an ATP-dependent DNA translocase member of the Imitation Switch (ISWI) subfamily of chromatin-remodeling factors. The balance between displacement and insertion of pericentromeric histones provides a mechanism to accommodate spindle-based tension while maintaining proper chromatin packaging during mitosis. 相似文献
14.
15.
Using genome-wide maps of nucleosome positions in yeast, we have analyzed the influence of chromatin structure on the molecular evolution of genomic DNA. We have observed, on average, 10-15% lower substitution rates in linker regions than in nucleosomal DNA. This widespread local rate heterogeneity represents an evolutionary footprint of nucleosome positions and reveals that nucleosome organization is a genomic feature conserved over evolutionary timescales. 相似文献
16.
The nucleotide sequence and protein-coding capability of the transposable element IS5 总被引:32,自引:0,他引:32
The nucleotide sequence of IS5, a bacterial insertion sequence, has been determined. It is 1195 bp long and contains an inverted terminal repetition of 16 bp with one mismatch. One open reading frame, spanning nearly the entire length of the element, could encode a polypeptide of 338 amino acids. Upon insertion into a DNA segment, IS5 causes a duplication of 4 bp. Based on seven examples, this site of insertion appears to be nonrandom, and the consensus target site sequence is C . T/A . A . G/A (or C/T . T . A/T . G on the opposite strand). The nucleotide sequences of IS5 insertions into the B and cim genes of bacteriophage Mu have allowed tentative identification of the protein-coding frames of B and cim. 相似文献
17.
The possible role of border factors in determining the nucleosome positioning on a DNA sequence was investigated. To this end a family of recombinant plasmids based on Gal10Cyc1 promoter and neomycin phosphotransferase gene NPTII were created. A DNA sequence adjoining the GalCyc promoter was varied in these plasmids. Three nearly equally represented nucleosome positions on the GalCyc promoter were found. In the basal plasmid an FRT sequence adjoins the GalCyc promoter at the right. It contains an internal signal of multiple positioning. Its replacement with different DNA sequences does not affect nucleosome positioning on the GalCyc promoter. The nucleosome positioning on the GalCyc promoter does not depend on nucleosome positioning (or its absence) on adjoining sequences. The same is true for nucleosome positioning on FRT sequence. It was found also that nucleosomes' positioning on the NPTII gene and their mutual disposition, namely the spacing between neighboring nucleosomes (linker length) are determined by the location of positioning signals only. Generally the nucleosome positioning in our experimental model is determined solely by internal DNA sequence occupied by nucleosome. On the other hand, the action of this internal positioning signal does not extend to neighboring DNA sequences. 相似文献
18.
Mitochondrial recombination in yeast is well recognized, yet the underlying genetic mechanisms are not well understood. Recent progress has suggested that mobile introns in mitochondrial genomes (mitogenomes) can facilitate the recombination of their corresponding intron-containing genes through a mechanism known as intron homing. As many mitochondrial genes lack introns, there is a critical need to determine the extent of recombination and underlying mechanism of intron-lacking genes. This study leverages yeast mitogenomes to address these questions. In Saccharomyces cerevisiae, the 3′-end sequences of at least three intron-lacking mitochondrial genes exhibit elevated nucleotide diversity and recombination hotspots. Each of these 3′-end sequences is immediately adjacent to or even fused as overlapping genes with a stand-alone endonuclease. Our findings suggest that SAEs are responsible for recombination and elevated diversity of adjacent intron-lacking genes. SAEs were also evident to drive recombination of intron-lacking genes in Lachancea kluyveri, a yeast species that diverged from S. cerevisiae more than 100 million years ago. These results suggest SAEs as a common driver in recombination of intron-lacking genes during mitogenome evolution. We postulate that the linkage between intron-lacking gene and its adjacent endonuclease gene is the result of co-evolution. 相似文献
19.
The role of DNA sequence in determining nucleosome positions in vivo was investigated by comparing the positions adopted by nucleosomes reconstituted on a yeast plasmid in vitro using purified core histones with those in native chromatin containing the same DNA, described previously. Nucleosomes were reconstituted on a 2.5 kilobase pair DNA sequence containing the yeast TRP1ARS1 plasmid with CUP1 as an insert (TAC-DNA). Multiple, alternative, overlapping nucleosome positions were mapped on TAC-DNA. For the 58 positioned nucleosomes identified, the relative positioning strengths and the stabilities to salt and temperature were determined. These positions were, with a few exceptions, identical to those observed in native, remodeled TAC chromatin containing an activated CUP1 gene. Only some of these positions are utilized in native, unremodeled chromatin. These observations suggest that DNA sequence is likely to play a very important role in positioning nucleosomes in vivo. We suggest that events occurring in yeast CUP1 chromatin determine which positions are occupied in vivo and when they are occupied. 相似文献
20.