首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Connective tissue growth factor (CTGF/CCN2) is overexpressed in diabetes. Diabetic rats possess myocardial and cardiomyocyte hypertrophy. In a recent report, Wang and colleagues (Am J Physiol Cell Physiol. 2009 Jul 22. [Epub ahead of print]) show that CCN2 directly mediates cardiomyocyte hypertrophy as well as that induced by high glucose and fatty acid. CCN2 acted via the TrkA receptor. These data are the subject of this commentary, and emphasize that CCN2 may be an excellent target for therapy in diabetes.  相似文献   

2.
Connective tissue growth factor (CTGF/CCN2) is overexpressed in diabetes. Diabetic rats possess myocardial and cardiomyocyte hypertrophy. In a recent report, Wang and colleagues (Am J Physiol Cell Physiol. 2009 Jul 22. [Epub ahead of print]) show that CCN2 directly mediates cardiomyocyte hypertrophy as well as that induced by high glucose and fatty acid. CCN2 acted via the TrkA receptor. These data are the subject of this commentary, and emphasize that CCN2 may be an excellent target for therapy in diabetes.  相似文献   

3.
BACKGROUND: The human cysteine rich protein 61 (CYR61, CCN1) as well as the other members of the CCN family of genes play important roles in cellular processes such as proliferation, adhesion, migration and survival. These cellular events are of special importance within the complex cellular interactions ongoing in bone remodeling. Previously, we analyzed the role of CYR61/CCN1 as an extracellular signaling molecule in human osteoblasts. Since mesenchymal stem cells of bone marrow are important progenitors for various differentiation pathways in bone and possess increasing potential for regenerative medicine, here we aimed to analyze the expression of CCN family members in bone marrow-derived human mesenchymal stem cells and along the osteogenic, the adipogenic and the chondrogenic differentiation. RESULTS: Primary cultures of human mesenchymal stem cells were obtained from the femoral head of patients undergoing total hip arthroplasty. Differentiation into adipocytes and osteoblasts was done in monolayer culture, differentiation into chondrocytes was induced in high density cell pellet cultures. For either pathway, established differentiation markers and CCN-members were analyzed at the mRNA level by RT-PCR and the CYR61/CCN1 protein was analyzed by immunocytochemistry.RT-PCR and histochemical analysis revealed the appropriate phenotype of differentiated cells (Alizarin-red S, Oil Red O, Alcian blue, alkaline phosphatase; osteocalcin, collagen types I, II, IX, X, cbfa1, PPARgamma, aggrecan). Mesenchymal stem cells expressed CYR61/CCN1, CTGF/CCN2, CTGF-L/WISP2/CCN5 and WISP3/CCN6. The CYR61/CCN1 expression decreased markedly during osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation. These results were confirmed by immuncytochemical analyses. WISP2/CCN5 RNA expression declined during adipogenic differentiation and WISP3/CCN6 RNA expression was markedly reduced in chondrogenic differentiation. CONCLUSION: The decrease in CYR61/CCN1 expression during the differentiation pathways of mesenchymal stem cells into osteoblasts, adipocytes and chondrocytes suggests a specific role of CYR61/CCN1 for maintenance of the stem cell phenotype. The differential expression of CTGF/CCN2, WISP2/CCN5, WISP3/CCN6 and mainly CYR61/CCN1 indicates, that these members of the CCN-family might be important regulators for bone marrow-derived mesenchymal stem cells in the regulation of proliferation and initiation of specific differentiation pathways.  相似文献   

4.
CCN family member 2 (CCN2) has been shown to promote the proliferation and differentiation of chondrocytes, osteoblasts, osteoclasts, and vascular endothelial cells. In addition, a number of growth factors and cytokines are known to work in harmony to promote the process of chondrogenesis and chondrocyte differentiation toward endochondral ossification. Earlier we showed that CCN2 physically interacts with some of them, suggesting that multiple effects of CCN2 on various differentiation stages of chondrocytes may be attributed to its interaction with these growth factors and cytokines. However, little is known about the functional interaction occurring between CCN2 and other growth factors and cytokines in promoting chondrocyte proliferation and differentiation. In this study we sought to shed light on the binding affinities between CCN2 and other essential growth factors and cytokines known to be regulators of chondrocyte differentiation. Using the surface plasmon resonance assay, we analyzed the dissociation constant between CCN2 and each of the following: TGF-β1, TGF-β3, IGF-I, IGF-II, PDGF-BB, GDF5, PTHrP, and VEGF. We found a strong association between CCN2 and VEGF, as well as a relatively high association with TGF-β1, TGF-β3, PDGF-BB, and GDF-5. However, the sensorgrams obtained for possible interaction between CCN2 and IGF-I, IGF-II or PTHrP showed no response. This study underlines the correlation between CCN2 and certain other growth factors and cytokines and suggests the possible participation of such interaction in the process of chondrogenesis and chondrocyte differentiation toward endochondral ossification.  相似文献   

5.
Marrow mesenchymal stem cells are pluripotent progenitors that can differentiate into bone, cartilage, muscle, and fat cells. Wnt signaling has been implicated in regulating osteogenic differentiation of mesenchymal stem cells. Here, we analyzed the gene expression profile of mesenchymal stem cells that were stimulated with Wnt3A. Among the 220 genes whose expression was significantly changed by 2.5-fold, we found that three members of the CCN family, CCN1/Cyr61, CCN2/connective tissue growth factor (CTGF), and CCN5/WISP2, were among the most significantly up-regulated genes. We further investigated the role of CCN1/Cyr61 in Wnt3A-regulated osteogenic differentiation. We confirmed that CCN1/Cyr61 was up-regulated at the early stage of Wnt3A stimulation. Chromatin immunoprecipitation analysis indicates that CCN1/Cyr61 is a direct target of canonical Wnt/beta-catenin signaling. RNA interference-mediated knockdown of CCN1/Cyr61 expression diminished Wnt3A-induced osteogenic differentiation. Furthermore, exogenously expressed CCN1/Cyr61 was shown to effectively promote mesenchymal stem cell migration. These findings suggest that tightly regulated CCN1/Cyr61 expression may play an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells.  相似文献   

6.
This study aimed to identify significant mutations in CCN3 gene in osteosarcoma, and to explore the influence of this gene on cell invasion and differentiation and the underlying mechanism. Sanger sequencing was used to identify CCN3 gene sequence in human osteosarcoma cell lines, peripheral blood mononuclear cells (PBMC), and osteosarcoma tissues. Wild-type and mutant CCN3 (mCCN3) were ectopically expressed by lentivirus in human osteosarcoma cell lines. Tumor cell invasion was measured by trans-well assay. Osteogenic differentiation was induced by osteogenic differentiating medium and evaluated based on alkaline phosphatase activity and collagen type I alpha 1 chain and osteocalcin expression. Western blotting was used to detect protein levels of CCN3 and mCCN3 in cytoplasmic, nuclear and secreted fractions of cells. A G-to-A single nucleotide mutation in the coding region of CCN3 was found in both osteosarcoma cells and tissues. The frequency of this mutation in osteosarcoma tissue was much higher than that in para-carcinoma tissue and PBMC of healthy people. This nucleotide mutation decreased nuclear glycosylated full length protein level of CCN3 and affected osteosarcoma cell invasion and differentiation. A lower nuclear ratio of glycosylated/non-glycosylated isoforms accounted for the different behavior of mCCN3 compared with CCN3. The G-to-A mutation identified in CCN3 resulted in differential glycosylated full-length protein levels and altered the functional role of CCN3 in osteosarcoma cell invasion and differentiation.  相似文献   

7.
8.
CCN family member 2 (CCN2), also known as connective tissue growth factor (CTGF), has been suggested to be an endochondral ossification genetic factor that has been termed “ecogenin”, because in vitro studies revealed that CCN2 promotes the proliferation and differentiation of growth-plate chondrocytes, osteoblasts, and vascular endothelial cells, all of which play important roles in endochondral ossification. In addition to its action toward these three types of cells, CCN2 was recently found to promote the formation of osteoclasts in vitro, which cells play an important role in the replacement of cartilage by bone during endochondral ossification, thus strengthening the “ecogenin” hypothesis. For confirmation of this hypothesis, transgenic mice over-expressing CCN2 in cartilage were generated. The results proved the hypothesis; i.e., the over-expression of CCN2 in cartilage stimulated the proliferation and differentiation of growth-plate chondrocytes, resulting in the promotion of endochondral ossification. In addition to its “ecogenin” action, CCN2 had earlier been shown to promote the differentiation of various cartilage cells including articular cartilage cells. In accordance with these findings, cartilage-specific overexpression of CCN2 in the transgenic mice was shown to protect against the development of osteoarthritic changes in aging articular cartilage. Thus, CCN2 may also play a role as an anti-aging (chondroprotective) factor, stabilizing articular cartilage. CCN2 also had been shown to promote intramembranous ossification, regenerate cartilage and bone, and induce angiogenesis in vivo. For understanding of the molecular mechanism underlying such multifunctional actions, yeast two-hybrid analysis, protein array analysis, solid-phase binding assay, and surface plasmon resonance (SPR) analysis have been used to search for binding partners of CCN2. ECMs such as fibronectin and aggrecan, growth factors including BMPs and FGF2 and their receptors such as FGFR1 and 2 and RANK, as well as CCN family members themselves, were shown to bind to CCN2. Regarding the interaction of CCN2 with some of them, various binding modules in the CCN2 molecule have been identified. Therefore, the numerous biological actions of CCN2 would depend on what kinds of binding partners and what levels of them are present in the microenvironment of different types of cells, as well as on the state of differentiation of these cells. Through this mechanism, CCN2 would orchestrate various signaling pathways, acting as a signal conductor to promote harmonized skeletal growth and regeneration.  相似文献   

9.
CCN2, formerly termed Connective Tissue Growth Factor, is a protein belonging to the Cellular Communication Network (CCN)-family of secreted extracellular matrix-associated proteins. As a matricellular protein it is mainly considered to be active as a modifier of signaling activity of several different signaling pathways and as an orchestrator of their cross-talk. Furthermore, CCN2 and its fragments have been implicated in the regulation of a multitude of biological processes, including cell proliferation, differentiation, adhesion, migration, cell survival, apoptosis and the production of extracellular matrix products, as well as in more complex processes such as embryonic development, angiogenesis, chondrogenesis, osteogenesis, fibrosis, mechanotransduction and inflammation. Its function is complex and context dependent, depending on cell type, state of differentiation and microenvironmental context. CCN2 plays a role in many diseases, especially those associated with fibrosis, but has also been implicated in many different forms of cancer. In the bone marrow (BM), CCN2 is highly expressed in mesenchymal stem/stromal cells (MSCs). CCN2 is important for MSC function, supporting its proliferation, migration and differentiation. In addition, stromal CCN2 supports the maintenance and longtime survival of hematopoietic stem cells, and in the presence of interleukin 7, stimulates the differentiation of pro-B lymphocytes into pre-B lymphocytes. Overexpression of CCN2 is seen in the majority of B-acute lymphoblastic leukemias, especially in certain cytogenetic subgroups associated with poor outcome. In acute myeloid leukemia, CCN2 expression is increased in MSCs, which has been associated with leukemic engraftment in vivo. In this review, the complex function of CCN2 in the BM microenvironment and in normal as well as malignant hematopoiesis is discussed. In addition, an overview is given of data on the remaining CCN family members regarding normal and malignant hematopoiesis, having many similarities and some differences in their function.  相似文献   

10.
CCN3 expression was observed in a broad variety of tissues from the early stage of development. However, a kind of loss of function in mice (CCN3 del VWC domain -/-) demonstrated mild abnormality, which indicates that CCN3 may not be critical for the normal embryogenesis as a single gene. The importance of CCN3 in bone marrow environment becomes to be recognized by the studies of hematopoietic stem cells and Chronic Myeloid Leukemia cells. CCN3 expression in bone marrow has been denied by several investigations, but we found CCN3 positive stromal and hematopoietic cells at bone extremities with a new antibody although they are a very few populations. We investigated the expression pattern of CCN3 in the cultured bone marrow derived mesenchymal stem cells and found its preference for osteogenic differentiation. From the analyses of in vitro experiment using an osteogenic mesenchymal stem cell line, Kusa-A1, we found that CCN3 downregulates osteogenesis by two different pathways; suppression of BMP and stimulation of Notch. Secreted CCN3 from Kusa cells inhibited the differentiation of osteoblasts in separate culture, which indicates the paracrine manner of CCN3 activity. CCN3 may also affect the extracellular environment of the niche for hematopoietic stem cells.  相似文献   

11.
The CCN family of proteins is composed of six secreted proteins (CCN1-6), which are grouped together based on their structural similarity. These matricellular proteins are involved in a large spectrum of biological processes, ranging from development to disease. In this review, we focus on CCN3, a founding member of this family, and its role in regulating cells within the bone microenvironment. CCN3 impairs normal osteoblast differentiation through multiple mechanisms, which include the neutralization of pro-osteoblastogenic stimuli such as BMP and Wnt family signals or the activation of pathways that suppress osteoblastogenesis, such as Notch. In contrast, CCN3 is known to promote chondrocyte differentiation. Given these functions, it is not surprising that CCN3 has been implicated in the progression of primary bone cancers such as osteosarcoma, Ewing’s sarcoma and chondrosarcoma. More recently, emerging evidence suggests that CCN3 may also influence the ability of metastatic cancers to colonize and grow in bone.  相似文献   

12.

Background  

Connective Tissue Growth Factor (CTGF/CCN2), a known matrix-associated protein, is required for the lactogenic differentiation of mouse mammary epithelial cells. An HC11 mammary epithelial cell line expressing CTGF/CCN2 was constructed to dissect the cellular responses to CTGF/CCN2 that contribute to this differentiation program.  相似文献   

13.
CCN2 is best known as a promoter of chondrocyte differentiation among the CCN family members, and Ccn2 null mutant mice display skeletal dysmorphisms. However, little is known concerning the roles of CCN2 during bone formation. We herein present a comparative analysis of wild-type and Ccn2 null mice to investigate the roles of CCN2 in bone development. Multiple histochemical methods were employed to analyze the effects of CCN2 deletion in vivo, and effects of CCN2 on the osteogenic response were evaluated with the isolated and cultured osteoblasts. As a result, we found a drastic reduction of the osteoblastic phenotype in Ccn2 null mutants. Importantly, addition of exogenous CCN2 promoted every step of osteoblast differentiation and rescued the attenuated activities of the Ccn2 null osteoblasts. These results suggest that CCN2 is required not only for the regulation of cartilage and subsequent events, but also for the normal intramembranous bone development.  相似文献   

14.
15.
Identification and characterization of local molecules directing the differentiation of chondrocytes to either transient or permanent cartilage are major issues in cartilage biology. Here, we found CCN family protein 3 (CCN3) was abundantly produced in rat developing epiphyseal cartilage. Evaluations in vitro showed that CCN3 repressed epiphyseal chondrocyte proliferation, while promoting matrix production in multiple assays performed. Furthermore, CCN3 enhanced the articular chondrocytic phenotype; whereas it repressed the one representing endochondral ossification. Additionally, the phenotype of growth plate chondrocytes and chondrogenic progenitors also appeared to be affected by CCN3 in a similar manner. These findings suggest a significant role of CCN3 in inducing chondrocytes to articular ones during joint formation.  相似文献   

16.
CCN2 plays a central role in the development and growth of mesenchymal tissue and promotes the regeneration of bone and cartilage in vivo. Of note, abundant CCN2 is contained in platelets, which is thought to play an important role in the tissue regeneration process. In this study, we initially pursued the possible origin of the CCN2 in platelets. First, we examined if the CCN2 in platelets was produced by megakaryocyte progenitors during differentiation. Unexpectedly, neither megakaryocytic CMK cells nor megakaryocytes that had differentiated from human haemopoietic stem cells in culture showed any detectable CCN2 gene expression or protein production. Together with the fact that no appreciable CCN2 was detected in megakaryocytes in vivo, these results suggest that megakaryocytes themselves do not produce CCN2. Next, we suspected that mesenchymal cells situated around megakaryocytes in the bone marrow were stimulated by the latter to produce CCN2, which was then taken up by platelets. To evaluate this hypothesis, we cultured human chondrocytic HCS-2/8 cells with medium conditioned by differentiating megakaryocyte cultures, and then monitored the production of CCN2 by the cells. As suspected, CCN2 production by HCS-2/8 was significantly enhanced by the conditioned medium. We further confirmed that human platelets were able to absorb/uptake exogenous CCN2 in vitro. These findings indicate that megakaryocytes secrete some unknown soluble factor(s) during differentiation, which factor stimulates the mesenchymal cells to produce CCN2 for uptake by the platelets. We also consider that, during bone growth, such thrombopoietic-mesenchymal interaction may contribute to the hypertrophic chondrocyte-specific accumulation of CCN2 that conducts endochondral ossification.  相似文献   

17.
The nephroblastoma overexpressed (NOV) gene, also called CCN3, regulates differentiation of skeletal mesenchymal cells. Bone morphogenetic proteins (BMPs) play important roles in osteoblast differentiation and bone formation, but the effects of CCN3 on BMP expression and bone formation in cultured osteoblasts are largely unknown. Here we found that CCN3 increased BMP-4 expression and bone nodule formation in cultured osteoblast. Monoclonal antibodies for α5β1 and αvβ5 integrins, and inhibitors of integrin-linked kinase (ILK), p38, and JNK, all inhibited CCN3-induced bone nodule formation and BMP-4 up-regulation of osteoblasts. CCN3 stimulation increased the kinase activity of ILK and phosphorylation of p38 and JNK. Inhibitors of activator protein-1 (AP-1) also suppressed bone nodule formation and BMP-4 expression enhanced by CCN3. Moreover, CCN3-induced c-Jun translocation into the nucleus, and the binding of c-Jun to the AP-1 element on the BMP-4 promoter were both inhibited by specific inhibitors of the ILK, p38, and JNK cascades. Taken together, our results provide evidence that CCN3 enhances BMP-4 expression and bone nodule formation in osteoblasts, and that the integrin receptor, ILK, p38, JNK, and AP-1 signaling pathways may be involved.  相似文献   

18.
The fibrogenic differentiation of resident mesenchymal cells is a key parameter in the pathogenesis of radiation fibrosis and is triggered by the profibrotic growth factors transforming growth factor (TGF)-beta1 and CCN2. TGF-beta1 is considered the primary inducer of fibrogenic differentiation and is thought to control its long-term maintenance, whereas CCN2 is considered secondary effector of TGF-beta1. Yet, in long-term established fibrosis like that associated with delayed radiation enteropathy, in situ TGF-beta1 deposition is low, whereas CCN2 expression is high. To explore this apparent paradox, cell response to increasing doses of TGF-beta1 was investigated in cells modeling initiation and maintenance of fibrosis, i.e., normal and fibrosis-derived smooth muscle cells, respectively. Activation of cell-specific signaling pathways by low TGF-beta1 doses was demonstrated with a main activation of the Rho/ROCK pathway in fibrosis-derived cells, whereas the Smad pathway was mainly activated in normal cells. This leads to subsequent and cell-specific regulation of the CCN2 gene. These results suggested a specific profibrotic role of CCN2 in fibrosis-initiated cells. Furthermore, the modulation of CCN2 expression by itself and the combination of TGF-beta1 and CCN2 was investigated in fibrosis-derived cells. In fibrosis-initiated cells CCN2 triggered its autoinduction; furthermore, low concentration of TGF-beta1-potentiated CCN2 autoinduction. Our findings showed a differential requirement and action of TGF-beta1 in the fibrogenic response of normal vs. fibrosis-derived cells. This study defines a novel Rho/ROCK but Smad3-independent mode of TGF-beta signaling that may operate during the chronic stages of fibrosis and provides evidence of both specific and combinatorial roles of low TGF-beta1 dose and CCN2.  相似文献   

19.
We elucidate the role of CCN3/NOV, a member of the CCN family proteins, in osteoblast differentiation using MC3T3-E1 osteoblastic cells. Transduction with CCN3 adenovirus (AdCCN3) alone induced no apparent changes in the expression of osteoblast-related markers, whereas cotransduction with BMP-2 adenovirus (AdBMP-2) and AdCCN3 significantly inhibited the AdBMP-2-induced mRNA expression of Runx2, osterix, ALP, and osteocalcin. Immunoprecipitation-western analysis revealed that CCN3 associated with BMP-2. Compared to transduction with AdBMP-2 alone, cotransduction with AdBMP-2 and AdCCN3 attenuated the expression of phosphorylated Smad1/5/8 and the mRNA for Id1, Id2, and Id3. Transduction with AdCCN3 stimulated the expression of cleaved Notch1, the mRNA expression of Hes1 and Hey1/Hesr1, and the promoter activities of Hes1 and Hey1. The inhibitory effects of CCN3 on the expression of BMP-2-induced osteoblast-related markers were nullified in Hey1-deficient osteoblastic cells. These results indicate that CCN3 exerts inhibitory effects on BMP-2-induced osteoblast differentiation by its involvement of the BMP and Notch signaling pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号