首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resistance to chloroquine in Plasmodium falciparum bears a striking similarity to the multi-drug resistance (MDR) phenotype of mammalian tumor cells which is mediated by overexpression of P-glycoprotein. We show here that the P. falciparum homologue of the P-glycoprotein (Pgh1) is a 160,000-D protein that is expressed throughout the asexual erythrocytic life cycle of the parasite. Quantitative immunoblotting analysis has shown that the protein is expressed at approximately equal levels in chloroquine resistant and sensitive isolates suggesting that overexpression of Pgh1 is not essential for chloroquine resistance. The chloroquine-resistant cloned line FAC8 however, does express approximately threefold more Pgh1 protein than other isolates which is most likely because of the increased pfmdr1 gene copy number present in this isolate. Immunofluorescence and immunoelectron microscopy has demonstrated that Pgh1 is localized on the membrane of the digestive vacuole of mature parasites. This subcellular localization suggests that Pgh1 may modulate intracellular chloroquine concentrations and has important implications for the normal physiological function of this protein.  相似文献   

2.
Resistance to several anti-malarial drugs has been associated with polymorphisms within the P-glycoprotein homologue (Pgh-1, PfMDR1) of the human malaria parasite Plasmodium falciparum. Pgh-1, coded for by the gene pfmdr1, is predominately located at the membrane of the parasite's digestive vacuole. How polymorphisms within this transporter mediate alter anti-malarial drug responsiveness has remained obscure. Here we have functionally expressed pfmdr1 in Xenopus laevis oocytes. Our data demonstrate that Pgh-1 transports vinblastine, an established substrate of mammalian MDR1, and the anti-malarial drugs halofantrine, quinine and chloroquine. Importantly, polymorphisms within Pgh-1 alter the substrate specificity for the anti-malarial drugs. Wild-type Pgh-1 transports quinine and chloroquine, but not halofantrine, whereas polymorphic Pgh-1 variants, associated with altered drug responsivenesses, transport halofantrine but not quinine and chloroquine. Our data further suggest that quinine acts as an inhibitor of Pgh-1. Our data are discussed in terms of the model that Pgh-1-mediates, in a variant-specific manner, import of certain drugs into the P. falciparum digestive vacuole, and that this contributes to accumulation of, and susceptibility to, the drug in question.  相似文献   

3.
Mutations and/or overexpression of various transporters are known to confer drug resistance in a variety of organisms. In the malaria parasite Plasmodium falciparum, a homologue of P-glycoprotein, PfMDR1, has been implicated in responses to chloroquine (CQ), quinine (QN) and other drugs, and a putative transporter, PfCRT, was recently demonstrated to be the key molecule in CQ resistance. However, other unknown molecules are probably involved, as different parasite clones carrying the same pfcrt and pfmdr1 alleles show a wide range of quantitative responses to CQ and QN. Such molecules may contribute to increasing incidences of QN treatment failure, the molecular basis of which is not understood. To identify additional genes involved in parasite CQ and QN responses, we assayed the in vitro susceptibilities of 97 culture-adapted cloned isolates to CQ and QN and searched for single nucleotide polymorphisms (SNPs) in DNA encoding 49 putative transporters (total 113 kb) and in 39 housekeeping genes that acted as negative controls. SNPs in 11 of the putative transporter genes, including pfcrt and pfmdr1, showed significant associations with decreased sensitivity to CQ and/or QN in P. falciparum. Significant linkage disequilibria within and between these genes were also detected, suggesting interactions among the transporter genes. This study provides specific leads for better understanding of complex drug resistances in malaria parasites.  相似文献   

4.
Chibale K 《IUBMB life》2002,53(4-5):249-252
Genetic and biochemical approaches to studies of drug resistance mechanisms in Plasmodium falciparum have raised controversies and contradictions over the past several years. A different and novel chemical approach to this important problem is desirable at this point in time. Recently, the molecular basis of drug resistance in P. falciparum has been associated with mutations in the resistance genes, Chloroquine Resistance Transporter (PfCRT) and the P-glycoprotein homologue (Pgh1). Although not the determinant of chloroquine resistance in P. falciparum, mutations in Pgh1 have important implications for resistance to other antimalarial drugs. Because it is mutations in the aforementioned resistance genes rather than overexpression that has been associated with drug resistance in malaria, studies on mechanisms of drug resistance and its reversal by chemosensitisers should benefit from a chemical approach. Target-oriented organic synthesis of chemosensitisers against proteins implicated in drug resistance in malaria should shed light on mechanism of drug resistance and its reversal in this area. The effect of structurally diverse chemosensitisers should be examined on several putative resistance genes in P. falciparum to deal with antimalarial drug resistance in the broadest sense. Therefore, generating random mutations of these resistance proteins and subsequent screening in search of a specific phenotype followed by a search for mutations and/or chemosensitisers that affect a specific drug resistance pathway might be a viable strategy. This diversity-oriented organic synthesis approach should offer the means to simultaneously identify resistance proteins that can serve as targets for therapeutic intervention (therapeutic target validation) and chemosensitisers that modulate the functions of these proteins (chemical target validation).  相似文献   

5.
Chloroquine (CQ)-resistant (CQR) Plasmodium falciparum malaria parasites show a strong decrease in CQ accumulation in comparison with chloroquine-sensitive parasites. Controversy exists over the role of the plasmodial pfmdr1 gene in the CQR phenotype. pfmdr1 is a member of the superfamily of ATP-binding cassette transporters. Other members of this family are the mammalian multidrug resistance genes and the CFTR gene. We have expressed the pfmdr1-encoded protein, Pgh1, in CHO cells and Xenopus oocytes. CHO cells expressing the Pgh1 protein demonstrated an increased, verapamil-insensitive susceptibility to CQ. Conversely, no increase in drug susceptibility to primaquine, quinine, adriamycin, or colchicine was observed in Pgh1-expressing cells. CQ uptake experiments revealed an increased, ATP-dependent accumulation of CQ in Pgh1-expressing cells over the level in nonexpressing control cells. The increased CQ accumulation in Pgh1-expressing cells coincided with an enhanced in vivo inhibition of lysosomal alpha-galactosidase by CQ. CHO cells expressing Pgh1 carrying two of the CQR-associated Pgh1 amino acid changes (S1034C and N1042D) did not display an increased CQ sensitivity. Immunofluorescence experiments revealed an intracellular localization of both mutant and wild-type forms of Pgh1. We conclude from our results that wild-type Pgh1 protein can mediate an increased intracellular accumulation of CQ and that this function is impaired in CQR-associated mutant forms of the protein. We speculate that the Pgh1 protein plays an important role in CQ import in CQ-sensitive malaria parasites.  相似文献   

6.
Wyatt DM  Berry C 《FEBS letters》2002,513(2-3):159-162
A new aspartic proteinase from the human malaria parasite Plasmodium falciparum is able to hydrolyse human haemoglobin at a site known to be the essential primary cleavage site in the haemoglobin degradation pathway. Thus, plasmepsin IV may play a crucial role in this critical process which yields nutrients for parasite growth. Furthermore, synthetic inhibitors known to inhibit parasite growth in red cells in culture are able to inhibit the activity of this enzyme in vitro. As a result, plasmepsin IV appears to be a potential target for the development of new antiparasitic drugs.  相似文献   

7.
The P-glycoprotein homolog of the human malaria parasite Plasmodium falciparum (Pgh-1) has been implicated in decreased susceptibility to several antimalarial drugs, including quinine, mefloquine and artemisinin. Pgh-1 mainly resides within the parasite's food vacuolar membrane. Here, we describe a surrogate assay for Pgh-1 function based on the subcellular distribution of Fluo-4 acetoxymethylester and its free fluorochrome. We identified two distinct Fluo-4 staining phenotypes: preferential staining of the food vacuole versus a more diffuse staining of the entire parasite. Genetic, positional cloning and pharmacological data causatively link the food vacuolar Fluo-4 phenotype to those Pgh-1 variants that are associated with altered drug responses. On the basis of our data, we propose that Pgh-1 imports solutes, including certain antimalarial drugs, into the parasite's food vacuole. The implications of our findings for drug resistance mechanisms and testing are discussed.  相似文献   

8.
Chloroquine has been the mainstay of antimalarial chemotherapy but the rapid spread of resistance to this important drug has now compromised its efficacy. The mechanism of chloroquine resistance has not been known but recent evidence from Plasmodium falciparum, the causative agent of the most severe form of human malaria, suggested similarities to the multidrug resistance phenotype (MDR) of mammalian tumour cells which is mediated by a protein molecule termed P-glycoprotein. Two mdr genes (pfmdr1 and pfmdr2) encoding P-glycoprotein homologues have been identified in P. falciparum and one of these (pfmdr1) has several alleles that have been linked to the chloroquine resistance phenotype. In contrast analysis of a genetic cross between chloroquine-resistant and -sensitive P. falciparum has suggested that the genes encoding the known P-glycoprotein homologues are not linked. This review outlines the similarities of the chloroquine resistance phenotype with the MDR phenotype of mammalian tumour cells and explores the possible role of the pfmdr genes.  相似文献   

9.
A chloroquine resistant cloned isolate of Plasmodium falciparum, FAC8, which carries an amplification in the pfmdr1 gene was selected for high-level chloroquine resistance, resulting in a cell line resistant to a 10-fold higher concentration of chloroquine. These cells were found to have lost the amplification in pfmdr1 and to no longer over-produce the protein product termed P-glycoprotein homologue 1 (Pgh1). The pfmdr1 gene from this highly resistant cell line was not found to encode any amino acid changes that would account for increased resistance. Verapamil, which reverses chloroquine resistance in FAC8, also reversed high-level chloroquine resistance. Furthermore, verapamil caused a biphasic reversal of chloroquine resistance as the high-level resistance was very sensitive to low amounts of verapamil. These data suggest that over-expression of the P-glycoprotein homologue is incompatible with high levels of chloroquine resistance. In order to show that these results were applicable to other chloroquine selected lines, two additional mutants were selected for resistance to high levels of chloroquine. In both cases they were found to deamplify pfmdr1. Interestingly, while the level of chloroquine resistance of these mutants increased, they became more sensitive to mefloquine. This suggests a linkage between the copy number of the pfmdr1 gene and the level of chloroquine and mefloquine resistance.  相似文献   

10.
Plasmodium vivax (Pv) is the second most important human malaria parasite. Recent data indicate that the impact of Pv malaria on the health and economies of the developing world has been dramatically underestimated. Pv has a unique feature in its life cycle. Uninucleate sporozoites (spz), after invasion of human hepatocytes, either proceed to develop into tens of thousands of merozoites within the infected hepatocytes or remain as dormant forms called hypnozoites, which cause relapses of malaria months to several years after the primary infection. Elimination of malaria caused by Pv will be facilitated by developing a safe, highly effective drug that eliminates Pv liver stages, including hypnozoites. Identification and development of such a drug would be facilitated by the development of a medium to high throughput assay for screening drugs against Pv liver stages. We undertook the present pilot study to (1) assess the feasibility of producing large quantities of purified, vialed, cryopreserved Pv sporozoites and (2) establish a system for culturing the liver stages of Pv in order to assess the effects of drugs on the liver stages of Pv. We used primaquine (PQ) to establish this assay model, because PQ is the only licensed drug known to clear all Pv hepatocyte stages, including hypnozoites, and the effect of PQ on Pv hepatocyte stage development in vitro has not previously been reported. We report that we have established the capacity to reproducibly infect hepatoma cells with purified, cyropreserved Pv spz from the same lot, quantitate the primary outcome variable of infected hepatoma cells and demonstrate the inhibitory activity of primaquine on the infected hepatoma cells. We have also identified small parasite forms that may be hypnozoites. These data provide the foundation for finalizing a medium throughput, high content assay to identify new drugs for the elimination of all Pv liver stages.  相似文献   

11.
Schistosoma mansoni and Plasmodium falciparum are pathogen parasites that spend part of their lives in the blood stream of the human host and are therefore heavily exposed to fluxes of toxic reactive oxygen species (ROS). SmTGR, an essential enzyme of the S. mansoni ROS detoxification machinery, is known to be inhibited by Auranofin although the inhibition mechanism has not been completely clarified. Auranofin also kills P. falciparum, even if its molecular targets are unknown. Here, we used computational and docking techniques to investigate the molecular mechanism of interaction between SmTGR and Auranofin. Furthermore, we took advantage of the homology relationship and of docking studies to assess if PfTR, the SmTGR malaria parasite homologue, can be a putative target for Auranofin. Our findings support a recently hypothesized molecular mechanism of inhibition for SmTGR and suggest that PfTR is indeed a possible and attractive drug target in P. falciparum.  相似文献   

12.
The declining efficacy of chloroquine and pyrimethamine/sulphadoxine in the treatment of human malaria has led to the use of newer antimalarials such as mefloquine and artemisinin. Sequence polymorphisms in the pfmdr1 gene, the gene encoding the plasmodial homologue of mammalian multidrug resistance transporters, have previously been linked to resistance to chloroquine in some, but not all, studies. In this study, we have used a genetic cross between the strains HB3 and 3D7 to study inheritance of sensitivity to the structurally unrelated drugs mefloquine and artemisinin, and to several other antimalarials. We find a complete allelic association between the HB3-like pfmdr1 allele and increased sensitivity to these drugs in the progeny. Different pfmdr1 sequence polymorphisms in other unrelated lines were also associated with increased sensitivity to these drugs. Our results indicate that the pfmdr1 gene is an important determinant of susceptibility to antimalarials, which has major implications for the future development of resistance.  相似文献   

13.
14.
Tuteja R 《The FEBS journal》2007,274(18):4699-4704
Of the four Plasmodium species that cause human malaria, Plasmodium falciparum is responsible for the most severe form of the disease and this parasite is developing resistance to the major antimalarial drugs. Therefore, in order to control malaria it is necessary to identify new drug targets. One feasible target might be helicases, which are important unwinding enzymes and required for almost all the nucleic acid metabolism in the malaria parasite.  相似文献   

15.
ATP-Binding Cassette (ABC) transporters are efflux pumps frequently associated with multidrug resistance in many biological systems, including malaria. Antimalarial drug-resistance involves an ABC transporter, PfMDR1, a homologue of P-glycoprotein in humans. Twenty years of research have shown that several single nucleotide polymorphisms in pfmdr1 modulate in vivo and/or in vitro drug susceptibility. The underlying physiological mechanism of the effect of these mutations remains unclear. Here we develop structural models for PfMDR1 in different predicted conformations, enabling the study of transporter motion. Such analysis of functional polymorphisms allows determination of their potential role in transport and resistance. The bacterial MsbA ABC pump is a PfMDR1 homologue. MsbA crystals in different conformations were used to create PfMDR1 models with Modeller software. Sequences were aligned with ClustalW and analysed by Ali2D revealing a high level of secondary structure conservation. To validate a potential drug binding pocket we performed antimalarial docking simulations. Using aminoquinoline as probe drugs in PfMDR1 mutated parasites we evaluated the physiology underlying the mechanisms of resistance mediated by PfMDR1 polymorphisms. We focused on the analysis of well known functional polymorphisms in PfMDR1 amino acid residues 86, 184, 1034, 1042 and 1246. Our structural analysis suggested the existence of two different biophysical mechanisms of PfMDR1 drug resistance modulation. Polymorphisms in residues 86/184/1246 act by internal allosteric modulation and residues 1034 and 1042 interact directly in a drug pocket. Parasites containing mutated PfMDR1 variants had a significant altered aminoquinoline susceptibility that appears to be dependent on the aminoquinoline lipophobicity characteristics as well as vacuolar efflux by PfCRT. We previously described the in vivo selection of PfMDR1 polymorphisms under antimalarial drug pressure. Now, together with recent PfMDR1 functional reports, we contribute to the understanding of the specific structural role of these polymorphisms in parasite antimalarial drug response.  相似文献   

16.
Plasmodium species are the causative agents of malaria, the most devastating insect-borne parasite of human populations. Finding and developing new drugs for malaria treatment and prevention is the goal of much research. Angiotensins I and II (ang I and ang II) and six synthetic related peptides designated Vaniceres 1-6 (VC1-VC6) were assayed in vivo and in vitro for their effects on the development of the avian parasite, Plasmodium gallinaceum. Ang II and VC5 injected into the thoraces of the insects reduced mean intensities of infection in the mosquito salivary glands by 88% and 76%, respectively. Although the mechanism(s) of action is not completely understood, we have demonstrated that these peptides disrupt selectively the P.gallinaceum cell membrane. Additionally, incubation in vitro of sporozoites with VC5 reduced the infectivity of the parasites to their vertebrate host. VC5 has no observable agonist effects on vertebrates, and this makes it a promising drug for malaria prevention and chemotherapy.  相似文献   

17.
Malaria, a disease that infects 300 million people throughout the world and kills more than a million people, mostly children in sub-Saharan Africa, involves three organisms. The human host where the disease is seen, the protozoan Plasmodium parasite and the mosquito. The parasite is transmitted to humans only by the mosquito vector, which in sub-Saharan regions is generally Anopheles gambiae. Malaria along with AIDS and tuberculosis are killing large numbers of people and crippling the economies of the affected African countries. Though an enormous effort has been made during the past twenty years to develop vaccines to block malaria in humans, the incidence of the disease is increasing in Africa. The reasons for this development include a breakdown in mosquito control related to increased insecticide resistance, as well as increased parasite resistance to antimalarial drugs. It is clear that new methods of Anopheles mosquito control are needed to ameliorate the medical and economic situation in sub-Saharan Africa. As a step toward new malaria control methods, the international Plasmodium falciparum and Anopheles gambiae consortia have carried out the full genome sequencing of the most deadly malaria parasite and the most efficient vector. These, combined with the human genome sequence, provide the genomic infrastructure for a better understanding of the complex interactions within the malaria triad. This essay discusses possible strategies as to how the Anopheles genome can contribute to malaria control.  相似文献   

18.
Bisquinoline antimalarials: their role in malaria chemotherapy.   总被引:1,自引:0,他引:1  
Quinoline compounds, such as chloroquine, are used widely to treat malaria; however, the malarial parasite is rapidly becoming resistant to the drugs currently available. Presently, rational drug design is hindered considerably due to the mode of action of chloroquine being poorly understood. We rely on serendipity, rather than solid structural evidence, to generate new antimalarials. Hence any insight into the possible modes of action of quinoline antimalarials, including the bisquinolines, would greatly aid rational drug design. The quinoline antimalarial drugs, chloroquine, quinine and mefloquine, are thought to act by interfering with the digestion of haemoglobin in the blood stages of the malaria life-cycle. These quinoline antimalarials traverse down the pH gradient to accumulate to millimolar concentrations in the acidic vacuole of the parasite. It has been suggested that this high intravacuolar concentration prevents haem sequestration, causing a build up of the toxic haem moiety and the death of the parasite by its own toxic waste. The actual mechanism by which the parasite sequesters haem and the drug target(s) during this process, however, still remains elusive. As a consequence, haem polymerisation and the efficiency of quinoline antimalarials, including the bisquinolines, as inhibitors of this process has been investigated. In this paper, the potential role of the bisquinolines in the fight against chloroquine-resistant malaria is addressed.  相似文献   

19.
Higher plants and several photosynthetic algae contain the plastidic 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate pathway (DOXP/MEP pathway) for isoprenoid biosynthesis. The first four enzymes and their genes are known of this novel pathway. All of the ca. 10 enzymes of this isoprenoid pathway are potential targets for new classes of herbicides. Since the DOXP/MEP pathway also occurs in several pathogenic bacteria, such as Mycobacterium tuberculosis, and in the malaria parasite Plasmodium falciparum, all inhibitors and potential herbicides of the DOXP/MEP pathway in plants are also potential drugs against pathogenic bacteria and the malaria parasite. Plants with their easily to handle DOXP/MEP-pathway are thus very suitable test-systems also for new drugs against pathogenic bacteria and the malaria parasite as no particular security measures are required. In fact, the antibiotic herbicide fosmidomycin specifically inhibited not only the DOXP reductoisomerase in plants, but also that in bacteria and in the parasite P. falciparum, and cures malaria-infected mice. This is the first successful application of a herbicide of the novel isoprenoid pathway as a possible drug against malaria.  相似文献   

20.
The resistance of malaria parasites to current anti-malarial drugs is an issue of major concern globally. Recently we identified a Plasmodium falciparum cell membrane aspartyl protease, which binds to erythrocyte band 3, and is involved in merozoite invasion. Here we report the complete primary structure of P. falciparum signal peptide peptidase (PfSPP), and demonstrate that it is essential for parasite invasion and growth in human erythrocytes. Gene silencing suggests that PfSPP may be essential for parasite survival in human erythrocytes. Remarkably, mammalian signal peptide peptidase inhibitors (Z-LL)2-ketone and L-685,458 effectively inhibited malaria parasite invasion as well as growth in human erythrocytes. In contrast, DAPT, an inhibitor of a related γ-secretase/presenilin-1, was ineffective. Thus, SPP inhibitors specific for PfSPP may function as potent anti-malarial drugs against the blood stage malaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号