首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioactive coatings are in high demand to increase the functions of cells for numerous medical devices. The objective of this in vitro study was to characterize osteoblast (bone-forming cell) adhesion on several potential orthopedic polymeric materials (specifically, polyetheretherketone, ultra-high molecular weight polyethylene, and polytetrafluoroethylene) coated with either titanium or gold using a novel Ionic Plasma Deposition process which creates a surface-engineered nanostructure (with features below 100 nm). Results demonstrated that compared to currently-used titanium and uncoated polymers, polymers coated with either titanium or gold using Ionic Plasma Deposition significantly increased osteoblast adhesion. Qualitative cell morphology results supported quantitative adhesion results as increased osteoblast cell spreading was observed on coated polymers compared to uncoated polymers. In this manner, this in vitro study strongly suggests that Ionic Plasma Deposition should be further studied for creating nanometer surface features on a wide variety of materials to enhance osteoblast functions necessary for orthopedic applications.  相似文献   

2.
Previous studies have demonstrated greater functions ofosteoblasts (bone-forming cells) on nanophase compared with conventional metals. Nanophase metals possess a biologically inspired nanostructured surface that mimics the dimensions of constituent components in bone, including collagen and hydroxyapatite. Not only do these components possess dimensions on the nanoscale, they are aligned in a parallel manner creating a defined orientation in bone. To date, research has yet to evaluate the effect that organized nanosurface features can have on the interaction of osteoblasts with material surfaces. Therefore, to determine if surface orientation of features can mediate osteoblast adhesion and morphology, this study investigated osteoblast function on patterned titanium substrates containing alternating regions of micron rough and nano rough surfaces prepared by novel electron beam evaporation techniques. This study was also interested in determining whether or not the size of the patterned regions had an effect on osteoblast behavior and alignment. Results indicated early controlled osteoblast alignment on these patterned materials as well as greater osteoblast adhesion on the nano rough regions of these patterned substrates. Interestingly, decreasing the width of the nano rough regions (from 80 microm to 22 microm) on these patterned substrates resulted in a decreased number of osteoblasts adhering to these areas. Changes in the width of the nano rough regions also resulted in changes in osteoblast morphology, thus, suggesting there is an optimal pattern dimension that osteoblasts prefer. In summary, results of this study provided evidence that aligned nanophase metal features on the surface of titanium improved early osteoblast functions (morphology and adhesion) promising for their long term functions, criteria necessary to improve orthopedic implant efficacy.  相似文献   

3.
The present in vitro study created nanometer crystalline hydroxyapatite (HA) and amorphous calcium phosphate for novel orthopedic applications. Specifically, nano-crystalline HA and amorphous calcium phosphate nanoparticles were synthesized by a wet chemical process followed by hydrothermal treatment for 2 hours at 200 degrees C and 70 degrees C, respectively. Resulting particles were then pressed into compacts. For the preparation of control conventional HA particles (or those currently used in orthopedics with micron diameters), the aforementioned calcium phosphate particles were pressed into compacts and sintered at 1100 degrees C for 2 hours. All calcium phosphate-based particles were fully characterized. Results showed that although there was an initial weight gain for all the compacts studied in this experiment, higher eventual degradation rates up to 3 weeks were observed for nano-amorphous calcium phosphate compared with nano-crystalline HA which was higher than conventional HA. Peptide functionalization (with the cell adhesive peptide lysine-arginine-serine-arginine [KRSR] and the non-cell-adhesive peptide lysine-serine-arginine-arginine [KSRR]) was accomplished by means of a three-step reaction procedure: silanization with 3-aminopropyltriethoxysilane (APTES), cross-linking with N-succinimidyl-3-maleimido propionate (SMP), and finally peptide immobilization. The peptide functionalization was fully characterized. Results demonstrated increased osteoblast (bone-forming cell) adhesion on non-functionalized and functionalized nano-crystalline HA compacts compared with nano amorphous calcium phosphate compacts; both increased osteoblast adhesion compared with conventional HA. To further exemplify the novel properties of nano crystalline HA, results also showed similar osteoblast adhesion between non-functionalized nano crystalline HA and KRSR functionalized conventional HA. Thus, results provided evidence that nanocrystalline HA should be further studied for orthopedic applications.  相似文献   

4.
Current orthopedic implants have functional lifetimes of only 10-15 years due to a variety of reasons including infection, extensive inflammation, and overall poor osseointegration (or a lack of prolonged bonding of the implant to juxtaposed bone). To improve properties of titanium for orthopedic applications, this study anodized and subsequently coated titanium with drugs known to reduce infection (penicillin/streptomycin) and inflammation (dexamethasone) using simple physical adsorption and the deposition of such drugs from simulated body fluid (SBF). Results showed improved drug elution from anodized nanotubular titanium when drugs were coated in the presence of SBF for up to 3 days. For the first time, results also showed that the simple physical adsorption of both penicillin/streptomycin and dexamethasone on anodized nanotubular titanium improved osteoblast numbers after 2 days of culture compared to uncoated unanodized titanium. In addition, results showed that depositing such drugs in SBF on anodized titanium was a more efficient method to promote osteoblast numbers compared to physical adsorption for up to 2 days of culture. In addition, osteoblast numbers increased on anodized titanium coated with drugs in SBF for up to 2 days of culture compared to unanodized titanium. In summary, compared to unanodized titanium, this preliminary study provided unexpected evidence of greater osteoblast numbers on anodized titanium coated with either penicillin/streptomycin or dexamethasone using simple physical adsorption or when coated with SBF; results which suggest the need for further research on anodized titanium orthopedic implants possessing drug-eluting nanotubes.  相似文献   

5.
Collagen, the main organic component of bone, is used as a coating on titanium implants and as a scaffold material in bone tissue engineering. Surface modifications of titanium which promote osteoblast adhesion, proliferation and synthesis of collagen by osteoblasts are desirable. One biomimetic approach is the coating of titanium with collagen in fibrillar form. Other organic components of bone may be bound to fibrils and exert additional effects. In this study, the collagen types I-III were compared regarding their ability to bind the proteoglycans decorin and biglycan, which are found in bone. More collagen was bound to collagen II fibrils than to those of types I and III. Therefore, titanium surfaces were coated with fibrils of collagen type II containing biglycan or decorin or neither to investigate the effect of the proteoglycans on human primary osteoblast behaviour. In addition, the growth factor TGF-beta1 was adsorbed onto surfaces coated with fibrils of collagen type II containing biglycan or decorin or neither to investigate the influence of decorin and biglycan on the effect of TGF-beta1 on osteoblasts. Fibril-bound biglycan and decorin influence primary osteoblast behaviour by themselves. The presence of substrate-bound biglycan or decorin influences the effect of TGF-beta1. These results may be important when designing collagen-based coatings or scaffolds for tissue engineering, including those loaded with growth factors.  相似文献   

6.
Currently used orthopedic implants composed of titanium have a limited functional lifetime of only 10–15 years. One of the reasons for this persistent problem is the poor prolonged ability of titanium to remain bonded to juxtaposed bone. It has been proposed to modify titanium through anodization to create a novel nanotubular topography in order to improve cytocompatibility properties necessary for the prolonged attachment of orthopedic implants to surrounding bone. Additionally, electrical stimulation has been used in orthopedics to heal bone non-unions and fractures in anatomically difficult to operate sites (such as the spine). In this study, these two approaches were combined as the efficacy of electrical stimulation to promote osteoblast (bone forming cell) density on anodized titanium was investigated. To do this, osteoblast proliferation experiments lasting up to 5 days were conducted as cells were stimulated with constant bipolar pulses at a frequency of 20 Hz and a pulse duration of 0.4 ms each day for 1 hour. The stimulation voltages were 1 V, 5 V, 10 V, and 15 V. Results showed for the first time that under electrical stimulation, osteoblast proliferation on anodized titanium was enhanced at lower voltages compared to what was observed on conventional (nonanodized) titanium. In addition, compared to nonstimulated conventional titanium, osteoblast proliferation was enhanced 72% after 5 days of culture on anodized nanotubular titanium at 15 V of electrical stimulation. Thus, results of this study suggest that coupling the positive influences of electrical stimulation and nanotubular features on anodized titanium may improve osteoblast responses necessary for enhanced orthopedic implant efficacy.  相似文献   

7.
We have produced Bioglass coatings for Orthopedic implants by using a novel coating technique, CoBlast. The two resultant surfaces, designated BG and hydroxyapatite (HA)/BG, were compared with their HA counterpart, OsteoZip in terms of osteoblastic cell attachment, adhesion, proliferation, differentiation, and growth factor production. BG and HA/BG were demonstrated by goniometry to be more hydrophilic than OsteoZip. This corresponded to enhanced protein adsorption, cell attachment, and cell adhesion documented by both quantitative and qualitative assessments. BG and HA/BG surfaces had a significant initial release of Si and Ca ions, and this was consistent with elevated cell proliferation and basic fibroblast growth factor levels. However, OsteoZip, being similar to HA/BG, exhibited better osteogenic differentiation than BG did, shown by augmented differentiation marker activity at both protein and mRNA levels. Sandwich ELISA was used to quantify angiopoietin and inducible nitric oxide synthase which are involved in peri‐prosthetic angiogenesis and aseptic loosening of total hip replacement, respectively. Both Bioglass‐derived coatings provide superior initial osteoconductivity to OsteoZip, and HA/Bioglass composite coating outruns in long‐term osteogenic differentiation and prognostic bioprocesses. The novel coatings discovered in this study have significant potential in providing both orthopedic and therapeutic functions. Biotechnol. Bioeng. 2011;108: 454–464. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
The performance of dental or orthopedic implants is closely dependent on surface properties in terms of topography and chemistry. A phosphated carboxymethylcellulose containing one phosphate group for each disaccharide unit was synthesized and used to functionalize titanium oxide surfaces with the aim to improve osseointegration with the host tissue. The modified surfaces were chemically characterized by means of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The investigation of the surface topography was performed by atomic force microscopy measurements before and after the polysaccharide coating. In vitro biological tests using osteoblastlike cells demonstrated that functionalized TiO(2) surfaces modulated cell response, in terms of adhesion, proliferation,and morphology. Phosphated carboxymethylcellulose promoted better cell adhesion and significantly enhanced their proliferation. The morphology of cells was polygonal and more spread on this type of modified surface.These findings suggest that the presence of a phosphate polysaccharide coating promotes osteoblast growth on the surface potentially improving biomaterial osseointegration.  相似文献   

9.
目的:成骨细胞在碳/碳复合材料表面羟基磷灰石涂层上有良好的长入,该实验在羟基磷灰石(hydroxyapatite HA)涂层中掺入硅后,研究成骨细胞对该涂层的生物活性,为临床骨科应用提供实验基础。方法:本研究采用化学液相气化沉积/水热法在碳/碳材料表面制备了含硅羟基磷灰石(silicon-hydroxyapatite Si-HA)涂层。在体外成骨细胞相容性的研究中,以HA涂层为对照,通过甲基噻唑基四唑(methylthiazolyl tetrazolium MTT)法测定细胞增殖反应和对细胞毒性反应,碱性磷酸酶(alkaline phosphatase ALP)测定细胞的分化,扫描电镜观察细胞生长形态,免疫荧光显影技术测定细胞的长入。结果:在HA涂层中引入硅后,Si-HA涂层和HA涂层在第2天、第4天的成骨细胞增殖实验表明前者的细胞长入数较后者多,两者的差异有统计学意义,而Si-HA涂层浸泡液中的ALP活性下降较HA涂层而言更明显,两者的差异有统计学意义,电镜扫描及荧光染色均提示在Si-HA涂层中成骨细胞的增值数更多。结论:在HA涂层中引入硅后,改变了涂层自身的晶体结构及表面电荷,同时诱导成骨细胞分泌胶原,使得成骨细胞更好的贴壁生长和增殖,成骨能力增加。在临床骨科植入物表面涂层改性上有很好的应用前景。  相似文献   

10.
There are more than 30,000 orthopedic implant revision surgeries necessary each year in part due to poor implant fixation with juxtaposed bone. A further emphasis on the current problems associated with insufficient bone implant performance is the fact that many patients are receiving hip implants earlier in life, remaining active older, and that the human lifespan is continuously increasing. Collectively, it is clear that there is a strong clinical need to improve implant performance through proper, prolonged fixation. For these reasons, the objective of the present in vitro study was to improve the performance of titanium (Ti), one of the most popular orthopedic implant materials. Accordingly, the proliferative response of osteoblasts (bone-forming cells) on novel nanostructured Ti/PLGA (poly-lactic-co-glycolic acid) composites was examined. This study showed that nano-topography can be easily applied to Ti (through anodization) and porous PLGA (through NaOH chemical etching) to enhance osteoblast cell proliferation which may lead to better orthopedic implant performance. This straight forward application of nano-topography on current bone implant materials represents a new direction in the design of enhanced biomaterials for the orthopedic industry.  相似文献   

11.
Biomaterials and tissue engineering technologies are becoming increasingly important in biomedical practice, particularly as the population ages. Cellular responses depend on topographical properties of the biomaterial at the nanometer scale. Structures on biomaterial surfaces are used as powerful tools to influence or even control interactions between implants and the biological system [; ]. The influence of nanometer sized surface structures on osteoblastlike cell interactions was tested with niobium oxide coatings on polished titanium slices (cp-Ti grade 2). The aim of the study was to investigate the influence of nanoscopic surface structures on osteoblast interactions in order to support collagen I production and cell adhesion. The coatings were done by means of the sol-gel process. The surface structure was adjusted by annealing of the metaloxide ceramic coatings due to temperature depended crystal growth. The applied annealing temperatures were 450, 550 and 700 degrees C for 1 h, corresponding to Ra-numbers of 7, 15 and 40 nm. The surfaces were characterized by means of AFM, DTA/TG, diffractometry and white light interferometry. The cell reactions were investigated concerning adhesion kinetics, migration, spreading, cell adhesion, and collagen I synthesis. The smooth surface (Ra=7 nm) resulted in the fastest cell anchorage and cell migration. The closest cell adhesion was reached with the surface structure of Ra=15 nm. The roughest surface (Ra=40 nm) impedes the cell migration as well as a proper spreading of the cells. The best results concerning cell adhesion and spreading was reached with an intermediate surface roughness of Ra=15 nm of the niobium oxide coating on cp-titanium slices.  相似文献   

12.
Topographical modifications of titanium (Ti) at the nanoscale level generate surfaces that regulate several signaling pathways and cellular functions, which may affect the process of osseointegration. Here, we investigated the participation of integrin αV in the osteogenic capacity of Ti with nanotopography. Machined titanium discs (untreated) were submitted to treatment with H2SO4/H2O2 to produce the nanotopography (nanostructured). First, the greater osteogenic capacity of the nanotopography that increased osteoblast differentiation of mesenchymal stem cells compared with untreated topography was shown. Also, the nanostructured surface increased (regulation ≥ 1.9-fold) the gene expression of 6 integrins from a custom array plate utilized to evaluate the gene expression of 84 genes correlated with cell adhesion signaling pathway, including integrin αV, which is involved in osteoblast differentiation. By silencing integrin αV in MC3T3-E1 cells cultured on nanotopography, the impairment of osteoblast differentiation induced by this surface was observed. In conclusion, it was shown that nanotopography regulates the expression of several components of the cell adhesion signaling pathway and its higher osteogenic potential is, at least in part, due to its ability to upregulate the expression of integrin αV. Together with previous data that showed the participation of integrins α1, β1, and β3 in the nanotopography osseoinduction activity, we have uncovered the pivotal role of this family of membrane receptors in the osteogenic potential of this surface.  相似文献   

13.
A common technique to aid in implant fixation into surrounding bone is to inject bone cement into the space between the implant and surrounding bone. The most common bone cement material used clinically today is poly(methyl methacrylate), or PMMA. Although promising, there are numerous disadvantages of using PMMA in bone fixation applications which has limited its wide spread use. Specifically, the PMMA polymerization reaction is highly exothermic in situ, thus, damaging surrounding bone tissue while curing. In addition, PMMA by itself is not visible using typical medical imaging techniques (such as X-rays required to assess new bone formation surrounding the implant). Lastly, although PMMA does support new bone growth, studies have highlighted decreased osteoblast (bone forming cell) functions on PMMA compared to other common orthopedic coating materials, such as calcium phosphates and hydroxyapatite. For these reasons, the goal of this study was to begin to investigate novel additives to PMMA which can enhance its cytocompatibility properties with osteoblasts, decrease its exothermic reaction when curing, and increase its radiopacity. Results of this study demonstrated that compared to conventional (or micron) equivalents, PMMA with nanoparticles of MgO and BaSO4 reduced harmful exothermic reactions of PMMA during solidification and increased radiopacity, respectively. Moreover, osteoblast adhesion increased on PMMA with nanoparticles of MgO and BaSO4 compared with PMMA alone. This study, thus, suggests that nanoparticles of MgO and BaSO4 should be further studied for improving properties of PMMA for orthopedic applications.  相似文献   

14.
15.
In an effort to develop better orthopedic implants, osteoblast (bone-forming cells) adhesion was determined on microscale patterns (30 microm lines) of carbon nanofibers placed on polymer substrates. Patterns of carbon nanofibers (CNFs) on a model polymer (polycarbonate urethane [PCU]) were developed using an imprinting method that placed CNFs in selected regions. Results showed the selective adhesion and alignment of osteoblasts on CNF patterns placed on PCU. Results also showed greater attraction forces between fibronectin and CNF (compared with PCU) patterns using atomic force microscope force-displacement curves. Because fibronectin is a protein that mediates osteoblast adhesion, these results provide a mechanism of why osteoblast adhesion was directed towards CNF patterns. Lastly, this study showed that the directed osteoblast adhesion on CNF patterns translated to enhanced calcium phosphate mineral deposition along linear patterns of CNFs on PCU. Since CNFs are conductive materials, this study formulated substrates that through electrical stimulation could be used in future investigations to further promote osteoblasts to deposit anisotropic patterns of calcium-containing mineral similar to that observed in long bones.  相似文献   

16.

Background  

The aim of this study was to investigate the effect of nanocrystalline hydroxyapatite (HA) coatings on the activity of osteoblasts.  相似文献   

17.
The Spike (S) protein of SARS-coronavirus (SARS-CoV) mediates viral entry into host cells. It contains two heptad repeat regions, denoted HRN and HRC. We have identified the location of the two interacting HR regions that form the six-helix bundle (B. Tripet, et al, J. Biol. Chem., 279: 20836-20849, 2004). In this study, HRC peptide (1150-1185) was chosen as the region to make structure-based substitutions to design a series of HRC analogs with increased hydrophobicity, helical propensity and electrostatic interactions, or with a covalent constraint (lactam bridge) to stabilize the alpha-helical conformation. Effects of the substitutions on alpha-helical structure of HRC peptides and their abilities to interact with HRN or HRC have been examined by biophysical techniques. Our results show that the binding of the HRC analogs to HRN does not correlate with the coiled-coil stability of the HRC analogs, but their interactions with HRC does correlate with their stability, except for HRC7. This study also suggested three types of potential peptide inhibitors against viral entry can be designed, those that simultaneously inhibit interaction with HRC and HRN and those that are either HRC-specific or HRN-specific. For example, our study shows the important role of alpha-helical structure in the formation of the six-helix bundle where the lactam bridge constrained analog (HRC5) provided the best interaction with HRN. The importance of alpha-helical structure in the interaction with native HRC was demonstrated with analog HRC4 which binds best to HRC.  相似文献   

18.
In the body, vascular cells continuously interact with tissues that possess nanostructured surface features due to the presence of proteins (such as collagen and elastin) embedded in the vascular wall. Despite this fact, vascular stents intended to restore blood flow do not have nanoscale surface features but rather are smooth at the nanoscale. As the first step towards creating the next generation of vascular stent materials, the objective of this in vitro study was to investigate vascular cell (specifically, endothelial, and vascular smooth muscle cell) adhesion on nanostructured compared with conventional commercially pure (cp) Ti and CoCrMo. Nanostructured cp Ti and CoCrMo compacts were created by separately utilizing either constituent cp Ti or CoCrMo nanoparticles as opposed to conventional micron-sized particles. Results of this study showed for the first time increased endothelial and vascular smooth muscle cell adhesion on nanostructured compared with conventional cp Ti and CoCrMo after 4 hours' adhesion. Moreover, compared with their respective conventional counterparts, the ratio of endothelial to vascular smooth muscle cells increased on nanostructured cp Ti and CoCrMo. In addition, endothelial and vascular smooth muscle cells had a better spread morphology on the nanostructured metals compared with conventional metals. Overall, vascular cell adhesion was better on CoCrMo than on cp Ti. Results of surface characterization studies demonstrated similar chemistry but significantly greater root-mean-square (rms) surface roughness as measured by atomic force microscopy (AFM) for nanostructured compared with respective conventional metals. For these reasons, results from the present in vitro study provided evidence that vascular stents composed of nanometer compared with micron-sized metal particles (specifically, either cp Ti or CoCrMo) may invoke cellular responses promising for improved vascular stent applications.  相似文献   

19.
Techniques to regenerate the vasculature have risen considerably over the last few decades due to the increased clinical diagnosis of artery narrowing and blood vessel blockage. Although initially re‐establishing blood flow, current small diameter vascular regenerative materials often eventually cause thrombosis and restenosis due to a lack of initial endothelial cell coverage on such materials. The objective of this in vitro study was to evaluate commonly used vascular materials (specifically, polyethylene terephthalate, polytetrafluoroethylene, polyvinyl chloride, polyurethane, nylon, commercially pure titanium, and a titanium alloy (Ti6Al4V)) modified using an ionic plasma deposition (IPD) process and a nitrogen ion implantation plasma deposition (NIIPD) process. Such surface modifications have been previously shown to create nanostructured surface features which mimic the natural nanostructured surface features of blood vessels. The modified and unmodified surfaces were characterized by scanning electron microscopy, atomic force microscopy and surface energy measurements. Furthermore, in vitro endothelial cell adhesion tests (a key first step for vascular material endothelialization) demonstrated increased endothelial cell adhesion on many modified (with IPD and NIIPD + IPD) compared to unmodified samples. In general, endothelial cell adhesion increased with nanoroughness and surface energy but demonstrated a decreased endothelial cell adhesion trend after an optimal coating surface energy value was reached. Thus, results from this study provided materials and a versatile surface modification process that can potentially increase endothelialization faster than current unmodified (conventional) polymer and metallic vascular materials. Biotechnol. Bioeng. 2009;103: 459–471. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
Due to oxidation and adsorption of chloride and hydroxyl anions, the surface of titanium (Ti) implants is negatively charged. A possible mechanism of the attractive interaction between the negatively charged Ti surface and the negatively charged osteoblasts is described theoretically. It is shown that adhesion of positively charged proteins with internal charge distribution may give rise to attractive interaction between the Ti surface and the osteoblast membrane. A dynamic model of the osteoblast attachment is presented in order to study the impact of geometrically structured Ti surfaces on the osteoblasts attachment. It is indicated that membrane-bound protein complexes (PCs) may increase the membrane protrusion growth between the osteoblast and the grooves on titanium (Ti) surface and thereby facilitate the adhesion of osteoblasts to the Ti surface. On the other hand, strong local adhesion due to electrostatic forces may locally trap the osteoblast membrane and hinder the further spreading of osteointegration boundary. We suggest that the synergy between these two processes is responsible for successful osteointegration along the titanium surface implant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号