首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In an attempt to determine whether phagocytosis of collagen by fibroblasts involves binding of the fibril to the plasma membrane, the effect of the lectin concanavalin A (Con A) was studied in an in vitro model system. Metacarpal bone rudiments from 19-day-old mouse fetuses were incubated with varying concentrations of the lectin. Quantitative electron microscopic analysis indicated that Con A caused a dose-related increase in the amount of phagocytosed collagen fibrils in periosteal fibroblasts, suggesting either an enhanced uptake or a decreased intracellular breakdown of fibrils. Since a Con A-inducible increase was not seen in the combined presence of both the lectin and the proteinase inhibitor leupeptin, which is known to inhibit the intracellular digestion of phagocytosed fibrillar collagen, it is unlikely that Con A stimulated phagocytosis. Based on the finding that Con A interfered with the digestion of a synthetic substrate by the collagenolytic lysosomal enzyme cathepsin B it is suggested that the augmentation of intracellular fibrillar collagen under the influence of the lectin was due to a decreased intracellular digestion. Since Con A did not inhibit the uptake of collagen fibrils by the fibroblasts it is concluded that Con A-inhibitable binding sites for collagen molecules are unlikely to be involved in phagocytosis of collagen fibrils by fibroblasts.  相似文献   

2.
3.
The mode of binding of 125I-labelled concanavalin A and succinyl-concanavalin A to rat thymocytes at 4 degrees C was investigated. Simultaneously, the free binding sites of the cell-bound lectin molecules were quantified by horseradish peroxidase binding. Concanavalin A showed cooperative binding while succinyl-concanavalin A did not. The number of molecules of concanavalin A bound to the cell surface when it was saturated was twice the number of molecules of succinyl-concanavalin A. We interpret these results as showing that the binding of native concanavalin A to thymocytes at 4 degrees C brings about a cooperative modification of the membrane which leads to appearance of new receptors. Divalent succinyl-concanavalin A has no such effect. Horseradish peroxidase binding to cell-bound lectin was shown to be related to the immobilization of membrane receptors; the more they are immobilized, the more receptor-associated lectin can bind horseradish peroxidase. This allowed us to establish that post-binding events, which we called micro-redistribution, occurred at 4 degrees C when either concanavalin A or succinyl-concanavalin A binds to cells. A cooperative restriction of the micromobility of cell receptors is produced by increasing concentrations of concanavalin A. Succinyl-concanavalin A does not restrict cell receptor mobility at any concentration tested. The results are discussed in terms of cell stimulation and cell agglutination.  相似文献   

4.
A fluorometric binding assay for lectin and yeast cells using the avidin-biotin system was previously reported (Y. Oda, M. Kinoshita, and K. Kakehi, Anal. Biochem. 254, 41-48, 1997). However, the true amount of bound lectin could not be determined by this method due to difficulty in determination of the number of bound biotin molecules. In the present study, we have developed a method for assaying the binding reaction between fluorescent lectin and cells using a flow injection technique, which allows estimation of the amount of lectin bound to cells. An aliquot of the cell suspension was directly analyzed by injection into a flow injection system after the binding between the fluorescently labeled lectin and cells. The labeled lectins showed good linearity, at least over a range of 20-1000 ng as the injected amount. The intrinsic fluorescence of the labeled lectins did not change upon the binding. The binding reaction of the hydroxycoumarin-labeled lectins with yeast cells was rapid and reached an equilibrium state within 10 min. Scatchard analysis showed that Saccharomyces cerevisiae cells contained approximately 1. 3-1.6 x 10(8) binding sites per cell for Concanavalin A, Lycoris radiata agglutinin, and Tulipa gesneriana lectin with affinity constants of 3.2-4.7 x 10(6) M-1. The present method was applied to the study of binding between lectins and bacteria and mouse spleen cells. The assay method described here is highly sensitive and will be an alternative to assays using lectins labeled with radioisotopes. The procedure is quite simple and can be completed within 1 h.  相似文献   

5.
The submandibular glands of 4-week-old rats were dissociated by a procedure involving digestions with collagenase and hyaluronidase, chelation of divalent cations and mechanical force. A suspension of single cells was obtained in low yield by centrifugation in a Ficoll-containing medium. Immediately after dissociation and after a culture period of 16-18 hr the dissociated cells were tested for agglutinability by concanavalin A (Con A). Using ferritin (tfer)-conjugated Con A the lectin binding by the isolated acinar cells was also studied. The dissociated cells were agglutinated by low concentrations of Con A and bound Fer-Con A molecules on their entire surface without any indication of polarization of the cell membrane. There was a considerable cell to cell variation in the amount of Fer-Con A binding which was, in general, sparse and patchy. The contact surfaces between agglutinated cells revealed a dense binding of Fer-Con A molecules irrespective of the types of cells participating in the agglutination reaction. Cells cultured for 16-18 hr were no longer agglutinated by Con A. As compared to the freshly dissociated cells the cultured acinar cells revealed a more uniform and denser binding of Fer-Con A molecules. Furthermore, there were more lectin molecules bound to the cell surface corresponding to the basal part of the cell, where the nucleus and most of the rough surface endoplasmic reticulum were located, than to the apical cell surface. It is suggested that the higher density of lectin-binding sites on the cell surface in the vicinity of the cisternae of the rough endoplasmic reticulum indicates insertion sites of newly synthesized membrane glycoproteins.  相似文献   

6.
The lectin concanavalin A (Con A) was used as a model probe to study the behavior of molecules bound to the surface of recently transformed schistosomula of Schistosoma mansoni. Con A binding was saturable (150- 180 pg/organism) and specifically competed by alpha-methyl mannoside. Both FITC-Con A and 125-I-Con A were lost from the surface of schistosomula with a halftime of 8-10 h in culture in defined medium. A comparable decrease in the binding of Con A to schistosomula cultured and then labeled with the lectin indicated that the labeling procedure itself was not inducing the observed change. Internalization of Con A was not seen by either fluorescence microscopy or electron microscope radioautography. In addition, 70-80% of the radioactivity lost from the parasite was recoverable by TCA precipitation from the culture medium as intact Con A (27,000 mol wt on SDS PAGE). Thus, the mechanism of clearance of bound Con A from the surface of cultured schistosomula is apparently by sloughing of Con A molecules intact into the culture media and not by endocytosis and degradation. Con A binding sites, visualized with hemocyanin by scanning electron microscopy, appeared homogeneously distributed over the surface of schistosomula when organisms were labeled at 4 degree C or after fixation with glutaraldehyde. However, Con A and hemocyanin formed aggregates on the surface of schistosomula when labeling was performed at 37 degrees C, which suggests that lectin binding sites have lateral mobility within the plane of the membrane. These aggregates are likely independent of metabolism by the parasite because aggregation also occurs on the surface of organisms killed with azide.  相似文献   

7.
The homopteran sucking insect, Lipaphis erysimi (mustard aphid) causes severe damage to various crops. This pest not only affects plants by sucking on the phloem, but it also transmits single-stranded RNA luteoviruses while feeding, which cause disease and damage in the crop. The mannose-binding Allium sativum (garlic) leaf lectin has been found to be a potent control agent of L. erysimi. The lectin receptor protein isolated from brush border membrane vesicle of insect gut was purified to determine the mechanism of lectin binding to the gut. Purified receptor was identified as an endosymbiotic chaperonin, symbionin, using liquid chromatography-tandem mass spectrometry. Symbionin from endosymbionts of other aphid species have been reported to play a significant role in virus transmission by binding to the read-through domain of the viral coat protein. To understand the molecular interactions of the said lectin and this unique symbionin molecule, the model structures of both molecules were generated using the Modeller program. The interaction was confirmed through docking of the two molecules forming a complex. A surface accessibility test of these molecules demonstrated a significant reduction in the accessibility of the complex molecule compared with that of the free symbionin molecule. This reduction in surface accessibility may have an effect on other molecular interactive processes, including "symbionin virion recognition", which is essential for such symbionin-mediated virus transmission. Thus, garlic leaf lectin provides an important component of a crop management program by controlling, on one hand, aphid attack and on the other hand, symbionin-mediated luteovirus transmission.  相似文献   

8.
Normal bovine erythrocytes were agglutinated with four of five lectins specific for different oligosaccharides. The order of reactivity was wheat germ greater than ricin greater than soybean greater than peanut. Concanavalin A did not agglutinate normal bovine erythrocytes. After neuraminidase treatment of normal bovine erythrocytes, each lectin agglutinated the cells with decreased concentrations of lectin, verifying that partial removal of sialic acid exposes more of each lectin's binding sites or alters the binding site such that fewer molecules of lectin are required to initiate agglutination. A change in agglutination of erythrocytes using soybean agglutinin and peanut agglutinin occurred when cells were obtained from cattle infected with Eperythrozoon wenyoni. The results suggested that an alteration in erythrocyte membranes occurred as a result of this infection as manifested by the increased recognition of both the soybean agglutinin and peanut agglutinin receptor carbohydrates. A similar effect was indicated with erythrocytes obtained during an acute Anaplasma marginale infection; however, an ensuing reticulocytosis masked the effect, requiring the use of fluoresceinated lectins to verify that increased binding of each lectin occurred with infected cells when compared to normal cells.  相似文献   

9.
The interactions of human genotype AO erythrocytes (red blood cells) (RBCs) with N-acetylgalactosamine-reactive lectins isolated from Helix pomatia (HPA) and from Dolichos biflorus (DBA) were studied. Binding curves obtained with the use of tritium-labeled lectins showed that the maximal numbers of lectin molecules capable of binding to human genotype AO RBCs were 3.8 X 10(5) and 2.7 X 10(5) molecules/RBC for HPA and DBA, respectively. The binding of one type of lectin may influence the binding of another type. HPA was found to inhibit the binding of DBA, but not vice versa. The binding of HPA was weakly inhibited by a beta-D-galactose-reactive lectin isolated from Ricinus communis (designated RCA1). Limulus polyphemus lectin (LPA), with specificity for N-acetylneuraminic acid, did not influence the binding of HPA but enhanced the binding of DBA. About 80% of LPA receptors (N-acetylneuraminic acid) were removed from RBC surfaces by neuraminidase treatment. Neuraminidase treatment of RBCs resulted in increases of binding of both HPA and DBA, but through different mechanisms. An equal number (7.6 X 10(5) of new HPA sites were generated on genotypes AO and OO RBCs by neuraminidase treatment, and these new sites accounted for the enhancement (AO cells) and appearance (OO cells) of hemagglutinability by HPA. Neuraminidase treatment did not generate new DBA sites, but increased the DBA affinity for the existing receptors; as a result, genotype AO cells increased their hemagglutinability by DBA, while OO cells remained unagglutinable. The use of RBCs of different genotypes in binding assays with 3H-labeled lectins of known specificities provides an experimental system for studying cell-cell recognition and association.  相似文献   

10.
The ability of cells to bind to nylon fibers coated with lectin molecules interspaced with varying numbers of albumin molecules has been analyzed. The cells used were lymphoma cells, normal lymphocytes, myeloid leukemia cells, and normal and transformed fibroblasts, and the fibers were coated with different densities of concanavalin A or the lectins from soybean or wheat germ. Cells fixed with glutaraldehyde did not bind to lectin-coated fibers. The number of cells bound to fibers could be increased by increasing the density of lectin molecules on the fiber, the density of specific receptors on the cell, or the mobility of the receptors. It is suggested that binding of cells to fibers involves alignment and binding of specific cell surface receptors with lectin molecules immobilized on the fibers, and that this alignment requires short-range rapid lateral mobility (RLM) of the receptors. The titration of cell binding to fibers coated with different densities of lectin and albumin has been used to measure the relative RLM of unoccupied cell surface receptors for the lectin. The results indicate a relationship of RLM to lectin-induced cell-to-cell binding. The RLM or receptors for concanavalin A (Con A) was generally found to be higher than that of receptors for the lectins from wheat germ or soybean. Receptor RLM could be decreased by use of metabolic inhibitors or by lowering the temperature. Receptors for Con A had a lower RLM on normal fibroblasts than on SV40-transformed fibroblasts, and trypsinization of normal fibroblasts increased Con A receptor RLM. Normal lymphocytes, lymphoma cells, and lines of myeloid leukemia cells that can be induced to differentiate had a high receptor RLM, whereas lines of myeloid leukemia cells that could not be induced to differentiate had a low receptor RLM. These results suggest that the RLM of Con A receptors is related to the transformation of fibroblasts and the ability of myeloid leukemia cells to undergo differentiation  相似文献   

11.
We have previously demonstrated that a high mannose type glycopeptide is bivalent for binding Concanavalin A (Con A) and can precipitate the lectin (Bhattacharyya L. and Brewer, C.F. (1986) Biochem. Biophys. Res. Commun. 137, 670-674). The present results show that a triantennary complex type oligosaccharide containing nonreducing terminal galactose residues can precipitate the D-galactose/N-acetyl-D-galactosamine specific lectin from Erythrina indica (EIL). The interactions of the oligosaccharide with EIL was investigated by quantitative precipitin analysis. The equivalence point of the precipitin curve indicated that the glycopeptide is trivalent for EIL binding. These results indicate that each arm of the oligosaccharide can independently bind separate lectin molecules leading to precipitation of the complex. These findings are discussed in terms of the possible biological structure-function properties of complex type oligosaccharides.  相似文献   

12.
13.
In the lamprey, adrenocorticotropin (ACTH) and melanotropins (MSHs) are produced from two distinct precursors, proopiocortin (POC) and proopiomelanotropin (POM). Both POC and POM have been suggested to be glycoproteins. The present study aimed to demonstrate glycoconjugates in ACTH and MSH cells in the pituitary of adult sea lampreys (Petromyzon marinus) by means of a lectin histochemistry. A total of 19 kinds of lectins were tested. ACTH cells were distributed in both the rostral pars distalis and the proximal pars distalis, and were stained positively with N-acetylglucosamine binding lectins (i.e., succinylated wheat germ agglutinin), N-acetylgalactosamine binding lectins (i.e., soybean agglutinin), D-mannose binding lectins (i.e., Lens culinaris agglutinin), and D-galactose binding lectins (i.e., Erythrina cristagall lectin). MSH cells were distributed in the pars intermedia, and were stained with N-acetylgalactosamine binding lectins (i.e., Dolichos biflorus agglutinin), D-mannose binding lectin (Pisum sativum agglutinin) and D-galactose binding lectins (i.e., peanut agglutinin). These results suggested that ACTH and MSH cells produce different types of glycoconjugates which may be attributed to the difference in glycoconjugate moieties between the precursor proteins, POC and POM.  相似文献   

14.
Monoclonal antibodies against an endogenous beta-galactoside-binding lectin (monomer molecular weight 14,000, 14K lectin) of chick embryo were prepared and characterized. The inhibitory activities against hemagglutination, antigenic determinants and binding specificities were examined. Monoclonal antibody S1A4-5 strongly inhibited the hemagglutination activity of this lectin. This antibody did not bind to any cyanogen bromide (BrCN) fragment of the lectin. Another monoclonal antibody, S1A4-3, bound to one of the BrCN fragments (residues 34-66). However, this antibody inhibited hemagglutination only weakly. The bindings to isolectins of beta-galactoside-binding lectin, namely 14K lectin (monomer molecular weight 16,000) and a third species which is assumed to be a hybrid molecule consisting of 14K and 16K lectin subunits, were examined. The antibody SIA4-5 bound to 14K lectin but not to 16K lectin. In the case of the third species, intermediate binding was observed.  相似文献   

15.
The natural physiological ligands for selectins are oligosaccharides found in glycoprotein or glycolipid molecules in cell membranes. In order to study the role of sugar residues in the in vivo lectin anti-inflammatory effect, we tested three leguminous lectins with different carbohydrate binding affinities in the peritonitis and paw oedema models induced by carrageenin in rats. L. sericeus lectin was more anti-inflammatory than D. virgata lectin, the effects being reversed by their specific binding sugars (N-acetylglucosamine and alpha-methylmannoside, respectively). However, V. macrocarpa, a galactose-specific lectin, was not anti-inflammatory. The proposed anti-inflammatory activity of lectins could be due to a blockage of neutrophil-selectin carbohydrate ligands. Thus, according to the present data, we suggest an important role for N-acetylglucosamine residue as the major ligand for selectins on rat neutrophil membranes.  相似文献   

16.
Mannan-binding lectin (MBL) is an oligomeric lectin that binds neutral carbohydrates on pathogens, forms complexes with MBL-associated serine proteases (MASP)-1, -2, and -3 and 19-kDa MBL-associated protein (MAp19), and triggers the complement lectin pathway through activation of MASP-2. To identify the MASP binding site(s) of human MBL, point mutants targeting residues C-terminal to the hinge region were produced and tested for their interaction with the MASPs and MAp19 using surface plasmon resonance and functional assays. Mutation Lys(55)Ala abolished interaction with the MASPs and MAp19 and prevented formation of functional MBL-MASP-2 complexes. Mutations Lys(55)Gln and Lys(55)Glu abolished binding to MASP-1 and -3 and strongly inhibited interaction with MAp19. Conversely, mutation Lys(55)Arg abolished interaction with MASP-2 and MAp19, but only weakened interaction with MASP-1 and -3. Mutation Arg(47)Glu inhibited interaction with MAp19 and decreased the ability of MBL to trigger the lectin pathway. Mutant Arg(47)Lys showed no interaction with the MASPs or MAp19, likely resulting from a defect in oligomerization. In contrast, mutation Arg(47)Ala had no impact on the interaction with the MASPs and MAp19, nor on the ability of MBL to trigger the lectin pathway. Mutation Pro(53)Ala only had a slight effect on the interaction with MASP-1 and -3, whereas mutations at residues Leu(49) and Leu(56) were ineffective. In conclusion, the MASP binding site of MBL involves a sequence stretch centered on residue Lys(55), which may form an ionic bond representing the major component of the MBL-MASP interaction. The binding sites for MASP-2/MAp19 and MASP-1/3 have common features but are not strictly identical.  相似文献   

17.
The crystal structures of the glycosylated N-terminal two domains of ICAM-1 and ICAM-2 provided a framework for understanding the role of glycosylation in the structure and function of intercellular adhesion molecules (ICAMs). The most conserved glycans were less flexible in the structures, interacting with protein residues and contributing to receptor folding and expression. The first N-linked glycan in ICAM-2 contacts an exposed tryptophan residue, defining a conserved glycan-W motif critical for the conformation of the integrin binding domain. The absence of this motif in human ICAM-1 exposes regions used in receptor dimerization and rhinovirus recognition. Experiments with soluble molecules having the N-terminal two domains of human ICAMs identified glycans of the high mannose type N-linked to the second domain of the dendritic cell-specific ICAM-grabbing nonintegrin lectin-ligands ICAM-2 and ICAM-3. About 40% of those receptor molecules bear endoglycosidase H sensitive glycans responsible of the lectin binding activity. High mannose glycans were absent in ICAM-1, which did not bind to the lectin, but they appeared in ICAM-1 mutants with additional N-linked glycosylation and lectin binding activity. N-Linked glycosylation regulate both conformation and immune related functions of ICAM receptors.  相似文献   

18.
Physico-chemical and carbohydrate binding studies have been carried out on the Momordica charantia (bitter gourd) seed lectin (MCL). The lectin activity is maximal in the pH range 7.4-11.0, but decreases steeply below pH 7.0. The lectin activity is mostly unaffected in the temperature range 4-50 degrees C, but a sharp decrease is seen between 50 and 60 degrees C, which could be correlated to changes in the structure of the protein as seen by circular dichroism and fluorescence spectroscopy. Isothermal titration calorimetric studies show that the tetrameric MCL binds two sugar molecules and the binding constants (Kb), determined at 288.15 K, for various saccharides were found to vary between 7.3 x 10(3) and 1.52 x 10(4)M(-1). The binding reactions for all the saccharides investigated were essentially enthalpy driven, with the binding enthalpies (DeltaHb) at 288.15 K being in the range of -50.99 and -43.39 kJ mol(-1), whereas the contribution to the binding reaction from the entropy of binding was negative, with values of binding entropy (DeltaSb) ranging between -99.2 and -72.0 J mol(-1)K(-1) at 288.15 K. Changes in heat capacity (DeltaCp) for the binding of disaccharides, lactose and lactulose, were significantly larger in magnitude than those obtained for the monosaccharides, methyl-beta-D-galactopyranoside, and methyl-alpha-D-galactopyranoside, and could be correlated reasonably well with the surface areas of these ligands. Enthalpy-entropy compensation was observed for all the sugars studied, suggesting that water structure plays an important role in the overall binding reaction. CD spectroscopy indicates that carbohydrate binding does not lead to significant changes in the secondary and tertiary structures of MCL, suggesting that the carbohydrate binding sites on this lectin are mostly preformed.  相似文献   

19.
The rat hepatic lectins, galactose- and N-acetylgalactosamine-binding proteins found on the hepatocyte cell surface, mediate adhesion of isolated primary rat hepatocytes to artificial galactose-derivatized polyacrylamide gels. Biochemical and immunohistochemical techniques were used to examine the topographical redistribution of the rat hepatic lectins in response to galactose-mediated cell adhesion. Hepatocytes isolated from rat liver by collagenase perfusion had an average of 7 x 10(5) cell surface lectin molecules per cell, representing 30-50% of the total lectin molecules per cell, the remainder residing in intracellular pools. Hepatocytes incubated on galactose-derivatized surfaces, whether at 0-4 degrees C or 37 degrees C, rapidly lost greater than 80% of their accessible cell surface lectin binding sites into an adhesive patch of characteristic morphology. The kinetics of rat hepatic lectin disappearance were used to estimate a lateral diffusion coefficient greater than 9 x 10(-9) cm2/s at 37 degrees C, suggesting rapid and unimpeded lectin diffusion in the plane of the membrane. Indirect immunofluorescence labeling of adherent cells using antihepatic lectin antibody revealed a structured ring of receptors surrounding an area of exclusion (patch) of reproducible size and shape which represented approximately 8% of the hepatocyte cell surface. Notably, adherent cells, which had lost greater than 80% of their accessible surface binding sites, still endocytosed soluble galactose-terminated radioligand at greater than 50% of the rate of nonadherent control cells. No net movement of rat hepatic lectin from intracellular pools to the cell surface was found on cells recovered after adhesion to galactose-derivatized surfaces at 37 degrees C, suggesting that the physical size and/or lectin density of the patch was restricted by kinetic or topological constraints.  相似文献   

20.
The lectin pathway of the complement system is activated following the binding of carbohydrate-based ligands by recognition molecules such as mannose-binding lectin (MBL) or ficolins. Engagement of the recognition molecules causes activation of associated MBL-associated serine proteases or MASPs, which in turn activate downstream complement molecules to activate the system. Two MASP genes are alternatively spliced during expression to yield 5 proteins, including three proteases (MASP-1, -2 and -3) and two truncated proteins, MAp19 and MAp44. Here we discuss what is currently known about these proteins in terms of their structure and function. MASP-2 is autoactivated following the initial binding events of the pathway and is able to subsequently activate the C4 and C2 substrates required to activate the rest of the pathway. MASP-1 is able to augment MASP-2 activation, but also appears to play other roles, although the physiological significance of these is not yet clear. The roles of the truncated Map19 and Map44 proteins and the MASP-3 protease are currently unknown. The proteases form an interesting sub-family of proteins that clearly should be the focus of future research in order to establish their biological roles.This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号